3590 Tape Drive End of Support: Transitioning from 3590 Physical Tape to Virtual Tape

David Tolsma
Systems Engineering Manager
Luminex Software, Inc.

Scott James
VP Global Alliances
Luminex Software, Inc.
Discussion Topics

- 3590 Physical Tape Timelines
- Key Considerations
- What Can Virtual Tape Do For You?
 - TCO Considerations
- Virtual Tape Technologies Enable More Possibilities
 - Customer Examples
- Summary & Additional Q&A
3590 Physical Tape Timelines

May 1999
3590-E1A, & E11
General Availability

July 2002
3590 H1A & H11
General Availability

September 2006
Marketing (Sales Availability) Withdrawal

January 2015
U.S. Services Withdrawal
(End of Support)

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Key Considerations

Replacing 3590 Tape with Current Generation Physical Tape Requires:

- 3592 (Gen 1-5) tape drives
- New 3592 tape media
 - 3590 media is not compatible with 3592 drives
- Tape migration tools and services to transition from old, to new tape cartridges
- Stacking software to fill the space on the higher capacity cartridges
- A 3592 Compatible Mainframe Control Unit/Controller
Physical-to-Physical Tape Transition

- Still requires resources for
 - Media
 - Handling
 - Shipping
 - Off site storage
- Risk of lost, missing or damaged tapes remains
- Limits DR preparedness, RPO and RTO
- Limits access to the latest storage innovations (i.e. cloud)
What Can Virtual Tape Do For You?

- Reduce or eliminate physical tape
 - Save $ on maintenance, media, handling, shipping and off site storage
- Reduce security concerns and cost related to lost or missing physical tapes
- For HSM, reclaim CPU Cycles
 - Skip ML1 (DASD) and migrate from ML0, to ML2 (virtual tape)
- Improve disaster recovery preparedness by replicating tape data over the WAN
 - Tape data immediately available for use at the remote DR site
- Improve performance for all tape operations

Future-Proof 3590 Virtual Tape

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
TCO Considerations

Physical vs. Virtual Tape Replacement

<table>
<thead>
<tr>
<th>Mainframe Virtual Tape (MVT)</th>
<th>3592 Generation 1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2x MVT systems</td>
<td>• Multiple 3592 Tape Drives (x @ Prod, x @ DR)</td>
</tr>
<tr>
<td>• (1 @ Prod, 1 @ DR)</td>
<td>• 2x 3592 Tape Controllers (1 @ Prod, 1 @ DR)</td>
</tr>
<tr>
<td>• MVT Replication</td>
<td>• Purchase new tape media</td>
</tr>
<tr>
<td>• MVT tape migration tools and services</td>
<td>• Continued expenses for tape handling, shipping and warehousing</td>
</tr>
<tr>
<td></td>
<td>• Tape migration services to migrate from 3590 to 3592 tape cartridges</td>
</tr>
<tr>
<td></td>
<td>• TS Tape library required?</td>
</tr>
<tr>
<td></td>
<td>• Stacking software?</td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
TCO Considerations
Physical vs. Virtual Tape Replacement

<table>
<thead>
<tr>
<th>Mainframe Virtual Tape (MVT)</th>
<th>Third Party Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ 2x MVT systems (1 @ Prod, 1 @ DR)</td>
<td>▪ Long term access to 3590 and 3590 CU parts that are no longer manufactured by IBM</td>
</tr>
<tr>
<td>▪ Or 1 MVT and 1 MVT Vault</td>
<td>▪ Continued cost of physical tape media (long term availability?)</td>
</tr>
<tr>
<td>▪ MVT Replication</td>
<td>▪ Continued cost of tape handling, shipping and warehousing (offsite vault)</td>
</tr>
<tr>
<td>▪ Network bandwidth</td>
<td>▪ Cost to business operations for frequent or extended repair times</td>
</tr>
<tr>
<td>▪ MVT tape migration tools and services</td>
<td>▪ Cost of travel 1 – 2x times per year for DR tests</td>
</tr>
</tbody>
</table>
Virtual Tape Technologies Enable More Capability & Possibilities

- Emulate 3590 tape drives
- Remote Replication and Monitoring
- Simplified DR Testing and Execution
- Data Deduplication
- Continuous Availability
- CU Based Encryption & Key Management
- Unique Tape Migration Tools and Services

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Emulate 3590 Tape Drives

- Transparent to mainframe applications and IOGEN definitions
 - Maintain “UNIT=3590”
- Stores tape VOLSERS on disk
 - Escape the limitations of the laws of physics
 - RAID protection from media failures
- Faster mounts
- Faster to first byte
- No capacity penalty for unfilled cartridges
Remote Replication Options

- Replication engine
 - Control unit-based
 - Storage-based
- Data synchronization
 - Asynchronous
 - Synchronous
- Flexible policies for number of copies and locations
 - Including vaulting to the Cloud
- Monitoring

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Remote Replication (Prod. to DR)

Production Site
- Production Mainframe
- MVT
- Ext. Storage
- MVT Control Unit

Disaster Recovery Site
- MVT
- DR Mainframe
- Ext. Storage
- MVT Control Unit

WAN
RepMon: Replication Monitor

Provides **real-time status monitoring and logging** of virtual tape data writes and replication to a remote disaster recovery site at the VOLSER level.

- Identifies Write and Replication Status of Mainframe Tape VOLSERs
- Identifies if virtual tape data at DR is still consistent with the primary datacenter
- Provides visual and audit capabilities to confirm when backups reach DR

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Luminex Replication Customer Example
Multi-National Food Product Manufacturer

Production Site

Production Mainframe

Local Asynchronous Replication

Luminex MVT

Disaster Recovery Site

DR Mainframe

Remote Asynchronous Replication

Luminex MVT

WAN

Luminex MVT

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Simplified DR & Execution: Push Button DR Testing
Replication During Normal Operations

1. Primary Site A
2. Secondary Site B

Replication to Secondary Site or DR Site

Tape Data

Site A

Site B
Push Button DR Testing

Replication During DR Testing

Site A

1 Primary

Site B

2 Secondary

Tape Data

Replication to Secondary Site or DR Site continues uninterrupted

Prepares DR environment for read/write testing; original Tape Data remains untouched

Start DR
Push Button DR Testing

After DR Testing is Completed

Site A

1 Primary

Site B

2 Secondary

Replication to Secondary Site or DR Site continues uninterrupted

DR Test Data is purged

Optionally, DR Test Data can be automatically replicated back to Site A for auditing purposes
CGX Configuration
Push Button DR Example - Automotive Manufacturer

Production Site

- Production Mainframe
- Luminex Channel Gateways
- Storage (234 TB)

DR Site

- DR Mainframe
- DR Mainframe
- Luminex Channel Gateway
- Storage (234 TB)

CGX Options in Use:
- Push Button DR, Admin+, LTMON, LumRep, RepMon, & TMIG

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
When virtual tape solutions include data deduplication, the network bandwidth requirements for replication are dramatically reduced.

Data Deduplication: It’s not just for reducing storage requirements.
Start with a Tape Assessment
MVT Sizing & Modeling

- Sizing # of CGXs, Storage & Network Capacity
- Throughput Analysis (MBytes/sec)
 - RMF Channel Stats
 - SMF21 Records
- Storage Capacity Assessment
 - From Tape Management Catalog
 - By Category
 - By Application
 - By Last 45 Days of Activity
 - By Age

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Primary Storage Capacity Requirement

- 100 TB of Virtual Tape Data
- 33.3 TB
- 10 TB

Replication Bandwidth Requirement

- 1 TB of Daily Backup Data
- 1000 GB
- 333 GB
- 67 GB

DR Storage Capacity Requirement

- 100 TB of Virtual Tape Data
- 33.3 TB
- 10 TB

Note: Best Practice – Seed DR storage at the Primary Site before shipping
Shared Infrastructure
Common open and mainframe backup and disaster recovery solution
Customer Example
Leading Motor Vehicle Manufacturer

Production Site
- Mainframe
- ProtecTIER Mainframe Edition (ME)
- DS8870 Disk
- Open Systems

DR Site
- IBM ProtecTIER TS7620
- IBM ProtecTIER TS7620

DS3 Replication using WAN

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Continuous Availability: Synchronous Tape Matrix (STM)

- Continuous Availability
 - Resilient architecture instantly and automatically adjusts to multiple failures without interruption
 - Data is always available for I/O
 - No downtime from failover or restore processes
- No idle components to buy
 - All components contribute to day-to-day operations, not just during failure events
- Easy to implement
 - No host scripts or policies required
- Scalable
 - No limitations for throughput, capacity or degrees of redundancy
- Modular design ensures investment protection
- Supports dissimilar storage systems and compression/deduplication technologies

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Simplified STM Configuration with n-Sites

<table>
<thead>
<tr>
<th>COMPUTE LAYER</th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site n</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECTIVITY LAYER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL UNIT LAYER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRTUAL TAPE STORAGE LAYER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Operational STM Configuration with Multiple Failures Across Layers and Sites

<table>
<thead>
<tr>
<th>Layer</th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Unit Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Tape Storage Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
STM Customer Example
Leading U.S. HealthCare Provider

Production Site
- Production Mainframe
- Local Mirrored Storage
- End-to-End Encryption

DR Site
- DR Mainframe
- Luminex Replication with Monitoring
- Virtual Tape

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Tape Migration Services and Software

- Luminex offers unique Tape Migration Services to migrate to STM
 - Elegantly designed to work with TMACS to move tape data without touching the tape catalogs
 - Current VOLSER #s and all historical information are retained in the new environment as well
 - Supports all existing tape library and virtual tape environments for z/OS

- TMACS (Tape Monitoring and Allocation Control Software) is optional host-based software to automate device allocation steering for complex environments

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Media Migration Services & Software

For current Luminex virtual tape environments

- Luminex offers Media Migration to non-disruptively migrate to the new storage target
- Entirely off-host, no mainframe MIPS required
- Current VOLSER #s and all historical information are retained in the new environment (no changes to tape catalogs)
- Volumes will acquire the characteristics of the new configuration
Other Options - CU Based Encryption and Security: CGSafe

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Encryption & key management at the control unit level</td>
<td>• Avoid risk of lost or stolen tapes</td>
</tr>
<tr>
<td>• Eliminate costly encryption solutions based on mainframe MSUs</td>
<td>• Protection from other data security issues</td>
</tr>
<tr>
<td>• AES 256-bit encryption using GCM</td>
<td>• Integrates into existing key management infrastructure for a single-point-of-management</td>
</tr>
<tr>
<td>• Compression, encryption, and authentication in a single pass</td>
<td></td>
</tr>
<tr>
<td>• Optionally integrates with existing encryption and key management infrastructure</td>
<td></td>
</tr>
</tbody>
</table>
Other Options: Tape Vaulting to the Cloud: CloudTAPE

Production Site

Production Mainframe

Luminex Channel Gateways

FICON

FICON

DR Site

DR Mainframe

Luminex Channel Gateway

No Cloud

sCloud
100% Local
100% Cloud

pCloud
0 – 100% Local
Managed Cache
100% Cloud

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Summary:
Long Live 3590 Virtual Tape

- Access to the latest technologies
- Reduce or eliminate cost & limitations related to physical tape
- Improve all aspects of your tape operations

Thanks for attending!
Visit us at Booth #400 in the Tech Expo

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
3590 Tape Drive End of Support: Transitioning from 3590 Physical Tape to Virtual Tape

David Tolsma
Systems Engineering Manager
Luminex Software, Inc.

Scott James
VP Global Alliances
Luminex Software, Inc.