
Session 16651 z/OS Debugging: Old Dogs and New Tricks, the Sequel

MVS Core Technologies Project – March 5th, 2015

John Shebey & Patty Little IBM Poughkeepsie

jshebey@us.ibm.com plittle@us.ibm.com

SHARE Seattle 2015

© 2015 IBM Corporation

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

•MVS

- •OS/390®
- •z/Architecture®
- •z/OS®

* Registered trademarks of IBM Corporation

Agenda

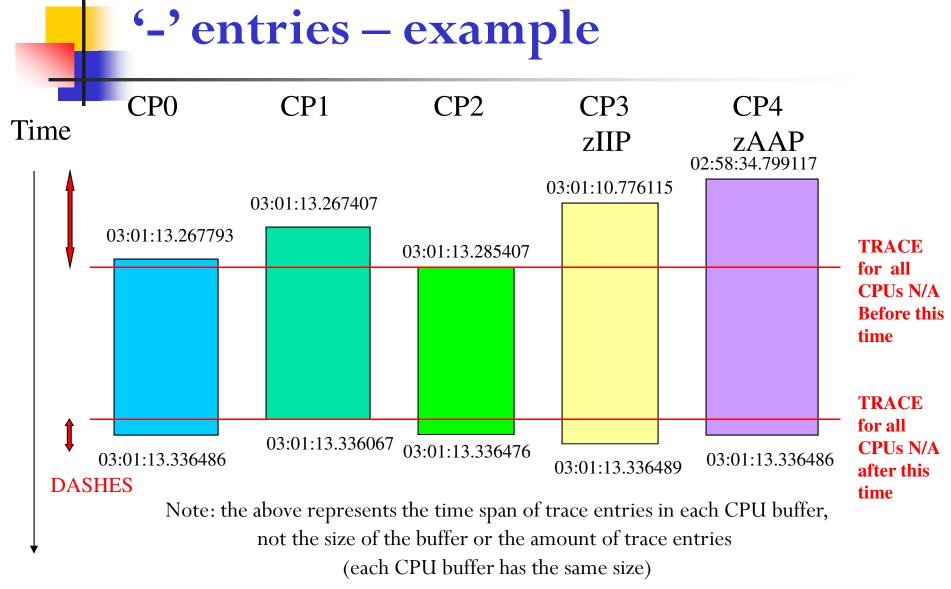
- System Trace debugging latest concepts
- **SLIP PVTMOD** tall tales
- z/OS 'Tools and Toys' Rexx Execs do you know?

Latest concepts and enhancements

© 2015 IBM Corporation

System Trace basics revisited

- Consists of trace buffers (one per logical CPU), residing in the Trace Address Space (ASID 4)
- System trace entries are inserted continuously by each CPU into its trace buffer
- Contains detailed system activity
- Default size of 1 M per CPU
- IPCS SYSTRACE subcommand is used to format system trace entries in a dump
 - Trace entries from the buffers are merged and presented chronologically

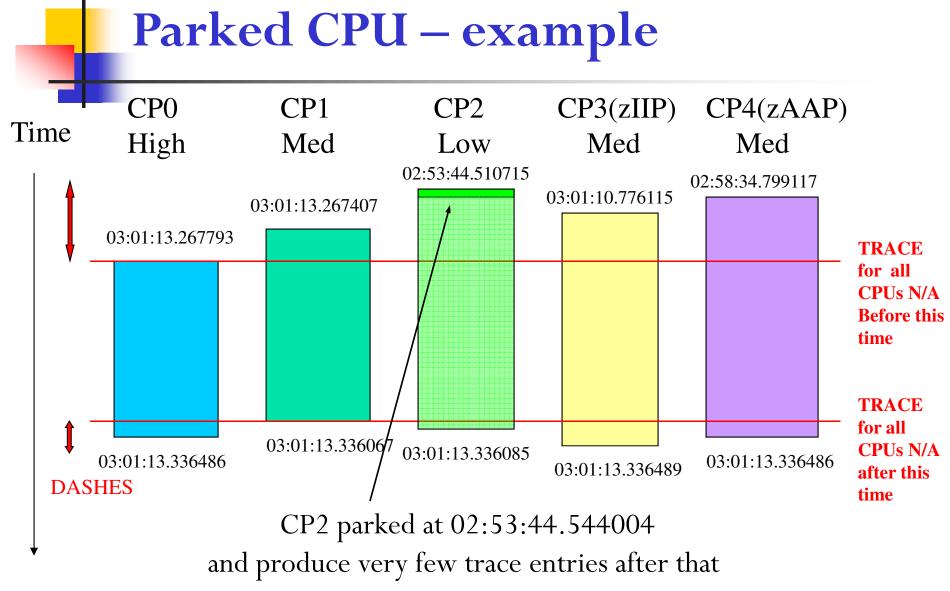

'-' entries and related messages

0001-00B2 008BA	3D0 SVC	1	0000000_	_39A87DC4	39781370	8000001	C6805778
			07851000	80000000			
0001-0001 00000	TIAW 000						
******* Trace	data is not	avai	lable fro	om all pro	cessors be	efore this	s time.
0000 00B2 009C3	7D8 SVC	78	0000000_	_396F7740	00000002	00000208	00000000
			07850000	80000000			
0000 00B2 009C3	7D8 SVCR	78	0000000_	_396F7740	00000000	00000208	397F62F0
0001 0066 33483	B80 SRB		0000000_	_013A443E	00000066	32AECFAC	B2AECF80
			07040000	80000000	009C2D00	00	
many lines omi	tted here		• • •				
0000 0005 03917	900 PC	• • •	0	38D07A64		00503	
******* Trace	data is not	avai	lable fro	om all pro	cessors at	fter this	time.
0001-0010 009F7	9D8 SVC	1	0000000_	_38EBFF2E	80000000	0000001	C7140BD8
			07040000	80000000			

'-' entries indicate trace entries from one or more CPUs are not available in this section 2nd message 'Trace....after this time' is issued for SVC dumps but not standalone dumps

'-' entries – why?

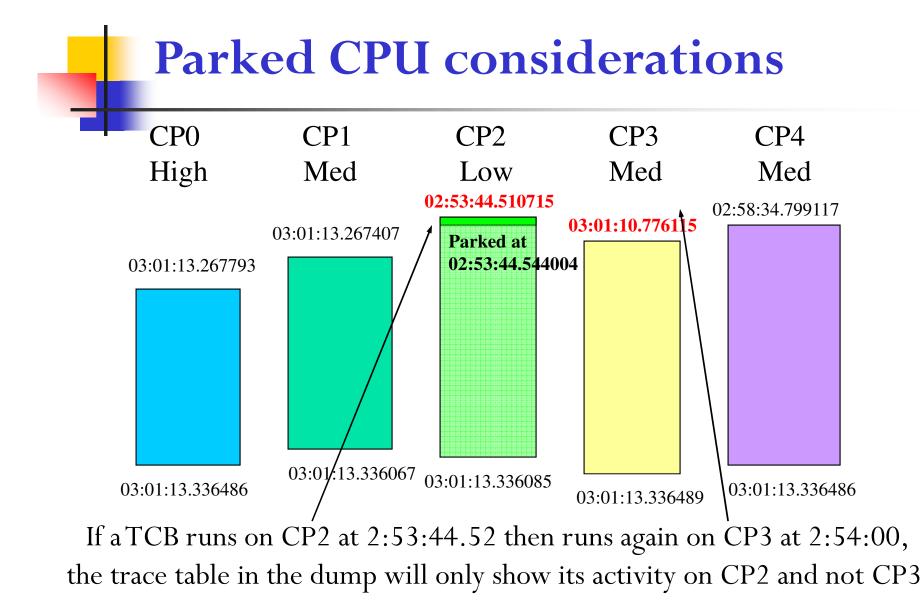
- Rate/kind of trace entries inserted into each CPU trace buffer fluctuates as workload/events on each CPU are different
- Size of a trace entry is also dependent on what the entry is
- In HiperDispatch mode, a discretionary CPU can be parked and produce very few trace entries after that (more on this later)
- End result is that each CPU trace buffer has:
 - different start and end time
 - different amount/kinds of trace entries
- When entries from these trace buffers are merged, trace entries from one or more CPUs may not be available in certain intervals


SHARE Seattle 2015

'-' entries – should I care?

- It depends on the problem you are investigating
- In general, you should be aware that the complete picture or event history may not be available in the section of the system trace with '-' entries
- If the problem is related to a single work unit or process, and there is no connection with other work/processes running on other CPUs, you may not need to pay attention to whether the trace entries being reviewed have '-' or not
- But if the problem can be related to, or caused by events on other CPUs, you should try to limit your investigation in the section of the trace table with no '-'

Parked CPUs and System Trace


- In HiperDispatch mode, logical processors (CPUs known to z/OS) can be one of the following:
 - High receiving 100% share of a physical processor
 - Medium receiving greater than 0% and up to 100% of a physical processor
 - Low or Discretionary receiving 0% or very low amount of a physical processor
- Low or Discretionary CPUs can be **parked**:
 - CPU will be in a dummy or no-work wait
 - No work will be dispatched by z/OS on this CPU
 - Interrupts can still be taken but then CPU will go back to wait
 - Very few system trace entries will be generated after being parked

SHARE Seattle 2015

Parked CPU – debugging considerations

- System trace entries from parked CPUs are usually much earlier than the time of the dump
 - Consider whether they are relevant to the problem at all, since they are from long time ago
 - Events represented by these entries may not be the only (or last) activity of a work unit or process (see example next page)
- When reviewing system status in a standalone dump using IPCS subcommands such as STATUS:
 - Many CPUs present may not mean a lot of processing power since some of them can be parked

IP SYSTRACE STATUS TIME(LOCAL)

- New parameter STATUS for IPCS SYSTRACE in z/OSV2.1
- Displays the following information for each CPU at the time of the dump:
 - CPU number and type
 - Parked status and polarity for physical processor share, if running in HiperDispatch mode
 - Start and end time of this CPU in the system trace
- Also displays the start and end time in the trace when all CPUs are available (in SVC dumps, for standalone dumps only the start time is displayed)

IP SYSTRACE STATUS TIME(LOCAL)

			-	YSTRACE is from CPU 0005: 06/10/2014 03:01:13.336920
				11 CPUs starts at 06/10/2014 03:01:13.285407 (CPU 0004 06/10/2014 03:01:13.285407 (CPU 0004
RACE	data re	porting	from a.	11 CPUs ends at 06/10/2014 03:01:13.336067 (CPU 0001
	-		-	++ SYSTRACE First Local Time SYSTRACE Last Local Time
		-	-	+
0000		High		
0001	CP	Med	No	06/10/2014 03:01:13.267407 06/10/2014 03:01:13.336067
0002	CP	Low	Yes	06/10/2014 02:53:44.510715 06/10/2014 03:01:13.336085
0003	CP	Low	Yes	06/10/2014 02:41:24.191768 06/10/2014 03:01:13.336389
0004	CP	Low	No	06/10/2014 03:01:13.285407 06/10/2014 03:01:13.336476
0005	CP	Low	Yes	06/10/2014 02:37:36.043812 06/10/2014 03:01:13.336920
0006	ZAAP	Med	No	06/10/2014 02:58:34.799117 06/10/2014 03:01:13.336486
	zIIP	Med	No	06/10/2014 03:01:10.776115 06/10/2014 03:01:13.336489

An example from a SVC dump

IP IEAVCPUI

- A z/OS 'Tools and Toys' Rexx Exec as-is, not documented, not supported, not warranted
- Displays information about the CPUs in the dump
- Available at all supported z/OS releases

IP IEAVCPUI example

CPUN		+	+ DISC	+	+	+ CRYPT	+	+ PSW	++ WAIT	ISCM	PAR
	+	+	+	+	.+	+	++	+	++		+
0000	4000	CP	NO	NO	HIGH	N/A	NO	4704	NO	FC	NO
0001	4001	CP	I NO	NO	HIGH	N/A	NO	4704	NO	FC	I NO
0002	4002	CP	NO	NO	HIGH	N/A	NO	4704	NO	FC	NO
0003	4003	CP	NO	NO	MED	N/A	NO	4785	NO	FC	I NO
0004	4004	CP	NO	NO	MED	N/A	NO	4774	NO	FC	NO
0005	4005	CP	YES	NO	LOW	N/A	NO	0706	YES	00	YES
0006	4006		I NO	NO	MED	N/A	NO	0706	YES	00	I NO
0007	4007	ZIIP	I NO	I NO	MED	N/A	NO	0706	YES	02	I NO

An example using the previous SVC dump

System Trace -Multi-CPU debugging considerations

- Consider the following:
 - z/OS now supports up to 100 CPUs per LPAR (or per image)
 - IPCS SYSTRACE default output is sorted by time
 - Trace entries from many CPUs are inter-mixed with each other
- Suppose you are investigating an error in the system trace that can result from some erroneous activity on one or more CPUs at around the same time (for example, a serialization issue), what would you do?
 - Scan backwards from the current entry and dig up the activity of each CPU?
 - Direct the SYSTRACE output to a file then sort by CPU number?

IP SYSTRACE SORTCPU(date,time,N) TIME(LOCAL)

- New parameter SORTCPU for IPCS SYSTRACE in z/OS V1.12
- Displays the trace entries of each CPU separately (in CPU ascending order):
 - N = number of entries before and after a specific time (default of N=10)
 - Specific time to be provided via date and time
 - Date is in format of mm/dd/yy
 - Time is in format of hh:mm:ss:dddddd
 - If no date and time are supplied, all entries are shown

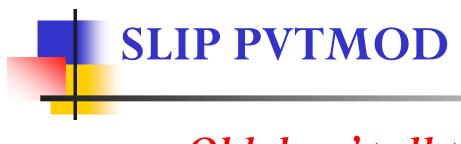
IP SYSTRACE SORTCPU example

0005	0006	066C5280	SRB		00000000	_016A20F0	00000000	0207FFA0	0207FFD0
					47040000	80000000	00000000	20	
0003	0017	008ED778	SSRV	133		00000000	0000E503	00000220	009BFA40
							00170000		
0003	0017	008ED778	PR	•••	0	092F2414	014A4422		
0003	0017	008ED778	PC	•••	0	092F25D6		0030B	
0004	0006	04864500	SSRV	119		8124F922	026E9330	800046AE	0576D0D8
							00000000		
0004	0006	04864500	PR	•••	0	01747F42	01451B9C		
0004	0006	04864500	PC	•••	0	7F700E04		00331	
0009	0028	04B25B80	SRB		00000000_	_28A42438	FFFF0028	28E629FC	28E62940
					47040000	80000000	009F8680	00	
0007	A000	04E58480	PGM	010	00000000_	_01451484	00040010	00000000	
0007	A 000	04E58480	*RCVY	PROG			940C4000	0000010	00000000

System trace from SVC Dump taken for an ABEND0C4 Timestamp for PGM 10 entry is 13:56:32.246684245

IP SYSTRACE SORTCPU example...

CPU	Туре	+ P	 Pol	·+· 	Park	-+	SYSTRACE First Local Time SYSTRACE Last Local Time
0000	СР	M	led	1	No		07/07/2014 13:56:29.926678 07/07/2014 13:56:32.387723
0001	CP	L	wo	I	No	Ι	07/07/2014 13:56:29.731520 07/07/2014 13:56:32.387858
0002	CP	L	wo	I	No	I	07/07/2014 13:56:29.777192 07/07/2014 13:56:32.388019
0003	CP	L	MOr	T	No	T	07/07/2014 13:56:29.867781 07/07/2014 13:56:32.388097
0004	CP	L	MOr	Ì	No	Ì	07/07/2014 13:56:29.536765 07/07/2014 13:56:32.388128
0005	CP	L	wo	I	No	I	07/07/2014 13:56:29.811236 07/07/2014 13:56:32.388129
0006	CP	L	WO	I	No	Ι	07/07/2014 13:56:29.626987 07/07/2014 13:56:32.388212
0007	CP	L	wo	I	No	Ι	07/07/2014 13:56:29.589344 07/07/2014 13:56:32.388146
0008	CP	L	WO	I	No	Ι	07/07/2014 13:56:29.811475 07/07/2014 13:56:32.388136
0009	CP	L	wo	I	No	I	07/07/2014 13:56:29.870103 07/07/2014 13:56:32.388133
000A	zIIP	M	led	I	No	I	07/07/2014 13:53:24.237406 07/07/2014 13:56:32.388258
000в	zIIP	L	MOr	T	No	T	07/07/2014 12:58:28.330059 07/07/2014 13:56:32.388182
000C	zAAP	M	led	I	No	Ì	07/07/2014 13:56:22.682194 07/07/2014 13:56:32.388191
000D j	ZAAP	L	MOr	Ì	Yes	T	07/07/2014 04:39:40.361440 07/07/2014 13:56:32.388284
000E	zAAP	Ĺ	WO	I	No	I	07/07/2014 13:56:21.487948 07/07/2014 13:56:32.388223


IP SYSTRACE STATUSTIME(LOCAL) shows 15 CPUs

IP SYSTRACE SORTCPU example...

**************************************	ATA FOR CPU	0000 FOLL	DWS.			
0000 0001 00000000	SSCH 03501	00 01	0277F62C	023CE508	02C08001	0D4B6C30
0000 0204 009B1528	I/O 07F03	00000000	_019E59A6	00104007	0D748840	0C000100
		47040000	80000000		0242CF28	00200001
0000 0204 009B1528	PC	0	01F96380		00318	
0000 0204 009B1528	SSRV 119		A9719546	04695910	8000D1DA	04396000
				00000000		
0000 0204 009B1528	PR	0	01F96380	01451B9C		
********* CP TIME	= 13:56:32	.246684				
0000 0204 009B1528	SSRV 150		03FC2020	00000000	7F35D0A0	0000000
				6A7340E0		
0000 0204 009B1528	I/O 0F976	00000000	_019E59A6	08C04029	OFEEB070	0000000
		47040000	80000000		00F53490	00800000
0000 0204 009B1528	I/O 03501	00000000_	_019E59A6	00C04007	0D4B6C38	0C000000
		47040000	80000000		023CE508	00800001
0000 0204 009B1528	SSRV 112		81090B6E	0277DE00	00FDAF00	810CDC90
0080000						
0000 0204 009B1528	SSCH 07F19	00 02	0277C32C	0242DE38	03C2E001	0FFD1AE8
					00 9AEE 38	
**************************************	ATA FOR CPU	0001 FOLLO	OWS.			

IP SYSTRACE SORTCPU(07/07/14, 13:56:32.246684,5) TIME(LOCAL)

to investigate activity on all other CPUs at the time of the error

Old dogs' tall tails

© 2015 IBM Corporation

Old dogs' tall tails about SLIPs

Shannon, setting a SLIP PER trap over a large range is begging for trouble!

Well, there is no way that the SLIP that I just set can bite us. The PVTMOD that it's monitoring is not even loaded onto the system yet. See, the SLIP is enabled but inactive.

Don't be silly, Beethoven. The job specified on my SLIP is not even active on the system right now. This trap couldn't hurt a flea!

Sounds good, Beet! Speaking of inactive, it's time for our mid-morning nap. We'll sleep like young pups knowing that our SLIPs are safe!

Jerry provided the following SLIP: SLIP SET, IF, PVTMOD=(xyz, 10, 20), MODE=HOME, A=SVCD, END

- SLIP was designed to take a dump when an instruction range in private loadmod xyz was executed
- MATCHLIM defaults to 1 for A=SVCD
- PRCNTLIM defaults to 10%
 - If SLIP PER processing uses >10% of CP, the PER trap is disabled
- When coding an IF SLIP with PVTMOD, it is strongly recommended that:
 - JOBNAME be specified for performance reasons
 - MODE=HOME be specified to filter for a load of the PVTMOD into the specified job

Jerry forgot to include the JOBNAME :- (

© 2015 IBM Corporation

- Because PVTMOD xyz had not yet been loaded, the SLIP state was "ENABLED, INACTIVE"
 - Customer experienced significant performance impact which cleared up when the SLIP was removed
- How can an inactive SLIP cause performance impact?
 - When a SLIP is enabled, some environmental set up must be done in anticipation of the SLIP becoming active
 - MODE=HOME tells SLIP that the trap should only match when executing in a Primary=Home environment
 - SLIP must monitor cross memory activity for the specified jobs
 - If no jobs are specified, SLIP monitors cross memory activity for ALL jobs

- What does SLIP's cross memory monitoring entail?
 - SLIP intercepts all CMSET (cross memory SET/RESET) requests
 - If CMSET request is switching to or from a job being monitored, additional processing must be done to validate the new cross memory environment and set/reset the PER bit in the current PSW accordingly
 - SLIP intercepts all space switch events (PC, PR, etc) associated with the jobs being monitored
 - Processing must be done to validate the new cross memory environment and set/reset the PER bit in the current PSW accordingly
 - SLIP does measure time spent in this processing and factors this into its PRCNTLIM calculations

- So why didn't PRCNTLIM protect the system?
 - PRCNTLIM checks are only made when a PER interrupt occurs
 - When a SLIP is inactive, PER ranges have not been set up in the PER control registers yet, so no PER interrupts take place

Another troublesome combination

PVTMOD=xyz,JOBNAME=abc, no MODE=HOME

- This combination of parameters tells SLIP to set the PER range the first time the specified PVTMOD is loaded, regardless of address space
 - PER ranges are set to reflect the private storage address where the module was loaded
 - Any time the specified job executes an instruction within the PER range, SLIP must check whether this instruction really falls within the PVTMOD

Another troublesome combo (cont)

PVTMOD=,JOBNAME=,MODE=HOME

- The dual role of the MODE=HOME parameter on a PVTMOD PER trap
 - On SLIP enablement:
 - MODE=HOME used in conjunction with JOBNAME enforces that the trap is made ACTIVE only when the specified PVTMOD is loaded into the specified JOB
 - During normal system execution (as seen previously):
 - MODE=HOME enforces that SLIP is only monitoring for the PER event when the event occurs in a cross memory environment where the primary and home ASIDs are equal, that is, PASID=HASID

Another troublesome combo (cont)

PVTMOD=xyz,JOBNAME=abc, no MODE=HOME

- **Example:** PVTMOD xyz loaded into range 6000-6FFF in Job j
- **Job k** PER control registers set to 6000 and 6FFF
 - PER is only active when executing work belonging to JOBNAME abc
 - ATCB in JOBNAME abc PC's to Job k and executes code at address 6000
 - A PER interrupt occurs
 - SLIP checks and discovers that there is no loadmod named xyz living at instruction 6000 in Job k; control is returned to the point of interruption
 - The TCB now continues executing, with each instruction in the range taking a PER interrupt and performing the loadmod checking
 - PRCNTLIM should help here since PER interrupts are occurring

Job abc

Iob i

XYZ

Preventing these cases

How can these parameter problems be prevented?

- There are a couple of parameter combinations on an IF or SBT SLIP PER trap which are risky
 - MODE=HOME, no JOBNAME/ASID specified
 - SLIP must monitor all cross memory activity for every job on the system
 - PVTMOD=, JOBNAME=, and no MODE=HOME
 - SLIP may suffer many irrelevant interrupts
- APAR OA45297 will check for MODE=HOME w/o JOBNAME/ASID on SLIP ENABLE and provide a warning
- The "no MODE=HOME" case expected to be checked in future
- Consider coding smaller PRCNTLIM if 10% is too high

Tail #2:The inactive job

- Jerry provided the following SLIP designed to monitor a module that gets control under I/O interrupt processing:
- SLIP SET,IF,RA=(1234000,1237FFF),JOBNAME=abc, A=SVCD,ML=1,END
- Even though Job abc was not on the system, this SLIP caused significant performance impact

Tail #2:The inactive job

SLIP SET,IF,RA=(1234000,1237FFF),JOBNAME=abc, A=SVCD,ML=1,END

- Explanation: Any time a PER trap is enabled, the PER bit gets turned on in the PSA new PSWs for the SVC, I/O, and External FLIHs
 - The SVC interrupt occurs synchronously under the executing unit of work, so the SVC FLIH is able to determine that Job abc is not in the picture and it turns off the PSW PER bit
 - I/O and External interrupts occur asynchronously under random units of work, so checking the jobname at time of interrupt is not relevant, thus the PER bit is not able to be turned off
 - Rather than preventing the interrupt, SLIP filtering is done on the back end should a PER interrupt occur

Conclusion

Could SLIP design be smarter?

- No doubt. However...
 - SLIP is as complex and subtle internally as it is externally. Small changes can have big ramifications.
 - There are performance and environmental constraints that keep it from freely adding additional checks in certain areas of code.
- SLIP is constantly being enhanced.
- Meanwhile, SLIP users are advised to practice safe SLIPs
 - Code conservative PER ranges
 - Code PRCNTLIM explicitly to be a small value (as little as 1%)
 - Beware of problem parameter combinations and take advantage of the protection offered by OA45297 when available

z/OSTools & Toys REXX Exec's

Do you know?

© 2015 IBM Corporation

z/OS Tools & Toys – Diagnostic Tools

- There are 'Tools & Toys' REXX Exec's available in IPCS for dump diagnosis. They are as-is, not documented, not supported and not warranted
- These Exec's can be invoked by:
 - Issuing IP exec_name <input>, or
 - Selecting from the IPCS 2.6i panel (=2.6i on command line)
- Use IP exec-name HELP to get more information
- See <u>http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/</u> and then click on Code Samples

IP IEAVLOGD

- A z/OS 'Tools and Toys' REXX Exec as-is, not documented, not supported, not warranted
- Provides one line summary of software/symptom/MIH records in:
 - input formatted LOGREC dataset, or
 - VERBX LOGDATA output from the current dump

===> IP IEAVLOGD

PLEASE ENTER EITHER 'DUMP' OR 'DA(...)':

IP IEAVLOGD example

	SEARC	НА	RGUMENT	ABSTR	ACT DA	ATA					T	IME OF	ERR(
SYSNAME	DATE	I	TIME	CPU	ASID	SEQ	ABEND	DUMP	REG1	5			
+	-1+-		2+-	3	+	4	-+	5	+6	+7-		-+8	
ST1	182.14	03	:46:24.	010000	002F	13159	S0E37	NO	10000000	2ACD65	2014	4754100	0 80
ST1	182.14	03	:46:27.	6 0000	002F	13160	S0E37	NO	10000000	2ACB852	2014	4754100	0 80
ST1	182.14	03	:46:37.	9 0000	002F	13162	S0E37	NO	10000000	2ACD65	2014	4754100	0 80
ST1	182.14	03	:49:08.	5 0000	002F	13171	S0E37	NO	10000000	2AD075	2014	4754100	0 80
ST1	182.14	03	:49:20.	7 0000	002F	13174	S0E37	NO	10000000	2AC9A5	2014	4754100	0 80
ST1	182.14	03	:51:37.	9 0000	002F	13295	S0E37	NO	10000000	2AD075	2014	4754100	0 80
ST1	182.14	03	:53:25.	010000	002F	13299	S0E37	NO	10000000	2ACB852	2014	4754100	0 80
ST1	182.14	03	:54:25.	2 0000	002F	13385	S0E37	NO	10000000	2ACB852	2014	4754100	0 80
ST1	182.14	03	:54:36.	3 4000	A000	13388	S047B	NO	10000000	000000	0014	4704000	0 80
ST1	182.14	03	:54:36.	3 4001	A000	13386	S047B	NO	10000000	000000	0014	4704000	0 80
ST1	182.14	03	:54:36.	3 4002	A000	13387	S047B	NO	00000000_	000000	0014	4704000	0 80

IP IEAVDUMP

- A z/OS 'Tools and Toys' REXX Exec as-is, not documented, not supported, not warranted
- Displays general and environmental information about the the dump
- Time of dump provided may not be accurate depending on local offset – double check with IP ST SYSTEM output

IP IEAVDUMP example

----- GENERAL DUMP INFORMATION FOLLOWS ------COMPID=DF115, CSECT=IGWLSLIC+0042, DATE=12/19/13, MAINTID=UA71462, ABND= DUMP TITLE: SVC DUMP OF Z/OS HBB7790, SNAME ST1 DUMP TYPE: JUL 7 2014, 13:56:37 (LOCAL) DUMP TAKEN: DUMP OF ASIDS: X'000A' JOBNAME: SMSVSAM ELAPSED GLOBAL DATA CAPTURE (GDC) TIME: 1.81 SECONDS (BEGAN AT JUL 7 2014, 13:56:35) USE VERBX IEAVTSFS FOR MORE DETAILS ABOUT DUMP CAPTURE SYSTEM WAS QUIESCED DURING GDC DUMP ASSOCIATED WITH LOGREC ERRORID: N/A ----- SYSTEM SOFTWARE INFORMATION FOLLOWS ------SYSTEM IPLED ON: JUL 7 2014, 00:38:35 (LOCAL) SYSTRACE SIZE: 2048K PER CPU GMT DELTA: -4.00 HOURS ENVIRONMENT: LPAR

IP IEAVTCBM

- A z/OS 'Tools and Toys' REXX Exec as-is, not documented, not supported, not warranted
- Displays TCB family structure of the default ASID (mother/daughter/sister)
- Output also includes TCB completion code
- Output may be truncated if screen is not wide enough

IP IEAVTCBM example

RELATIONSHIP KEY: SISSISTERTCBNTC FIELD DAUDAUGHTERTCBLTC FIELD
ISSUE SETD ASID(X'NNNN') TO CHANGE DEFAULT ASID
TCB STRUCTURE FOR ASID: 0348 JOBNAME: JNG15044
NUMBER OF TCBS IN ASXB: 4
DEPENDING ON THE SIZE OF THE CHAIN, TRUNCATION MAY OCCUR. SEE BOTTOM FOR POSSIBLE ERROR
MESSAGES.
NOTE: CC FOR TCBS COULD BE RESIDUAL
009FDD40
IEAVAR00
-OK-
009FF6F8SIS>009FF988
IEESB605 IEAVTSDT
SOC4 -OK-
009FF4D8
IKJEFLC
-ок-
NO TRUNCATION ERRORS FOUND.
Completion code is zero

Completion code is zero

Session 16069 z/OS Debugging: Old Dogs and New Tricks, the Sequel

Thank You! Your comments will be greatly appreciated.

© 2015 IBM Corporation