zPDT and RD&T User Experiences: Running z/OS

Stephen Norris
CA Technologies

Monday, March 2, 2015: 1:45 PM-2:45 PM
Session Number 16642
About the Author

• Senior Director, Engineering at CA Technologies
 • Systems and Performance Management
• 23 Years in Computer Software Development
• Lead architect for zPDT environment at CA Technologies
• Co-authored IBM virtualization book with Ken Barrett
 • Running Mainframe z on Distributed Platforms: How to Create Robust Cost-Efficient Multiplatform z Environments
Initial Configuration/Usage

• Single Developer
 • One user
 • Local login
 • Single, native z/OS system
• Linux Configuration
 • Laptop
 • Single hard drive
Problems with Initial Configuration

- No remote access
 - Possible to use VNC/Remote Desktop
 - Response time was poor
 - Would require additional effort to serialize access
- Little configuration flexibility
 - Many users required access to multiple systems
 - Access to the mainframe data was often required
- Hard to collaborate with single localized login
 - Many teams have users across the globe
- Requires all user to have advanced Linux and System z knowledge
The Next Step

• To overcome several of the initial obstacles
 • The Linux host was moved from a laptop to a server
 • Faster/more processors
 • More memory
 • Increase storage capacity
 • Multiple environments could be located in a single site
 • Allowed localized expertise to be used
 • Simplified system maintenance
 • z/VM was installed as a host for three z/OS guests
 • Allowed for greater flexibility in the environment
 • Multiple concurrent users
 • Ability for testing across multiple systems
The Next Step (cont.)

- Networking was installed on z/VM and z/OS systems
 - Created the ability for simultaneous remote access
 - Allowed communication with other network resources
 - Enabled user to move data between the zPDT and mainframe
- Virtual networking switch was created on z/VM
 - Simplified networking environment to support multiple guests
 - Minimized the hardware requirements for the server
The Next Step - Configuration

Physical Server

VM01

VM11 VM12 VM13

VMSWITCH Address 0404

RAC

Path F0 NIC 1

Linux Host

Path F1 NIC 2

LAN

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

Copyright Stephen Norris © 2014
Limitations of “The Next Step”

- Still using ADCD
 - No simple method to update the System z software
 - Version/Level support was limited
- Still no data sharing between guest systems
- Environments were slowing down as work was increased
 - More work was creating system strain
 - Users were demanding more responsive systems
- Users required 24/7 access
 - Needed to ensure system reliability
 - A dependable backup solution was required
 - Hardware tolerance needed to be considered
Evolution of a New Environment

- Hardware requirements revisited
- Using mainframe environment as a template
- Resource sharing investigated
- Birth of the DASD Repository
- Deployment strategy created
- Backup/Restore reimagined
- Emergency Recovery System
Hardware Requirements Revisited

- More and Faster Processors
 - While z Environment is limited by the licensed dongle, extra processors can be used by the Linux host
 - Faster processors provide more cycles for emulated systems
- Upgrades to Linux server hard drives
 - Upgraded to 15K RPM from 7.2K RPM
 - Configured in RAID 5 for fault tolerance
 - Additional storage added for future expansion
Hardware Requirements Revisited (cont.)

- More memory
 - Paging in the emulated System z environment dramatically reduces performance
 - New servers were ordered with 64GB or more of RAM
 - Allocations to each z/OS guest designed to minimize paging

- Hard drive configuration
 - 15,000 RPM drives
 - All but one configured in RAID 5
 - Single drive configured as RAID 0
Using Mainframe Environment as a Template

- CA Technologies has several virtualized systems
 - Each is based on a template
 - Improves maintenance cycles
 - Reduces administrative overhead
- New zPDT z/OS environments are based on this template
 - Provides familiar look and feel to existing users
 - Reduces overhead of maintaining new zPDT environments
 - Copy system packs from mainframe to use on zPDTs
 - System changes enacted on mainframe can be easily ported
 - Provided a mechanism to apply IBM APARs to zPDTs
Resource Sharing Investigated

- Initial configurations had three independent z/OS guests
 - Provided redundancy
 - Not a typical IBM environment
 - Created a lot of maintenance overhead
- Best environment would allow the sharing of resources
 - Datasets, catalogs, etc
 - At this time, IBM released support for SYSPLEX on zPDT
- The base environment was converted to use SYSPLEX
 - The new environment was quickly rolled out
 - Consisted of:
 - 2 virtual Coupling Facility machines for redundancy
 - 3 z/OS guest systems

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
Birth of the DASD Repository

- Needed somewhere to store stable base configurations
- Also assembling a core group of reusable DASD
 - Initialized empty volumes
 - Eliminated repetitively creating and initializing new DASD
 - Base library of various models of DASD
 - DASD copied from the mainframe
 - Now stored in a central location
 - Downloaded once, available to any server
- DASD with non-volatile data
 - Stored on one server
 - Can be mounted on a read-only NFS share
 - Connected to many zPDT environments
Birth of the DASD Repository (cont.)

Mainframe zEnterprise
- Regularly Updated Software
- Accredited Service Levels

DASD Repository

Server
Server

Server
Server
Deployment Strategy Created

- New environments were being requested
 - Required the creation of new configurations
 - Required retooling of old environments
- Base image was created
 - All DASD for z/VM and the z/OS guests
 - The device map file
 - Backup scripts
- New base image could be rolled out via
 - Flash drive
 - FTP server
 - File share
Deployment Strategy Created (cont.)

- Deploying a new server was reduced to:
 - Creating a new Linux host
 - Deployment of base image
 - Customization of base image
 - New System z host names
 - Simplified by the use of symbolics and symbols
 - Most of the changes were on z/VM
 - Network configuration changes
 - Customization of backup scripts (if needed)
Backup/Restore Reimagined

- To provide data integrity, the systems and emulator are shutdown during the backup process
- Initially ran backups of the full environment
 - Used gzip to compress individual DASD files to USB drive
 - Could not find utility that was faster
 - gzip commands were scripted
 - Took over a day
- Reevaluated backup strategy
 - Backup only DASD files with volatile data
 - Initial backup is to local hard drive to improve performance
 - Provided a 75% reduction in backup times
 - Local hard drive backup files are copied to NAS devices
Emergency Recovery (ER) System

- Sometimes modification of IPL parameters disables the IPL of the system
- IBM provides a utility to edit datasets from the Linux host
 - This step is complicated
 - Requires knowledge of exactly what the parameter needs changed
- A better option is to have an ER system
 - Runs on its own system packs and IPL libraries
 - IPL is independent of the development system packs
 - Has access to configuration packs of the development systems
Emergency Recovery System
Questions?

Complete your session evaluations online at www.SHARE.org/Seattle-Eval