
Insert
Custom
Session
QR if
Desired.

JES2 Debugging

Adam Nadel
anadel@us.ibm.com

IBM - Poughkeepsie, NY

Thursday, March 3, 2015

Session Number 16632

1

2

Session 16632

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.
• IBM®
• MVS™
• Redbooks®
• RETAIN®
• z/OS®
• zSeries®

The following are trademarks or registered trademarks of other companies.
• Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
• Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
• UNIX is a registered trademark of The Open Group in the United States and other countries.
• SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.
• All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM
Business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to
non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

3

Session 16632

$HASP088 JES2 ABEND ANALYSIS

$HASP088 --

$HASP088 FMID = HJE7780 LOAD MODULE = HASJES20

$HASP088 SUBSYS = JES2 z/OS1.13

$HASP088 DATE = 2013.343 TIME = 10.23.45

$HASP088 DESC = DISASTROUS ERROR AT LABEL KBLOBERR

$HASP088 MODULE MODULE OFFSET SERVICE ROUTINE EXIT

$HASP088 NAME BASE + OF CALL LEVEL CALLED ##

$HASP088 -------- -------- ------- ------- ---------- ----

$HASP088 HASPRAS 0003B480 + 0005E4 OA41318 *ERROR $DIS

$HASP088 HASPCKPT 1D8C44D0 + 0058F8 OA36155 $DISTERR

$HASP088 HASPCKPT 1D8C44D0 + 004BAE OA36155 KBLEMPTY

$HASP088 HASPCKPT 1D8C44D0 + 0005CE OA36155 KBLOB

$HASP088 PCE = CKPT (1DA4E3B8)

$HASP088 R0 = E0000264 1DA4AFD4 00000000 1DBF18C8

$HASP088 R2 = 00000000 00000000 00000000 00000000

$HASP088 R4 = 00000000 1D8C9DC8 00000000 00000000

$HASP088 R6 = 00000F00 003A1700 00000000 1DA4AE70

$HASP088 R8 = 00000F00 00000000 00000000 00000000

$HASP088 R10 = 00000000 00000000 00000000 00007000

$HASP088 R12 = 00000000 0003B660 00000000 1DA4E3B8

$HASP088 R14 = 00000000 8003B9C0 00000000 0003C390

$HASP088 --

Get To Know Your Error With $HASP088s

Exit Code in Control

Save area calling
sequence

PCE = maintask

DTE = subtask

Registers contents

Most JES2 abends will be accompanied by diagnostic $HASP088 messages. These will be
preceded by the JES2 message indicating whether the dump is catastrophic ($HASP095) or
disastrous ($HASP096) and followed by message indicating what level of recovery has
occurred otherwise termination options.

Depending on the type of error produced, the $HASP088 messages may also contain other
useful information such as the jobname (and jobid) being processed at time of error, the
home/primary/secondary ASID at time of error (not guaranteed that JES2 is the primary ASID)
etc.

The NETRV address space (JES2Snnn) has an equivalent version via $HASP5088

4

Session 16632

$HASP096 DISASTROUS ERROR AT SYMBOL TIMERROR IN CSECT HASPJQS

• Spool control block related

•$IOT, $JCT, $HDB etc

• Real I/O error reading from spool

•IOS error details accompanying $HASP064

• Logical error associated with a spool control block

•Control block does not match expectations

• Minimal Impact

Disastrous vs Catastrophic

label in JES2 code

Which is worse – Disastrous or Catastrophic errors? Since most forms of disastrous errors are
logical errors in which part of control block does not match expectations, they are typically far
less severe than catastrophic in terms of impact. In logical error cases, there is typically no
loss of JES2 function and the impact of error confined to the JOB in-hand. Real I/O errors are
far less common, but under those circumstances the impact would not necessarily be confined
to a single JOB etc.

While less severe in terms of impact, disastrous errors can often be more difficult to debug –
because it often entails reviewing the entire lifespan of the JOB(s) affected to understand what
may have caused the spooled block to not match expectations. Did something prevent an IO
from completing successfully such as an error/abend within the job itself? Or was there an
disruption to JES2 overall (not a clean shutdown etc)?

5

Session 16632

$HASP096 DISASTROUS ERROR AT SYMBOL CBIMPL4 IN CSECT HASPNUC,

MQTR=040000A1B90C,UNIT=A056,VOLSER=JES11

$HASP088 JES2 ABEND ANALYSIS

$HASP088 --

$HASP088 FMID = HJE7790 LOAD MODULE = HASJES20

$HASP088 SUBSYS = JES2 z/OS 2.1

$HASP088 DATE = 2014.005 TIME = 09.20.19

$HASP088 DESC = DISASTROUS ERROR AT LABEL CBIMPL4

$HASP088 MODULE MODULE OFFSET SERVICE ROUTINE EXIT

$HASP088 NAME BASE + OF CALL LEVEL CALLED ##

$HASP088 -------- -------- ------- ------- ---------- ----

$HASP088 HASPRAS 00022E30 + 0005E4 OA37847 *ERROR $DIS

$HASP088 HASPNUC 00007000 + 0095A4 OA37654 $DISTERR

$HASP088 HASPTRAK 1A630EE0 + 000DC6 OA37847 $CBIOM

$HASP088 HASPTRAK 1A630EE0 + 0002DA OA37847 PURSAF

$HASP088 HASPTRAK 1A630EE0 + 003432 OA37847 $PURGER

$HASP088 HASPTRAK 1A630EE0 + 002C54 OA37847 VIOTPRG

$HASP088 PCE = PURGE (1A84F0A0) JOB12345 ADAM1
...

What Is a CBIMPL4?

CBIMPL4 is the most common of JES2 errors. It is a logical error (disastrous) in which JES2 is
attempting to access a control block for job A (in above case JOB12345 – ADAM1) and instead
reads in a block for job B. The buffer identifying job B can be found within the respective PCE
save area chain (which we will cover shortly) or in the respective SYMREC indicating SPOOL
TRACKGROUP RECOVERY.

If this is a single/isolated instance, then there is no cause for high alarm and we are looking for
some kind of disruption within the lifespan of the job(s) in question that could have prevented an
IO from completing. If this is a one of MANY errors of the same/similar nature, then would be
greater concern as it could be a reflection of adverse impact to spool and/or checkpoint – such as
accidentally starting JES2 with wrong spool or checkpoint volume(s) etc.

6

Session 16632

• Recovery is confined to job identified
• Job is purged
• Track recovered by spool trackgroup reclamation (SNIFFER)

•SYMREC produced
•Can be controlled/expedited via
SPOOLDEF,GCRATE=NORMAL/FAST

COMPONENT ID: 5752SC1BH

COMPONENT RELEASE LEVEL: Z113

SERVICE RELEASE LEVEL: OA38671

DESCRIPTION OF FUNCTION: SPOOL TRACKGROUP RECOVERY

PROBLEM ID: SYMTABB SUBSYSTEM ID: JES2Z113

...

...

FREE FORMAT COMPONENT INFORMATION:

KEY = 010D LENGTH = 000003 (0003)

+000 0304A4

KEY = 010E LENGTH = 000008 (0008)

+000 00000000 00000000

KEY = 010F LENGTH = 000008 (0008)

+000 80004F2A B6B46F7F

KEY = 0110 LENGTH = 000256 (0100)

+000 C8C4C240

What Is a CBIMPL4?

SYMREC type

Control block contents
(HDB, IOT, etc)

MTTR/MQTR

The impact is that the affected job will be purged and the trackgroup in question (that contained
residual data for a different job) will be temporarily be marked as not owned. Thereafter, the JES2
trackgroup reclamation PCE (aka SNIFFER) will run and clean up the track group, restoring it to
the track group map for future reuse. SNIFFER defaults to NORMAL setting – it will cycle through
all tracks within ~7 days. It can be increased to $TSPOOLDEF,GCRATE=FAST which causes
SNIFFER to interrogate all tracks immediately (and after that it automatically returns to NORMAL
rate).

7

Session 16632

$HASP095 JES2 CATASTROPHIC ABEND. CODE = S0C4 (RC = 00000004)

• CODE=ERROR

• JES2 detected error condition

• $Knn – CKPT read/write errors – module HASPCKPT

• $Qnn – problem with job (JQE) – module HASPJQS

• $Jxx – problem with output (JOE) – module HASPJOS

• Error regs found in $ERROR save area

• JES2 internal Ctraces useful in diagnosis

• CODE=ABEND

• MVS detected error (0C4, 878, B00, etc)

• JES2 maintask ESTAE gets control for recovery

• RTM2WA generated

• System trace table

Disastrous vs Catastrophic

JES2 error condition $nnn

-or- MVS ABEND

Catastrophic errors are unexpected, logically detected errors. They encompass both JES2
detected errors as well as general MVS abends encountered under JES2. For MVS abends, it is
appropriate to approach their diagnosis as you would any other MVS type abend – using
RTM2WA, systrace, SUMM FORMAT, etc.

For JES2 detected errors, there are diagnostics available within JES2 such as $ERROR save
area calling sequence and internal Ctraces.

8

Session 16632

• $HASP098 Enter Termination Option – worst

• Required PCE failed and could not be recovered

• $HASP073 Recovery Successful – best

• Normal processing resumes

• May be confined to job in hand

• $HASP068 Partial Recovery Successful – good enough?

• PCE has terminated and will not run again

• Processing continues without that PCE

• How many PCEs remain of that type

• Is function impacted

• How can I recover PCE

PCE Recovery (or not)

Depending on the severity of the error, there are varying degrees of JES2 recovery. Partial
recovery is intended to keep JES2 operating and stable and allow time to schedule hostart/IPL at
your nearest convenience to recover lost PCE. The type of impact may vary based on the
specific type of PCE affected. A device PCE (PRT1) means the device will not function (may be
critical). Other PCEs such as Sysout API (SAPI) interface may have far smaller impact depending
on the number of PCEs defined. When JES2 terminates a PCE, it produces a message
indicating the PCE has terminated and also how many of that type remain. An ended PCE will
prevent a clean shutdown of JES2 and can be identified via $DPCE(*),ENDED.

9

Session 16632

JES2 Subtasks

Alloc WTO SMF Image VTAM CKVR Subs X 10

Offload

CNVT1

Spool CFEOM

JES2
maintask

Converter Subtask TCBs

CNVT2

MIGR ASST

PCE CNVTNUM=2

= *not* required

JES2 maintask does not like to MVS wait. JES2 creates separate subtask TCB’s to invoke services that may result in
an MVS wait. There are 14 different JES2 subtask types of which one is for conversion.

The number of converter subtasks corresponds to PCEDEF CVNTNUM parameter. The default is 2. The MVS
converter is linked to in order to converter the JCL images.

The MVS converter also performs the PROC expansions.

Brief Summary of Subtask functions:

ALLOC- used to perform dynamic allocations

WTO – issues MVS WTO to put out JES2 messages

SMF – writes SMF records to SMF dataset

IMAGE – allocates and opens SYS1.IMAGELIB (only done during JES2 startup)

VTAM – used to open or close VTAM ACB

CKVR – checkpoint versions and WLM sampling

SUBS – general purpose subtasks most often used for performing SAF calls (there are 10 of these TCB’s)

SPOOL – handles spool volume allocations etc

EOM – z4 and up. Processes $SJB placed on the EOM queue for end of memory SSI processing

CF – used when CKPT is on coupling facility to interface with the CF to read/write CKPT data

OFFLOAD – used to perform I/O etc to offload datasets

MIGR and ASST– involved in spool migration processing

10

Session 16632

• $HASP078 Subtask failed

• Indicates the failing JES2 subtask

• Always MVS abend code

• $HASP095 error $Z03 issued if a required subtask cannot be
recovered

• Potential function loss when subtask terminates

JES2 Subtask Recovery (or not)

Impact may vary depending on the type of subtask that was impacted. Barring the *not* required
subtasks, the overall health JES2 is typically going to be in trouble if it loses a subtask. For
instance, losing a CNVT subtask may not be critical if you have 10 defined. However, the loss of
the CKPT version subtask may prevent the updating of checkpoint versions (copies) – which
could affect respective exploiters like SDSF. The loss of the VTAM subtask would impact SNA
communications etc.

11

Session 16632

30 Second PCE Review

PSO3

PSO2

JES2 Maintask TCB

PCE flow

CNVT1 TIMER CMD EXEC

HASPNUC

Dispatcher

CKPT

CNVT1

C’mon
I/O

Tic tock

$W
AIT

$POST for I/O

PSO1

PSO

Resource

Timeused
points

The Processor Control Element (PCE) represents an instance of a “process” running under the
control of JES2 main task – each PCE is a dispatchable unit of work controlled by the JES2
dispatcher. “Process” is synonymous for JES2 service – such as EXEC, CMD, SAPI, PSO,
CNVT, etc. There are one or more PCEs for each process, some dictated by PCEDEF statement
definitions.

Above illustrates basic flow of PCE’s being dispatched by JES2 maintask: When a PCE has work
to do, it is moved into the ready queue (awaiting their turn to be dispatched). When the PCE’s
runs through the dispatcher its entry and exit into and out of it is framed with TIMEUSED macros.
This allows JES2 to capture CPU time information that shows up in internal traces and
PERFDATA.

12

Session 16632

JES2 Component Panels

Issued from IPCS primary menu

 IPCS JES2 Format Trace Debug
 --- JES2 Component Data Analysis
 Option ===> 2;6;S JES2;
 Enter JES2 name ===> JES2

 Select desired option for JES2 dump: These panels are for
 1 JES2 base display JES2 FMID: HJE7780
 2 JES2 job control blocks Service level: 0
 3 JES2 job output control blocks
 4 JES2 devices
 5 JES2 processors
 6 JES2 subtasks
 7 JES2 control blocks
 8 JES2 NJE/RJE control blocks
 9 JES2 MAS member data
 10 JES2 checkpoint control blocks
 11 JES2 BERT control blocks
 12 JES2 monitor data

JES2 subsystem name

The following slides assume that the JES2 IPCS Support modules (SHASPARM, SHASMIG,
SHASPNL0) have been loaded into the requisite concatenations on your system. For specific
information on JES2 IPCS Support modules, please refer to z/OS JES2 Diagnosis manual
(chapter: Using IPCS for Diagnosis).

From this panel, you have various formatting options based on what you are attempting to debug;
however, option “1 JES2 base display” is often the best place to begin diagnosis as it is surfaces
an abundance of pertinent information. Most of the options place you in another panel with
prompting fields for additional information. The panels do have help screens to assist in
navigation and data entry.

The subsystem name defaults to JES2, but is an overtype field for alternative JES2 subsystem
names (JESA etc)

Also on this panel (but not illustrated above), is option “101 – Select JES2 control blocks for non-
JES2 address space”. These panels may be useful for JES2-related abends that occur within a
user address space – allowing formatting of JES2 control blocks that reside in common storage

13

Session 16632

JES2 Base Display

*** JES2 Base Display ***

Subsystem "JES2" is in address space ASID(X'002D')
Dump for JES2 release="z/OS 2.1", Product level=43, Service level=0
(pointed to by SSCTSUSE); CVTPRODI=HBB7790
Maximum extended region size for "JES2" is 1,395M (per LDAELIM)
*** WARNING: ASCBDSP1=80

System set non-dispatchable and this ASCB is not exempt (per
ASCBSSND bit)
*** WARNING: DEBUG BERT=NO specified (per $DBGBERT bit off in
$DEBGOPS in $HCT)
*** WARNING: $EVENT(s) exist (PCBEVNTF¬=0 in $PERFCB)

*** NOTICE: $QSUSE is NOT in effect (per $QSONDA bit in $STATUS in
$HCT)
*** NOTICE: SPOOLDEF FENCE=ACTIVE=YES in effect (per CCTSMVFN
bit in CCTSTUS in $HCCT)

This is the top portion of the Base Display. It includes the JES2 product information along with
WARNING, NOTICE, and ERROR alert messages. You will always find alert messages in a
dump, so their presence alone is not indicative of any particular problem. However, WARNING
and NOTICE messages draw attention to key pieces of information that will assist the debugger in
understanding the state of JES2 at time of dump. Some examples are:

-JES2 is abending/abended

-JES2 is quiesced via $P or $PXEQ

-$ZAPJOB has been issued

-$EVENTS exist (produced by JES2MON)

-JES2 ASCB is not dispatchable

etc

ERROR alerts often indicate that certain areas are not able to be formatted. These may be rather
innocuous and simply reflect that some storage area was not dumped, or can shed insight into
control block overlay scenarios etc.

14

Session 16632

JES2 Base Display

$PCE: 1AEBA6E0

+0000 PCEEYE... PCE

+0000 PSVID.... PCE PSVPREV.. 00000000 PSVNEXT.. 2B1C8A28

+00EC RSV...... 00000000

***** INTERNAL READER *****

+0000 RDWTEMP.. C2404040 40404040

+0460 40404040 40404040 40404040 40404040

$PSV: 2B1C8A28

+0000 PSVID.... SAVE PSVPREV.. 1AEBA6E0 PSVNEXT.. 1AEBA6E0

+000C PSVR14... 800EE48A PSVR15... 000F99EE PSVR0.... 1AEBAB50

+005A RSV...... 00000000 0000

+0060 PSVSTCK.. CD05E208 AF3D690C

04/18/2014 09:33:32.008406

Routine name: RERROR

000F9A06: HASPRDR (X'000ED1C8') + X'0000C83E'

Address routine called from (assuming normal linkage):

000EE48A: HASPRDR (X'000ED1C8') + X'000012C2'

1 $PSV(s) processed

$DCT: 1A1BF570

+0000 DCTID.... DCT DCTPCE... 1AEBA6E0 DCTSTAT.. 90

+0028 DCTDEVN.. INTRDR DCTUCB... 00000000 DCTTOKA.. 1A1CF5F0

+010E RIDFLAG3. 00 RIDRSV3.. 00

** $JQE Address=1BCC49B0, Offset=0000E998, Index=000256

** $JQX Address=1CFD1C40, Offset=00008C28

** Address of first $BERT for this $JQA is 20ECEB98

** BERT lock is not held

** NOTE: $JQA incomplete, all fields past label JQABERT are zero

$JQA: (Composite of $JQE and $JQX)

JQE......

+0000 JQEPRIO.. FF JQETYPE.. 20 JQEJOBNO. 1ED2

Current PCE

$Save Area /
Calling Sequence

$DCT from
PCEDCT field

$JQE from
PCEJQE field

This section is towards the bottom of the Base Display panels. I have omitted the middle section
which also displays the $HCT and $HCCT control blocks. All of this information can also be
formatted via other JES2 panels (such as PCE panels, job display panels, subtask panels, etc).

The PCE Save Area ($PSV) can be thought of as the JES2 version of a linkage stack – one entry
produced per PCE to represent the state of processing as it issued a $SAVE (but not yet issued
the $RETURN). Once the $RETURN is issued, the PSV is dechained and available for reuse. It
provides a lot of insight into the path leading up to the error (including register contents) and will
match up to the calling sequence identified in the $HASP088 messages.

It will also format and display other control blocks that are active/in-hand at time of error such as
device blocks (device control table $DCT), job blocks (job queue element $JQE, output blocks
(job output element $JOE), etc.

15

Session 16632

Useful Commands & Module Background

Command ===> IP CBF 000091A0 STR($MODLOC)
 ******************************* TOP OF DATA *******************************
 000091A0: HASPNUC (X'00007000') + X'000021A0' OA36155/UA68055

• HASCnnnn � JES2 module in Common storage

• Maintenance hitting module typically requires WARMstart (IPL)

• HASPnnnn � JES2 module in Private storage

• Maintenance hitting module typically requires HOTstart

Command ===> IP CBF 072E3050 STR($PCE)
******************************* TOP OF DATA *******************************
 $PCE: 072E3050
 +0000 PCEEYE... PCE
 +0000 PSVID.... PCE PSVPREV.. 00000000 PSVNEXT.. 072E3050
 +0018 PSVR1.... 069CC230 PSVR2.... 069CC138 PSVR3.... 00003000

Browsing raw storage, JES2 module eyecatcher information is at the beginning of each module;
however, the maintenance level information is at the end of the module. For this reason, is often
very helpful to use the $MODLOC formatter to verify if/where an address is in JES2 code. The
formatters will also work within the user address space for common modules.

JES2 common modules HASCnnnn are primarily responsible for:

-SSI calls

-Extended status

-Sysout allocation / open / close / PUT / GET / POINT

-SAPI / PSO

The mainline recovery for common modules is HASCLINK

The second example shows formatting an address as a $PCE. JES2 has formatters for many
control blocks ($JQE, $DTE, $JOE, etc), so it may be worthwhile to attempt a CBF against that
respective block to assist in formatting (rather than dealing with raw storage).

16

Session 16632

JES2 Ctraces

 --------------------------- CTRACE DISPLAY PARAMETERS ---------------------------
COMMAND ===> 2;7;1;d

 System ===> (System name or blank)
 Component ===> SYSJES2 (Component name (required))

 Subnames ===> JOE

Issued from IPCS primary menu

• Component is SYSnnn

• nnn = JES2 subsystem name (JES2, JESA, etc)

• Subnames

• DISP

• JQE

• JOE

• SAPI **new** (delivered via APAR OA43882)

The JES2 Ctraces are component traces that are always running internally. They are in-storage
only and cannot be put out to external writer etc. The installation does not control the size of the
trace, and they are rolling traces. These traces can be displayed via the IPCS component trace
facility as displayed above. Alternatively, you can use the “TRACE” drop down menu from the
JES2 primary panel (shown on slide 11).

There are four types of traces/subames: DISP, JOE, JQE, SAPI

17

Session 16632

JES2 DISP Ctrace

SYSA DISP 00000421 21:59:16.610981 Dispatch PCE

PCE Address->1AE8B638 Exit->00 JOB#/offset->00000000 00000000

Module/seq#->HASPPSO 01960000 Wait time->00000000 0027E5AD

$POST type-->0000

PCE description:PROCESS SYSOUT PROCESSOR

$WAIT Events: POST

$WAIT Resource: PSO

$WAIT Options:

$POST Reason: Resource post

SYSA DISP 00000420 21:59:16.611114 PCE $WAIT

PCE Address->1AE8B638 Exit->00 JOB#/offset->00001ED1 0000EC54

Module/seq#->HASPNUC 17000000 Run time->00000000 00000085

CPU time---->00000000 00000085

PCE description:PROCESS SYSOUT PROCESSOR

$WAIT Events: IO

$WAIT Options:

Dispatch point
Time length PCE $WAITed till Dispatch

$POST information

$WAIT information

$WAIT point
JOB# that PCE is working on

The JES2 dispatcher rolling ctrace shows information on each PCE as it respectively enters/exits
the JES2 dispatcher. It also will show when JES2 encounters an MVS WAIT.

Things to consider while reviewing DISP ctrace:

-Are there abnormally large time gaps between entries or large MVS waits?

-Are one (or more) specific PCE unexpectedly monopolizing the dispatching?

-Any PCEs appear to be looping?

-Any unusual $WAIT conditions?

-Is an exit in control (related to any of the above)?

18

Session 16632

JES2 JQE Ctrace

SYSA JQE 00000203 21:59:16.610444 $QMOD

PCE Address->1AE88148 Exit->00 JOB#/offset->00001ED1 0000EC54

Original Queue->02 New Queue->01 Busy->00 Lock->01

 Artificial JQE

 PCE description:OUTPUT PROCESSOR

SYSA JQE 0000020C 21:59:16.610458 $DOGJQE

PCE Address->1AE88148 Exit->00 JOB#/offset->00001ED1 0000EC54

Original Queue->01 New Queue->01 Busy->00 Lock->01

 PCE description:OUTPUT PROCESSOR

SYSA JQE 00000207 21:59:16.610478 $FREJLOK

PCE Address->1AE88148 Exit->00 JOB#/offset->00001ED1 0000EC54

Original Queue->01 New Queue->01 Busy->00 Lock->00

 Artificial JQE

 PCE description:OUTPUT PROCESSOR

Macro traced

$JQETYPE changed

$JQEJLOK – job lock

$JQEBUSY indicator

The JQE rolling ctrace The above shows information about job state a job state changes –
particularly the (un)busying of the job block, (un)locking of the job, and transitioning of job from
queue-to-queue. The above case illustrates a job moving from the output queue (being serviced
by a OUTPUT PCE), to the hardcopy queue. As part of this process we can observe the joblock
is obtained and then freed.

Things to consider while reviewing JQE ctrace:

-Are there any large gaps in processing?

-Are you looking for a specific job?

-Are you looking to see that a particular queue/phase is being serviced (backlog?)?

--Is an exit in control (related to any of the above)?

19

Session 16632

JES2 JOE Ctrace

SYSA JOE 00000319 21:59:16.611063 $#BUSY

 PCE Address->1AE8B638 Exit->00 Job number->00001ED1 JOE offset->00003FC8

 Original Class->D3 New Class->D3 Busy->01 Type->80

PCE description:PROCESS SYSOUT PROCESSOR

SYSA JOE 00000312 21:59:16.826295 $#REM

 PCE Address->1AE86638 Exit->00 Job number->00000000 JOE offset->00003FC8

 Original Class->D3 New Class->D3 Busy->00 Type->C0

PCE description:PROCESS SYSOUT PROCESSOR

SYSA JOE 0000031A 21:59:18.625218 $#GET

 PCE Address->2B1D9180 Exit->00 Job number->00001ED1 JOE offset->00004510

 Original Class->D8 New Class->D8 Busy->01 Type->80

PCE description:NJE SYSOUT TRANSMITTER

Macro traced

$JOEBUSY indicator

Offset into JOT

The JOE rolling ctrace The above shows information about job output state a job state changes –
particularly the (un)busying of the output block, (un)locking of the output, and transitioning of
output from queue-to-queue. The above case illustrates two pieces of output within the same job
being processed. This is evident by the two different offsets into the JOT along with each JOE
being within different classes. The first piece of output is processed by PSO and purged (noted
by JOETYPE=C0). The second piece of output is then selected by a NJE sysout transmitter
Lnn.STn.

Things to consider while reviewing JOE ctrace:

-Are there any large gaps in processing?

-Are you looking for a specific output?

-Are you looking to see that a particular queue/phase is being serviced (backlog?)?

--Is an exit in control (related to any of the above)?

20

Session 16632

JES2 SAPI Ctrace
 --

SY1 SAPI 05000033 20:54:22.058909 Bulk Modify

 SAPI name---> ADAM1. PCE Address->0BD82200

 Job number-->00000039 JOE offset->00000410 SAPID->00001000

 SSS2SELx 1->E4 2->00 3->00 4->00 5->00 6->00

 CPU Time---->00000000 0000009D Run Time----->00000000 000000A1

 $QSUSE Time->00000000 0000009F Elapsed Time->00000000 0003E516

 $#GET Time-->00000000 0000001C $RQUE Time--->00000000 00000013

 I/O Count--->00000000

 A JOE was returned

 SAPID assigned a JOE

 --

SY1 SAPI 05000031 16:15:23.924338 Put/Get call

 SAPI name---> ARCHIVE2 PCE Address->0BD72B28

 Job number-->00000140 JOE offset->00000478 SAPID->00001000

 SSS2SELx 1->08 2->00 3->00 4->00 5->00 6->00

 CPU Time---->00000000 0000009E Run Time----->00000000 000000E6

 $QSUSE Time->00000000 000000EB Elapsed Time->00000000 00000207

 $#GET Time-->00000000 00000016 $RQUE Time--->00000000 00000049

 I/O Count--->00000001

 A JOE was returned

 SAPID assigned a JOE

Request type

Application name
Selection flags/criteria

Amount of CPU

Total time

Time obtaining the JOE

The SAPI rolling ctrace captures the last 2000 SAPI requests at time of dump. It identifies the
requestor, the type of request and breakdown of the overhead of the request. Much of the same
information is captured in the JES2 id traces (ID=28,29 for SAPI, ID=20 for $#GET) – depending
on the duration of the SAPI problem and timeliness of dump, the internal Ctrace may be sufficient.
 JES2 id traces are more appropriate for capturing data across a wider timeframe.

Things to consider while reviewing SAPI ctrace:

-Are there any unexpected SAPI applications involved in the processing of job output?

-Any SAPI application appear to be looping/processing same output?

-Any requests taking long in duration (wall clock or CPU time)?

-What is the specific request type and criteria (related to any of the above)?

21

Session 16632

Merging Ctraces

 ------------------------------ MERGE SPECIFICATION ------------------------------
Command ===> 2;7;5;c

 Enter/verify trace specifications for this MERGE operation.
 In the left column, type C/G/R: (C = CTRACE G = GTFTRACE R = reset)

C/G/R---Trace Invocation Parameters ---

 1. CTRACE COMP(SYSJES2) SUB((SAPI)) FULL DSNAME('ADAM.SYSA.DUMP1')

 2. CTRACE COMP(SYSJES2) SUB((JQE)) FULL DSNAME('ADAM.SYSA.DUMP1')

 3. CTRACE COMP(SYSJES2) SUB((DISP)) FULL DSNAME('ADAM.SYSB.DUMP2')

 4. CTRACE COMP(SYSJES2) SUB((JOE)) FULL DSNAME('ADAM.SYSB.DUMP2')

 ENTER = continue MERGE definition.
 END/PF3 = return to the MERGE GLOBAL PARAMETERS panel.
 S = start MERGE.

Issued from IPCS primary menu

Sometimes it may be beneficial to merge ctraces in order to gain a better understanding of the
processing flow. This can be achieved via the MERGE ctrace facility. Note that you can specify
multiple datasets which can be handy if processing for a job spanned different JES2 MAS
members.

22

Session 16632

• Most useful in diagnosing JES2 performance problems

• Undocumented command(s) that capture various JES2 performance
statistics

• Proper PERFDATA Collection

• Reset statistics via $TPERFDATA(*),RESET

• Wait interval that covers problem timeframe (10-15 minutes)

• Display all statistics via $DPERFDATA(*)

• Gather several samples

• Good vs Bad timeframe ?

PERFDATA

When diagnosing JES2 performance concerns, it is of paramount importance that PERFDATA is
collected correctly. PERFDATA statistics are always running/accumulating, so resetting the
statistics is always the first step to collecting an accurate sample. Without the reset, you may be
investigating a problem in which JES2 CPU utilization drastically increased over a 15 minute
timeframe using statistics covering an interval of 20+ days! In those cases, the data is considered
oversaturated in that there is no way to discern what actually happened in those specific 15
minutes. Typically Level 2 recommends gathering samples in 10-15 minute increments (and you
can always gather multiple/back-to-back samples).

It is also worth consideration to occasionally capture sample(s) when processing is good/normal.
These can become handy to compare and contrast if JES2 performance drastically changes for
the worse. A debugger can view the samples side by side to observe differences in PCE
processing, job throughput, checkpoint cycling, etc.

23

Session 16632

PERFDATA
• $T PERFDATA(*),RESET – resets performance data

• $D PERFDATA(INITSTAT) – JES2 initialization stats

• $D PERFDATA(QSUSE) – PCE $QSUSE summary

• $D PERFDATA(PCESTAT) – detailed PCE stats

• $D PERFDATA(SAMPDATA) – WLM Sampling data

• $D PERFDATA(CPUSTAT) – PCE CPU usage

• $D PERFDATA(CKPTSTAT) – CKPT read/write stats

• $D PERFDATA(SUBTSTAT) – JES2 subtask

• $D PERFDATA(EVENT) – $EVENTS captured

• $D PERFDATA(WSSTAT) – work selection ($#GET & $#POST) stats

• $D PERFDATA(*) –all of the above

The $TPERFDATA(*),RESET is absolutely essential to ensuring a healthy sample is gathered.
Thereafter, the type of display requested may be dictated by the specific problem being
investigated; although Level 2 most commonly asks for all data $DPERFDATA(*). The WSSTAT
option is a newly added section delivered In APAR OA43882. Disclaimer – the output of these
displays can be rather abundant!

24

Session 16632

$D PERFDATA(CKPTSTAT)

$HASP660 CKPT PERFORMANCE STATISTICS SYS1-INTERVAL=11:10:12.320961,

$HASP660 AVGHOLD=0.318337,AVGDORM=45.305289,TOT$CKPT=3284,

$HASP660 WRITE-4K=0,WRITE-CB=788,OPT$CKPT=2496,OPT4K=0,

$HASP660 IO=R1,COUNT=875,AVGTIME=0.010943,

$HASP660 IO=R2,COUNT=0,AVGTIME=0.000000,TOTAL4K=0,TOTALCB=118,

$HASP660 IO=PW,COUNT=876,AVGTIME=0.004066,TOTAL4K=39,TOTALCB=0,

$HASP660 IO=IW,COUNT=878,AVGTIME=0.003776,TOTAL4K=0,TOTALCB=670,

$HASP660 IO=FW,COUNT=876,AVGTIME=0.003888,TOTAL4K=0,TOTALCB=118
AVGHOLD & AVGDORM = average HOLD and DORMANCY values

TOT$CKPT = total number of $CKPTs

AVGWAIT = average I/O times to CKPT

The CKPT statistics section will illustrate whether your CKPT cycling is what you would expect
based on HOLD and DORMANCY settings as well as provide information about the relative health
of CKPT I/Os. On each member in the MAS you can compare AVGHOLD and AVGDORM versus
the HOLD and DORMANCY coded values to verify if JES2 is cycling the CKPT as expected.
Large differences in these values may suggest additional tuning is needed based on workload
distribution etc (eg should some members be favored more because it does most of the job
submit? … or archiving?)

Comparing TOT$CKPT on each member of the MAS is a quick way to assess which members
have the most checkpoint activity.

The AVGWAIT values associated with primary/intermediate/final write can be used to assess
relative health of the I/Os. These times can vary (particularly depending on checkpoint placement
on DASD vs coupling facility); however, the numbers should be consistent for I/O on the device.

25

Session 16632

$D PERFDATA(CPUSTAT)

$HASP660 CPU PERFORMANCE STATISTICS SYS1 - INTERVAL=14:49.926816,

$HASP660 CPU=3.067221,

INTERVAL = length of time data has been accumulating

CPU= CPU time used by all of JES2 over that interval

$HASP660 PCENAME=SPI, CPU%=6.16 ,CPU=0.120145,TIME=0.151743,

$HASP660 QSUSE_TIME=0.098023,IOCOUNT=599,CKPT_COUNT=28280,

PCENAME = name of the group of PCE’s captured (see $DPCE for details)

CPU% = percentage of total JES2 maintask time this subset of PCE’s used

CPU = total CPU time used by this subset of PCE’s

TIME = Wall clock time this subset of PCE’s was disp

This will show a breakdown of CPU utilization by PCE type. These numbers may change
greatly/frequently based on configuration and workload. For instance, a member that is primarily
used for archiving may demonstrate SAPI utilization far higher than a member used for
communications/NJE (in which that member may show higher utilization for NET.SR etc). It is
typically very reasonable to see CKPT PCE towards the top of this list.

Additional fields:

QSUSE_TIME = Wall clock time subset of PCE’s ran when they acquired queue
($QSUSE)

IOCOUNT = Total number of I/O’s issued by this subset of PCE’s

CKPT_COUNT = Number of $CKPT’s issued by this subset of PCE’s

26

Session 16632

$D PERFDATA(PCESTAT)

$HASP660 PCENAME=NET.SR,TIME=43.011997,CPU=40.892083,CPU%=7.63,

$HASP660 QSUSE_TIME=0.277515,IOCOUNT=278356,CKPT_COUNT=7631,

$HASP660 WAIT=IO,MOD=HASPNUC,SEQ=17000000

$HASP660 COUNT=4066,AVGWAIT=0.001505,

$HASP660 POST=IO,COUNT=4066,AVGWAIT=0.001505,

$HASP660 WAIT=BUF,INHIBIT=NO,MOD=HASPNSR,SEQ=70272000

$HASP660 COUNT=4982,AVGWAIT=0.001099,

$HASP660 POST=RESOURCE,COUNT=4970,AVGWAIT=0.000878,

$HASP660 POST=IO,COUNT=12,AVGWAIT=0.092677,

$HASP660 WAIT=CKPT,MOD=HASPNUC,SEQ=28410000

$HASP660 COUNT=221,AVGWAIT=0.342762,CMOD=HASPJQS,CSEQ=03330000,

$HASP660 POST=RESOURCE,COUNT=221,AVGWAIT=0.342762,

This section starts with the CPU statistics (CPUSTAT), and then follows with a breakdown of
activity of that PCE type. Specifically, it will breakdown the PCE $WAITs and $POSTs by type and
count. The AVGWAIT for WAIT=CKPT help give insight into CKPT access time. All wait times
include queue time for the PCE type – the time it is on the ready queue awaiting dispatch.

Fields:

WAIT = wait type(s) passed on the $WAIT macro

MOD/SEQ = module and sequence number where $WAIT was issued

COUNT = the number of $WAITs (or $POSTs) issued from this location

AVGWAIT = Average time the PCE spent at this location waiting

POST = Post type that woke the PCE up from this $WAIT

27

Session 16632

PERFDATA - CPU Increase Example

Problem: JES2 CPU spike! $DPERDATA for a 30 minute interval provided:

$HASP660 PCENAME=STAC,TIME=9:05.678529,CPU=5:58.996610,CPU%=95.67,

$HASP660 QSUSE_TIME=9:01.582558,IOCOUNT=0,CKPT_COUNT=0,

$HASP660 WAIT=CKPT,MOD=HASPNUC,SEQ=28410000

$HASP660 COUNT=1653,AVGWAIT=0.756200,CMOD=HASPSTAC,CSEQ=13100000,

$HASP660 POST=RESOURCE,COUNT=1653,AVGWAIT=0.756200,

$HASP660 WAIT=STAC,INHIBIT=NO,MOD=HASPSTAC,SEQ=09900000

$HASP660 COUNT=1646917,AVGWAIT=0.008434,

CPU% & PCENAME identify STAC (Status/Cancel) as likely culprit.
WAIT=STAC is the STAC PCE wait for work.
COUNT with STACNUM=2 on PCEDEF indicates 823,458 SSI

requests made relative rate of AVGWAIT.

The above demonstrates a scenario in which STAC PCE is monopolizing the JES2 activity – using
95% of the total CPU consumed by JES2. It is interesting to observe TIME vs CPU divergence.
In the above case CPU is ~2/3 of the wall clock TIME – indicating JES2 is ready to run but is not
getting CPU cycles. The CPU cycles it is getting are clearly funneling into STAC. It is also helpful
to review the AWGWAIT associated with CKPT to understand checkpoint access is healthy. From
here we would begin focusing on whether there was a loop within STAC processing or whether
someone was continuously driving STAC requests – possibly requiring separate traces and/or
dumps.

28

Session 16632

PERFDATA - Throughput Analysis

PCENAME=JQRP,TIME=0.903077,CPU=0.700405,CPU%=3.13,

QSUSE_TIME=0.278596,IOCOUNT=2196,CKPT_COUNT=35317,

 WAIT=WORK,INHIBIT=NO,MOD=HASPJQS,SEQ=70910000

 COUNT=2061,AVGWAIT=0.329332,

 POST=IO,COUNT=936,AVGWAIT=0.000606,

 POST=$$POST,COUNT=1125,AVGWAIT=0.602831,

 WAIT=CKPT,INHIBIT=NO,MOD=HASPJQS,SEQ=70923300

 COUNT=3542,AVGWAIT=0.095666,

 POST=RESOURCE,COUNT=1528,AVGWAIT=0.188931,

 POST=IO,COUNT=947,AVGWAIT=0.000848,

IOCOUNT / 2 = number of jobs created during this interval

AVGWAIT = average time PCE waiting for CKPT

JQRP PCE shows the total I/O count for the interval. Since JES2 performs 2 I/Os for each job
created, the IOCOUNT divided by 2 yields the count of how many jobs were created during the
PERFDATA interval. In the above example 2196 / 2 = 1098. If the interval were 6 minutes, then
that would suggest approx ~3 jobs were created per second.

The AVGWAIT time gives insight in any problems surrounding CKPT access. Generally, we view
this health based on order-of-magnitude where anything larger than 0.10 seconds *could* indicate
contention for checkpoint.

29

Session 16632

30 Second Checkpoint Review

MEMBER6

MEMBER4MEMBER1

MEMBER5

MEMBER3

CKPT
MEMBER2

I need a job number !

I need a spool space

Need to
 cr

eate
 O

UTGRP

SAPI n
eeds a JOE

$TJ

$COJ

 Checkpoint access in a MAS looks like…

HOLD=a, DORM=b

HOLD=c, DORM=d

HOLD=a, DORM=b

HOLD=a, DORM=b

HOLD=e, DORM=f

HOLD=a, DORM=b

How equitably the checkpoint is shared amongst MAS members is controlled by the following
MASDEF parameter (which have a scope of member):

HOLD= The minimum length of time a member will hold the checkpoint before it will try to release
it

DORMANCY= The length of time a member will wait before attempting to reacquire the CKPT

Notification of a checkpoint lockout condition is based on the MASDEF parameter:

LOCKOUT=The length of time a member needing the CKPT will wait before issuing $HASP263

30

Session 16632

MEMBER6

MEMBER4MEMBER1

MEMBER5

MEMBER3

CKPT
MEMBER2

I need a job number

I need a spool space

Need to
 cr

eate
 O

UTGRP

SAPI n
eeds a JOE

$TJ

$COJ

$HASP263

$HASP263 $HASP263

$HASP263

$HASP263

Holding CKPT!

$HASP9207

Another 30 Seconds about Checkpoint…

 Checkpoint lockout in a MAS looks like…

31

Session 16632

PSO3

PSO2

JES2 Maintask

PCE flow

CMD EXEC CKPT

I can’t HOLD it
anymore!!

HASPNUC

PSO1

PSO
Resource

$POJQ,ALL

CNVT1

C’mon
I/O

HURRY!

TIMER

I’m busy! I need CPU time!

I’m looping �

I abended!

Just 30 More Seconds about
Checkpoint (don’t lockout on me…)

Checkpoint lockout on the holding member could look like…

The first predicament that the CKPT PCE can find itself in, is being unable to get dispatched under the maintask.
There are several reasons this could occur.

1. The PCE currently processing under maintask is busy doing valid work. It may be the nature of the work that is
resulting in the excessive processing time. Any command that requires the scanning and/or filtering of a large
number of jobs or outgrps can take some time to complete. The $POJQ with a filter command is an example if it
needs to process tens of thousands of jobs. It is cpu intensive and could result in $HASP263’s on other members
depending on the coded LOCKOUT value.

2. JES2 is currently CPU restricted. That is the maintask TCB is not getting any or enough cycles to get through the
chain of PCE’s in a timely fashion to allow the CKPT PCE to run.

3. A PCE abended and has issued $HASP098 for a termination option. If this abend occured while the CKPT was
held and the WTOR is not replied to in a timely fashion then the CKPT will not be released

4. A PCE is in a loop in which no $WAIT is issued so it will never give up control of the maintask TCB

The first two conditions can be transient in nature the $HASP263’s will be issued but then stop as either the PCE
completes its work or JES2 gets the needed CPU cycles. For second two, the $HASP263’s will be issued until the
causing condition is resolved.

32

Session 16632

• Diagnosis must occur on the system that is HOLDing the checkpoint

• The system that is HOLDing the checkpoint….

• Will not issue $HASP263

• Will not issue IOS071I 016E,**,*MASTER*, START PENDING

• Will issue $HASP9207 JES CHECKPOINT LOCK HELD
DURATION xyz

•Possibly other JES2 monitor $HASP92xx messages too

• The system that is a victim not HOLDing the checkpoint…

• Will issue $HASP263

•LOCK HELD BY MEMBER abc (if CKPT on CF)

Diagnosing Checkpoint Lockout

Once the $HASP263’s have started the first step is determining which MAS member is holding
the checkpoint.

The HASP263’s and IOS071I’s really indicate who is NOT holding it. Absence of these messages
on a member would suggest that it is the one holding the CKPT. The $HASP9207 message
issued by the JES2 monitor identifies the system holding the CKPT.

$HASP263 WAITING FOR ACCESS TO JES2 CHECKPOINT. LOCK HELD BY SYSTEM is a
special case. The SYSTEM referred to in the message means that XES has indicated to JES2
that no member holds the lock but it is currently in the hands of XES. If this message persists and
no JES2 member is showing signs of getting any access then a system with XCF/XES errors
occurring is likely the problem. A Vary out of the plex of the system should force XES to release
the lock.

33

Session 16632

Persistent $HASP263s

• Check health of overall system

• MVS commands responding?

• Check JES2 CPU usage

• Check for outstanding JES2 WTOR’s

• Check for indications of JES2 functioning

• $HASP250 (jobs purging)?

• JES2 commands working?

• Diagnostics

• Console dump JES2 on system holding the CKPT –or- slip on $HASP9207

• PERFDATA samples

Diagnosing Checkpoint Lockout

The first step is to determine whether or not the problem is at the system or JES2 level. If MVS
commands are not responding then JES2 is likely not releasing the CKPT due to problems
outside of JES2 so terminating or taking other actions on the JES2 asid are likely not to resolve
the lockout condition.

If MVS appears healthy then the focus can shift to the JES2 asid: Has JES2 abended? Are there
an outstanding WTOR’s for JES2? Is JES2 using a lot or any CPU? Resource monitors and
SDSF can assist with this or a D A,JES2 followed by another D A,JES2 will show how much CPU
was used between commands. If no, CPU is used then JES2 is simply not getting a chance to run
so other higher priority tasks may need to be examined. Is JES2 responding to commands? Yes,
then this would indicate that JES2 PCE’s are running which is predicament number two.

If JES2 is not responsive to commands and there are no other messages being issued such as
$HASP100, $HASP250 ($HASP395’s do not count) and there is high CPU then JES2 is likely
looping. Scanning the syslog looking for the last commands or messages issued by JES2 may
give an indication of whether it is related to a CPU intensive command being issued.

34

Session 16632

Transient $HASP263s

• Messages appear on one or more systems but do not persist

• Normally caused by JES2 being temporarily busy with work/commands or
short on CPU

• Diagnostics

• Console dump JES2 on system holding the CKPT –or- slip on $HASP9207

• PERFDATA samples

Diagnosing Checkpoint Lockout

These transient $HASP263’s come in two flavors: the first is “every once in while”. The second is
of a more “roaming” nature. The first type is usually the result of a temporary condition that either
resulted in JES2 being busy or not being dispatched. The second is a little more troublesome. The
messages appear consistently however the system identified as holding the lock changes and
may cycle through all of the members of the MAS. This is much more difficult to isolate to any
specific type of problem or system and could be require a small amount of tuning of
HOLD/DORMANCY

35

Session 16632

Resource Shortages
• $HASP050 message issued

• Not all resources are critical

• BERTs, JQEs, JOEs, JNUMs, TGs are MAS wide resources – critical!

• BERTs - DO NOT RUN OUT OF BERTS!!!!

• BERTs – use $DCKPTSPACE,BERTUSE to identify usage

• TGs – use $DJOBQ,SPOOL=(% > nn) to identify usage

• TGs - should be viewed at a job level not output level

• unless output is SPIN

• BSCB, BUFX, CKVR, CMB, CMD, ICES, LBUF,NHB,SMFB, TTAB,
VTAMB are member specific – not as critical

JES2 will produce $HASP050 message indicating resource shortage – message will repeat until condition is relieved.

BERTs are one of the most critical JES2 resources. They represent non-contiguous pieces of storage on checkpoint
that back/comprise other JES2 blocks such as $CAT, $DJB, $JQA, etc. There are some processes in JES2 that
cannot wait for BERTs to become available, thus it is imperative to avoid complete exhaustion. For the BERT
resource, in addition to $HASP050 you may also encounter:

$HASP051 EXTREME BERT SHORTAGE detected …

$HASP052 JES2 BERT resource shortage is critical -- IMMEDIATE action required…

Ideally you want to have enough BERTs defined such that you would exhaust any resource it is backing (such as
JOEs, JQEs, $CATs) first rather than exhausting BERTs themselves. When in a BERT shortage condition, you want to
identify and address any offending job/output –and/or- increase BERTNUM definition.

For TG shortages, you again want to identify and address any offending job/output –and-or- add additional spool
space. It is important to approach TG usage at a job level because trackgroups are not restored to the TG map until
the entire job is purged (exception being SPIN output, in which TGs restored when output is processed). Consider a
job ADAM1 that has two pieces of non-SPIN output: JOE1 using 1 TG and the other JOE2 using 9K TGs. If you purge
JOE2, it will not restore the 9K TGs because JOE1 still exists with 1 TG!

Spare spool volumes can be formatted in advance and then volume simply started $S if needed –or- can be formatted
dynamically on the $SSPL command.

36

Session 16632

Resource Shortages
• $JDHISTORY command will show historical usage

• Since JES2 warmstart/IPL

• Hourly time slices of usage (interval at the top of each hour)

• Limit/current/low/high/average usage

• Same resources as $HASP050 message

• SDSF equivalent

• RM panel

• JH command on the MAS panel

• MSGID slip or console dump JES2 *if* needed

When approaching resource shortages one of the key pieces of information is whether the
resource utilization is a sudden unexpected spike vs slow creep vs simply running at a fairly
constant number too close to the warning limit etc. The above displays provide the answers,
broken down in 1hr intervals. It also helps illustrate any relationships between resource trends -
eg. Is job output growing at a 3x rate while jobnums are not growing at all? It may prompt the
debugger to scrutinize a particular time interval in syslog/operlog– does it correspond with a peak
or change in workload?

37

Session 16632

Questions?

38

Session 16632

yy/mm/dd APAR COMMENTS

14/06/10 OA45349 IMPROVEMENTS TO JES2 JOB SUBMISSION PROCESS

14/06/18 OA45436 $HASP875 RC02 USING HASIBLD

14/07/11 OA45560 ABEND0C4 IN HASPXEQ

14/07/11 OA45532 ABEND878 IN ANY ADDRESS SPACE DUE TO CSA/ESCA OR SQA SHORTAGE

14/07/11 OA45483 JES2 SSI RETURNS INCORRECT SRVCLASS STSCQNUM AND STSCQACT

14/08/12 OA45760 ABEND0C4 IN HASCPHAM AFTER FSS APPLICATION ENCOUNTERS ABEND

14/08/12 OA45713 $Q12 WHILE PROCESSING $DA COMMAND

14/08/13 OA45752 MISLEADING $HASP375 EXCESSION MESSAGE FOR TRANSACTION OUTPUT

14/09/04 OA45923 ABEND0C4-4 IN JES2 MONITOR ADDRESS SPACE DURING INITIALIZATION

14/09/04 OA45859 ABEND0C4 IN HASCDSAL WHEN SYSLOG BROWSE AND PURGE COINCIDE

14/09/04 OA45845 INCORRECT SCHENV ASSIGNED

14/09/26 OA46115 SERIALIZATION ERROR WHEN MULTIPLE TASKS CREATING SPIN OUTPUT

14/10/01 OA46125 SECURITY VIOLATION FOR JOBS WITH INSTREAM DATA SET

14/10/06 OA46199 JOB CARD WITH INVALID NOTIFY=&SYSUID DOES NOT FAIL

JES2 Service Information

LEGEND:

HiPer APARs (Hi Impact, or Pervasive) Security/Integrity

PE APAR

39

Session 16632

yy/mm/dd APAR COMMENTS

14/10/06 OA46200 SAPI APPLICATION CAN WAIT IN HASCRQUE

14/10/20 OA46266 ENHANCEMENT TO $DOGCAT AND $CAT CACHING

14/11/03 OA46342 IN MIXED MAS, JOB CARD SCHENV CLEARED IN EXIT6 (or 60) ACTIVE

14/11/10 OA46455 INACCURATE SOCKET DATA FOR LINE VIA SSI83

14/11/17 OA46554 COMPACTION TABLE NOT GENERATED IF NO RJE DEFINED

14/11/17 OA46503 SYSOUT TRANSMITTED FROM JES2 TO JES3 ARRIVES WITH JOB PRIORITY 0

14/11/17 OA46510 POINT MACRO MAY POSITION TO INCORRECT RECORD ADDRESS (RBA)

14/11/21 OA46596 $SJnnn FAILS WITH $HASP003 RC=109 RSN=15

14/11/26 OA46621 INCONSISTENT SJB FLAG SETTINGS FOR EXIT 58

14/12/15 OA46706 $ADD SRVCLASS FAILS IF SERVICE CLASS CONTAINS AN UNDERSCORE

JES2 Service Information

LEGEND:

HiPer APARs (Hi Impact, or Pervasive) Security/Integrity

PE APAR

40

Session 16632

OA45349 – IMPROVEMENTS TO JES2 JOB
SUBMISSION PROCESS

Steady influx of job submission on members that do
have a large slice of checkpoint (HOLD and DORM)

JES2 not dispatching enough JQRP PCEs; potentially
leading to a slowdown/bottleneck in job submission

Algorithm improved to dispatch more JQRP PCEs

None

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

41

Session 16632

OA45436 – $HASP875 RC02 WHEN USING
HASIBLD

HASIBLD, the sample JCL to build production/sample
JES2 product and object load libraries does not
correctly process a handful of new modules in z/OS
JES2 2.1

Attempting to start a secondary subsystem built with
HASIBLD will fail

None

JES2 z/OS 2.1
Fix

Problem

Bypass

42

Session 16632

OA45560 – ABEND0C4 IN HASPXEQ

If JES2 Monitor address space fails to start, then at
JES2 termination time ($PJES2) an abend0C4 can
occur

Minimal impact since JES2 is already terminating

Resolve error that is preventing JES2 Monitor
address space from starting

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

43

Session 16632

OA45532 – ABEND878 IN ANY ADDRESS SPACE
DUE TO CSA/ECSA OR SQA SHORTAGE

JES2 produces ENF records for job (and job output)
notification. Storage for parameter list is obtained in
subpool 241 key 1 and expected to be freed by ENF.

A high rate of ENFs causes ENF buffer area to fill up,
then ENF will not be able to receive the ENF (and
free the area). Moreover, JES2 failed to detect this
full condition and resent ENF records; thereby,
exhausting storage over time.

None

JES2 z/OS 1.12,1.13, and 2.1Fix

Problem

Bypass

44

Session 16632

OA45483 – JES2 SSI RETURNS INCORRECT
SRVCLASS STSCQNUM AND STSCQACT

JES2 SSI 80 returns incorrect SRCLASS statistics;
specifically total number of jobs in queue and
number of active jobs in queue.

Reflected in incorrect (higher than expected) totals in
SDSF “Job Information” popup on the Input display
panel

None

JES2 z/OS 1.12, and 1.13Fix

Problem

Bypass

45

Session 16632

OA45760 – ABEND0C4 IN HASCPHAM AFTER
FSS APPLICATION ENCOUNTERS ABEND

Memory for FSS printer (in FSS address space) is
obtained by the subtask driving printer. The FSS
subtask encounters an abend and frees the storage;
thereafter, the mother task attempts to free the
same storage as part of FSA DISCONNECT and
encounters abend0C4

FSS application cannot be restarted until all abends
are processed

None

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

46

Session 16632

OA45713 – $Q12 WHILE PROCESSING $DA
COMMAND

In a MAS environment, one member begins
processing $DA command. If a $WAIT occurs while
JES2 is processing job queue elements, then it is
possible when command processing resumes the
element in hand will be invalid – resulting in $Q12

JES2 terminates and is hotstart’able

None

JES2 z/OS 2.1Fix

Problem

Bypass

47

Session 16632

OA45752 – MISLEADING $HASP375 EXCESSION
MESSAGE FOR TRANSACTION OUTPUT

For long running transaction servers, JES2 calculates
whether (lines/kbytes/etc) excession occurs based
on the limit set for the server (BPXAS init running
the task).

However, the $HASP375 message identifies the
transaction output being processed by the server –
which may have not have the same name as the
server.

None

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

48

Session 16632

OA45923 – ABEND0C4-4 IN JES2 MONITOR
ADDRESS SPACE DURING INITIALIZATION

At start time, JES2 Monitor address space attempting
to reference storage that is not yet initialized by
JES2 address space. This results in protection
exception abend in Monitor address space

None - JES2 Monitor will restart following abend

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

49

Session 16632

OA45859 – ABEND0C4 IN HASCDSAL WHEN
SYSLOG BROWSE AND PURGE COINCIDE

Timing issue can cause abend0C4 if the data set for
an active SYSLOG is purged at the same time
SYSLOG browse is being entered (such as SDSF
LOG panel)

Avoid overlap of SYSLOG browse and purge of active
SYSLOG data set

JES2 z/OS 1.13, and 2.1
Fix

Problem

Bypass

50

Session 16632

OA45845 – INCORRECT SCHENV ASSIGNED

If no SCHENV is coded on the JOB card, then the
SCHENV associated with the CLASS specified on
the INTRDR will be assigned to the job.

Ignores the SCHENV associated with the job CLASS
on the JOB card.

Explicitly code SCHENV on the JOB card

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

51

Session 16632

OA46115 – SERIALIZATION ERROR WHEN
MULTIPLE TASKS CREATING SPIN OUTPUT

Timing issue if multiple subtasks within same ASID
attempt spin output processing (SPIN=UNALLOC or
SEGMENT=. One (or more) will be deferred since only
one subtask can own $SJB and $SDB locks at a time.

Serialization error exists managing those locks that can
cause one (or more) subtasks to hang awaiting spin
processing or abend0F7-7C.

Avoid multiple subtasks with same ASID creating spin
SYSOUT at same time. If hang occurs, recycling the
task that owns $SDB lock will clear the condition

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

52

Session 16632

OA46125 – SECURITY VIOLATION FOR JOBS
WITH INSTREAM DATA SET

For jobs that contain instream data sets (SYSIN),
JES2 does not build the correct resource name for
security check. Specifically, the node name qualifier
is missing from the resource entity name.

Can result in security failure for job

None

JES2 z/OS 2.1Fix

Problem

Bypass

53

Session 16632

OA46199 – JOB CARD WITH INVALID
NOTIFY=&SYSUID DOES NOT FAIL

If job card NOTIFY=&SYSUID refers to a special or
reserved value based on DESTDEF setting (such as
DESTDEF UDEST=SPLOCAL or NDEST=NODE),
then the job should fail with:

$HASP100 nnnnnnn – Illegal Job card – value of
NOTIFY= parameter is not valid

Correct DESTDEF settings or use non-reserved /non-
special userids for NOTIFY

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

54

Session 16632

OA46200 – SAPI APPLICATION CAN WAIT IN
HASCRQUE

If only one SAPI application running and that member
is dominating the holding of JES2 checkpoint, it is
possible the SAPI application may encounter a
delay/wait in HASCRQUE

Issue a command to restart SAPI application work
such as $TASAPI,I=300,’$S’

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

55

Session 16632

OA46266 – ENHANCEMENT TO $DOGCAT AND
$CAT CACHING

Logic added to caching algorithms to re-establish an
appropriate resume point in cases where processing
of operator commands is interrupted by a $WAIT

External symptom is truncated command output:

$HASP611 LIST INCOMPLETE

None

JES2 z/OS 2.1Fix

Problem

Bypass

56

Session 16632

OA46342 – IN MIXED MAS, JOB CARD SCHENV
CLEARED IF EXIT6 (or 60) ACTIVE

Job with JOB card SCHENV= is submitted on 1.13
member, but it converts on 2.1 member. If exit6 (or
exit60) active and the exit does not alter SCHENV,
then the original JOB card SCHENV is cleared.

Job may attempt execution on system not defined
with the SCHENV of the JOB card

Explicitly update SCHENV in exit6 via X006SCHE (or
exit60 via X060SCHE)

JES2 z/OS 2.1Fix

Problem

Bypass

57

Session 16632

OA46455 – INACCURATE SOCKET DATA FOR
LINE VIA SSI83

More than one SOCKET defined to same NODE and
one of those SOCKETs has a dedicated line which is
inactive. SSI83 can return the incorrect (inactive)
information instead of the active SOCKET
information.

SDSF uses SSI83 for its LINE display panel

None

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

58

Session 16632

OA46554 – COMPACTION TABLE NOT
GENERATED IF NO RJE DEFINED

COMPACT statements coded in JES2 Init deck, but
no RJE devices defined (or TPDEF RMTNUM=0).
The compaction table is not generated; thus, cannot
be used for any NJE sessions.

Set TPDEF RMTNUM to a non-zero value

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

59

Session 16632

OA46503 – SYSOUT TRANSMITTED FROM JES2
TO JES3 ARRIVES WITH JOB PRIORITY 0

When spin sysout is sent via NJE (store and forward)
from JES2 to JES3, the original priority is lost.
Priority 0 may be defined as HOLD on JES3,
thereby preventing processing of the sysout.

Manually set job priority on the receiving node

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

60

Session 16632

OA46510 – POINT MACRO MAY POSITION TO
INCORECT RECORD ADDRESS (RBA)

Difference in RBA assignment for locally produced
output versus output received from another node.

Record counting for NJE’d output may be off (usually
by one) as compared to local output, causing
unexpected POINT results

None

JES2 z/OS 1.13, and 2.1

APAR marked PE and fixed by OA46919Fix

Problem

Bypass

61

Session 16632

OA46596 – $SJnnn FAILS WITH $HASP003
RC=109 RSN=15

In a JES2 MAS, Job nnn is submitted with affinity to only
member A. $SJnnn will succeed on member A. $SJnnn
may fail on member B with:

$HASP003 RC109 RSN15 NO JES2 CAN SELECT

It should succeed and start the job on member A. Timing
related based on whether JES2 has registered with WLM

Issue $SJnnn on the member where job is eligible

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

62

Session 16632

OA46621 – INCONSISTENT SJB FLAG SETTINGS
FOR EXIT 58

$Ejnnn,STEP issued to evict job which sets SJBEVICT.
Exit58 explicitly indicates job should *not* be evicted.
The exit is honored on first pass and job not evicted.

However, next invocation of exit58 for the same job will be
represented with the SJBEVICT setting

No impact unless your exits are dependent upon the SJB
evict flag settings

None

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

63

Session 16632

OA46706 – $ADD SRVCLASS FAILS IF SERVICE
CLASS CONTAINS AN UNDERSCORE

WLM has support for underscore character (_) in
service class name, so JES2 should also accept it
rather than fail with:

$HASP003 RC=04 ADD SRVCLASS(yyy_yyy) –
CONTAINS AN INVALID SUBSCRIPT

None

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

64

Session 16632

Questions?

