
Insert

Custom

Session

QR if

Desired.

Make Your PL/I and C/C++ Code Fly

With the Right Compiler Options

Peter Elderon

IBM

March, 2015

• does good application performance mean to you?

• Fast Execution Time

• Short Compile Time

WHAT …

3

• to achieve good application performance?

• Install New Hardware

• Utilize Compiler Options

• Code for Performance

HOW …

4

• Can make your code run faster

• Requires NO

• Recompilation

• Relinking

• Migration to new release

• BUT, are you taking full advantage of all the new features

from the new hardware?

• i.e. the full ROI on the new piece of hardware

Install New Hardware

5

6

• Allows the compiler to exploit the hardware:

• ARCH

• HGPR

• FLOAT(AFP)

• Balance between compile-time vs. execution-time:

• OPT(2)

• OPT(3)

• HOT [C/C++]

• IPA [C/C++]

• PDF

Utilize Compiler Options

7

• Provide the details about the source or environment:

• C/C++:

• ANSIALIAS

• IGNERRNO

• LIBANSI

• NOTHREADED

• NOSTRICT

• STRICT_INDUCTION

• XPLINK

• PL/I:

• REDUCE

• RESEXP

• RULES(NOLAXCTL)

• DEFAULT(CONNECTED REORDER NOOVERLAP)

Utilize Compiler Options (cont’d)

8

• Controls load module size:

• COMPACT [C/C++]

• INLINE [C/C++]

• DEFAULT(INLINE) [PL/I]

• UNROLL

Utilize Compiler Options (cont’d)

9

• The ARCH option specifies the level of the hardware on

which the generated code must run

• C/C++ default is ARCH(7) for V2R1 and up

• PL/I default is ARCH(7) for 4.5 and up

• produces code that will run on z9 (or later) machines

• LE 2.1 requires z9 (or later) machines

• However: you must set ARCH to the lowest level

machine where your generated code will run

• If you specify ARCH(n) and run the generated code on an

ARCH(n-1) machine, you will most likely get an operation

exception

ARCHitecture Option

10

ARCHitecture - Timeline

11

0

1

2

3

4

5
6

7

8

9

10

G1:

Support for string

operation h/w

instruction

G2, G3, G4:

Support for

branch

relative

all models

G5, G6:

12-Additional

Floating Point

registers

Support for

IEEE Floating

Point

z900, z800 –

ESA/390 mode:

Support for

32-bit add/

subtract with

carry/borrow

z900, z800 –

z/Architecture:

LP64 support

z990, z890:

Long displacement,

Load Byte …

z9:

Extended immediate,

Extended translation,

Decimal Floating point

z10:

Compare and Branch,

Prefetch, Add Logical with

Signed Immediate

ARCH(9)

z196, z114:

Load/store on condition,

Non-destructive ops, High-

word

ARCH(10):

zEC12, zBC12:

DFP-Zoned Conversions,

Transaction Execution

z/Architecture

Out-Of Order

(OOO) pipeline

11

ARCH(11):

zEC13:

Vector instructions

DFP-Packed Conversions

12

ARCH(9): Load/store on condition

consider this small program:

2.0 | test: proc returns(fixed bin(31));

3.0 |

4.0 | exec sql include sqlca;

5.0 |

6.0 | dcl c fixed bin(31);

7.0 |

8.0 | exec sql commit;

9.0 |

10.0 | if sqlcode = 0 then

11.0 | c = 0;

12.0 | else

13.0 | c = -1;

14.0 |

15.0 | return(c);

16.0 | end;

13

ARCH(9): Load/store on condition

• Under OPT(3) ARCH(8), the instructions after the call are:

14

ARCH(9): Load/store on condition

• under OPT(3) ARCH(9), the instructions after the call are:

15

ARCH(9): Load/store on condition

• So, under ARCH(8), the code sequence was:
– Load SQLCODE into r0

– Load -1 into r1

– Compare r0 (SQLCODE) with 0 and branch if NE to @1L8

– Load 0 into r1

– @1L8

– Store r1 into the return value

• While under ARCH(9), the code sequence has no label and no branch:
– Load -1 into r1

– Load SQLCODE into r0 via ICM (so that CC is set)

– Load 0 into r0

– Load-on-condition r1 with r0 if the CC is zero (i.e. if SQLCODE = 0)

– Store r1 into the return value

16

ARCH(10): DFP Zoned Conversion Facility

• This code converts a PICTURE array to FIXED BIN

pic2int: proc(ein, aus) options(nodescriptor);

dcl ein(0:100_000) pic'(9)9' connected;

dcl aus(0:hbound(ein)) fixed bin(31) connected;

dcl jx fixed bin(31);

do jx = lbound(ein) to hbound(ein);

aus(jx) = ein(jx);

end;

end;

17

ARCH(10): DFP Zoned Conversion Facility

• Under ARCH(9), the heart of the loop consists of these 8 instructions

0058 F248 D098 1000 PACK #pd580_1(5,r13,152),_shadow2(9,r1,0)

005E C020 0000 0021 LARL r2,F'33'

0064 D204 D0A0 D098 MVC #pd581_1(5,r13,160),#pd580_1(r13,152)

006A 4110 1009 LA r1,#AMNESIA(,r1,9)

006E D100 D0A4 200C MVN #pd581_1(1,r13,164),+CONSTANT_AREA(r2,12)

0074 F874 D0A8 D0A0 ZAP #pd582_1(8,r13,168),#pd581_1(5,r13,160)

007A 4F20 D0A8 CVB r2,#pd582_1(,r13,168)

007E 502E F000 ST r2,_shadow1(r14,r15,0)

18

ARCH(10): DFP Zoned Conversion Facility

• While under ARCH(10), it consists of 9 instructions and uses DFP in

several of them – but since only the ST and the new CDZT refer to

storage, the loop runs more than 66% faster

0060 EB2F 0003 00DF SLLK r2,r15,3

0066 B9FA 202F ALRK r2,r15,r2

006A A7FA 0001 AHI r15,H'1'

006E B9FA 2023 ALRK r2,r3,r2

0072 ED08 2000 00AA CDZT f0,#AddressShadow(9,r2,0),b'0000'

0078 B914 0000 LGFR r0,r0

007C B3F6 0000 IEDTR f0,f0,r0

0080 B941 9020 CFDTR r2,b'1001',f0

0084 5021 E000 ST r2,_shadow1(r1,r14,0)

19

ARCH(11): Vector Instruction Facility

• This simple code that tests if a UTF-16 string is numeric

wnumb: proc(s);

dcl s wchar(*) var;

dcl n wchar value('0123456789');

dcl sx fixed bin(31);

sx = verify(s, n);

if sx > 0 then ...

• Is done with an expensive library call with ARCH <= 10

20

ARCH(11): Vector Instruction Facility

• With ARCH(11), the vector instruction facility is used to inline it as

E700 E000 0006 VL v0,+CONSTANT_AREA(,r14,0)
E740 E010 0006 VL v4,+CONSTANT_AREA(,r14,16)

@1L2 DS 0H
A74E 0010 CHI r4,H'16'
4150 0010 LA r5,16
B9F2 4054 LOCRL r5,r4
B9FA F0E2 ALRK r14,r2,r15
E725 E000 0037 VLL v2,r5,_shadow1(r14,0)
E722 0180 408A VSTRC v2,v2,v0,v4,b'0001',b'1000'
E7E2 0001 2021 VLGV r14,v2,1,2
EC5E 000D 2076 CRJH r5,r14,@1L3
A74A FFF0 AHI r4,H'-16'
A7FA 0010 AHI r15,H'16'
EC4C 000E 007E CIJNH r4,H'0',@1L4
A7F4 FFE5 J @1L2
0700 NOPR 0

@1L3 DS 0H

• The wonderful feature of the ARCH option is that no code

changes are required by you

• In all of the above examples, the compiler

• figured out where it could exploit the option

• and then did all the work

ARCHitecture Option

21

• Stands for High half of 64-bit General Purpose Register

• Permitted to exploit 64-bit GPRs in 32-bit programs

• Compiler can now make use of

• The 64-bit version of the z/Architecture instructions

• The High-Word Facility [with ARCH(7) or above]

• Can be viewed as having an additional 16 GPRs

• PRESERVE sub-option

• Save/re-store in prolog/epilog the high halves of used GPRs

• Only necessary if the caller is not known to be compiler-

generated code

• Default is NOHGPR(NOPRESERVE)

• Metal C defaults to HGPR(PRESERVE)

HGPR Option

22

• Additional Floating-Point (AFP) registers were added to

ESA/390 models

• AFP sub-option enable use of the full set (16) of FPRs

• VOLATILE sub-option

• FPR8 – FPR15 is considered volatile

• i.e. compiler will not expect they’re preserved by any called

program

• No longer required for CICS TS V4.1 or newer

• Default is AFP(NOVOLATILE)

FLOAT(AFP) Option

23

• The OPT option controls how much, or even if at all, the

compiler tries to optimize your code

• A trade-off between compile-time vs. execution-time

• NOOPT/OPT(0):

• The compiler simply translates your code into machine code

• Generated code could be large and slow

• Good choice for:

• Matching code generated with written source code

• for the purpose of debugging a problem

• Reducing compile time

• Terrible choice if you care about run-time performance

OPTIMIZE Option

24

• When optimizing, the compiler will improve, often vastly,

the code it generates by, for example

• Keeping intermediate values in registers

• Moving code out of loops

• Merging statements

• Reordering instructions to improve the instruction pipeline

• Inlining functions

• Require more CPU and REGION during compilation

OPTIMIZE Option (cont’d)

25

• OPT(2):

• Start enabling the optimizer

• A balance between compile speed and code quality

• OPT(3):

• Optimizer much more aggressive

• Tips balance towards code quality over compile speed

• C/C++ compiler will alter other options defaults:

• ANSIALIAS, IGNERRNO, STRICT, etc

• The C/C++ and PL/I compilers use the same optimizing

backend

• But there are differences in what the OPT sub-options does

OPTIMIZE Option (cont’d)

26

• HOT option

• High-Order loop analysis and Transformations

• More aggressive optimization on the loops

• Requires OPT(2) or higher

• IPA option

• Inter-Procedural Analysis

• Optimization decisions made based on the entire program

• 3 sub-levels to control aggressiveness

• Requires OPT(2) or higher

• PDF sub-option

• Profile Directed Feedback

• Sample program execution to help direct optimization

• Requires a training run with representative data

Other C/C++ Options Related to OPT

27

IPA Option [C/C++] (cont’d)

28

file1.c

file2.c

file3.c

xlc

xlc

xlc

file1.o

file2.o

file3.o

xlc

binder

executable

IPA compile

IPA(LINK)

libraries

IPA PDF Sub-Option [C/C++]

29

PDF1:

Training run:
executable

with

instrumentation

typical input profiling information

file1.c
file2.c

file.c

xlc
xlc

xlc

file.o
file3.o

xlc

executable

with

instrumentation

IPA compile PDF1

file.o

IPA link PDF1

PDF2:

file.o
file3.o

xlc

PDF optimized

executable
(w/o instrumentation)

file.o

IPA link PDF2

• Optimizer presumes pointers can point only to objects of the

same type

• The simplified rule is that you cannot safely dereference a pointer

that has been cast to a type that is not closely related to the type

of what it points at

• The ISO C and C++ standards define the closely related types

• If this assumption is false, wrong code could be generated

• The INFO(ALS) option might able to help you find potential

violation of the ANSI type-based aliasing rule

• OPT(3) defaults to ANSIALIAS

• OPT(2) defaults is NOANSIALIAS

• Has no effect to NOOPT/OPT(0)

ANSIALIAS Option [C/C++]

30

• Informs the compiler that the program is not using errno

• Allows the compiler more freedom to explore optimization

opportunities for certain library functions

• For example: sqrt

• Need to include the system header files to get the full

benefit

• OPT(3) defaults to IGNERRNO

• NOOPT and OPT(2) defaults are NOIGNERRNO

IGNERRNO Option [C/C++]

31

• Indicates the name of an ANSI C library function are in

fact ANSI C library functions and behave as described in

the ANSI standard

• The optimizer can generate better code based on existing

behavior of a given function

• E.g. whether or not a particular library function has any side

effects

• Provides additional benefits when used in conjunction

with IGNERRNO

• Defaults is NOLIBANSI

LIBANSI Options [C/C++]

32

• For user to assert their application is single-threaded

• Allows for non-thread-safe transformations be performed

• Defaults is THREADED

NOTHREADED Option [C/C++]

33

• Allows the optimizer to alter the semantics of a program

• Performing code motion and scheduling on computations

such as loads and floating-point computations that may

trigger an exception

• Relax conformance to IEEE rules

• Reassociating floating-point expressions

• OPT(3) defaults is NOSTRICT

• NOOPT and OPT(2) defaults are STRICT

NOSTRICT Option [C/C++]

34

• Asserts to the compiler the induction (loop counter)

variables do not overflow or wrap-around

• Use STRICT_INDUCTION only if your program logic has

such intent

• Only affects loops which have an induction variable

declared with a different size than a register

• Default is NOSTRICT_INDUCTION

• Except with the c99 invocation command on USS

NOSTRICT_INDUCTION Option [C/C++]

35

• XPLINK stands for eXtra Performance LINKage

• A modern linkage convention that is 2.5 times more efficient
than the conventional linkage conventions

• We have seen some programs improved by 30%

• XPLINK and non-XPLINK parts can work across DLL and
fectch() boundaries

• Must tell compiler about this, so the (expensive)
switching code get executed

• If your application contains few switches, then mixing will
still be beneficial

• Defaults:

• ILP32: NOXPLINK

• LP64: XPLINK

XPLINK Option [C/C++]

36

• REDUCE option

• Specifies that the compiler is permitted to reduce an

assignment of a null string to a structure into a simpler

operation

• Even if that means padding bytes might be overwritten

or zerored out

• RESEXP option

• Specifies that the compiler is permitted to evaluate all

restricted expressions at compile time even if this would

cause a condition to be raised and the compilation to end

with S-level messages

REDUCE and RESEXP Options [PL/I]

37

• Specifies that the compiler disallows a CONTROLLED

variable to be declared with a constant extent and yet to

be allocated with a differing extent

• To allocate a CONTROLLED variable with a variable

extent, that extents must be declared either with an

asterisk or with a non-constant expression.

• When the compiler sees a reference to a structure, or to

any member of that structure, it knows the lengths,

dimensions or offsets of the fields in it

RULES(NOLAXCTL) Option [PL/I]

38

• CONNECTED sub-option

• Compiler presumes application never passes nonconnected

parameters

• REORDER sub-option

• Indicates that the ORDER option is not applied to every

block, meaning the compiler doesn’t have to insure that

variables referenced in ON-units (or blocks dynamically

descendant from ON-units) have their latest values

• NOOVERLAP sub-option

• Compiler presumes the source and target in an assignment

do not overlap

DEFAULT Sub-Option

CONNECTED REORDER NOOVERLAP

39

• Compiler favors optimizations that tend to limit the growth

of the code

• Depending on your specific program, the object size may

increase or decrease and the execution time may

increase or decrease

• Default is NOCOMPACT

• PL/I effectively always has NOCOMPACT on

COMPACT Option [C/C++]

40

• Inlining eliminates the overhead of the function call and

linkage, and also exposes the function's code to the

optimizer

• Too much inlining can increase the size of the program

• AUTO sub-option [C/C++]

• Inliner runs in automatic mode

• Threshold sub-option

• Maximum relative size of a subprogram to inline

• LIMIT sub-option

• Maximum relative size a subprogram can grow before

auto-inlining stops

INLINE Option [C/C++]

DEFAULT(INLINE) Option [PL/I]

41

• Instructs the compiler to perform loop unrolling

• It replicates a loop body multiple times, and adjusts the

loop control code accordingly

• It increases code size in the new loop body

• Auto sub-option

• Compiler decides via heuristics the appropriate candidate

and amount of unrolling

UNROLL Option

42

• Writing good code

• Make use of built-in functions

• Make use of #pragmas [C/C++]

• Make use of attributes and keywords

• OpenMP [C/C++]

Code for Performance

43

• Keep it simple and concise

• Good for both the programmer and the compiler to

understand the code easily

• Don’t ignore the compiler informational and warning

messages, even if the program appears to work

• Attempts to be clever and produce “optimal” code might

produce:

• Code that is unreadable

• Code that cannot be maintained

• Code that performs worse than the straightforward solutions

• Code that fails

Writing Good Code

44

45

Warnung

• Wegen des Versuchs klug zu erscheinen und optimalen Code zu
schreiben habe ich zu oft folgendes gesehen:

– Programme, die keiner verstehen kann

– Programme, die keiner reparieren kann

– Programme, die langsamer laufen als einfachere Loesungen

– Programme, die einfach abbrechen

• Lesbarkeit vor Schnelligkeit !

• Library function example:

• Less efficient comparison on a loop
int i, a[1000], b[1000];

…

for (i = 0; i < 1000; ++i)

if (a[i] != b[i])

break;

if (i == 1000)

/* arrays are equal */

• More efficient comparison with a memcmp() library function
int a[1000], b[1000];

…

if (!memcmp (a, b, sizeof(a)))

/* arrays are equal */

Make Use Of Built-in Functions

46

• Hardware built-in function example

• A naive implementation of population count
unsigned long popcount(unsigned long op) {

unsigned long count = 0;

unsigned long bit = 1;

for (int i = 0; i < 64; i++) {

if (op & bit)

count++;

bit = bit << 1;

}

return count;

}

• with __popcnt() hardware built-in function
unsigned long __popcnt(unsigned long op)

• Available from ARCH(9)
• A single POPCNT instruction

• Or as POPCNT built-in function in PL/I

Make Use Of Built-in Functions (cont’d)

47

• Provides more details about your code to help the optimizer

• #pragma execution_frequency (C++only)

• Marks program source code that you expect will be either very
frequently or very infrequently executed

• #pragma isolated_call

• Lists functions that have no side effects (that do not modify global
storage)

• For fine-grained control

• #pragma inline

• Hint to the compiler to inline this frequently used function

• #pragma noinline

• Prevents a function from being inlined

• #pragma unroll

• Informs the compiler how to perform loop unrolling on the
loop body that immediately follows it

Make Use Of #pragmas [C/C++]

48

• Provides more details about your code to help the optimizer

• restrict keyword

• Use with ASSERT(RESTRICT) to indicate disjointed pointers

• Defaults is ASSERT(RESTRICT)

• Two restrict qualified pointers, declared in the same scope, designate
distinct objects and thus shouldn’t alias each other

• RESTRICT option (C only) can also be used to indicates to the
compiler that pointer parameters in all functions or in specified
functions are disjoint

• Defaults is NORESTRICT

• For fine-grained control

• inline keyword

• Hint to the compiler to inline this frequently used function

• always_inline function attribute

• Instructs the compiler to inline a function

Make Use of Attributes & Keywords [C/C++]

49

• Use RETURNS(BYVALUE) for items that can be returned in

registers (such as FIXED BIN and FLOAT)

• Use the BYVALUE attribute on parameters that are input-only and

which can be passed in registers

• Use the INONLY, OUTONLY, and NONASSIGNABLE attributes on

parameters and in ENTRY declares

• Routines with OPTIONS(LINKAGE(OPTLINK)) will outperform those

with OPTIONS(LINKAGE(SYSTEM))

Make Use of Attributes & Keywords [PL/I]

50

51

Make Use of Attributes & Keywords [PL/I]

• You should always fully prototype all ENTRY declarations

• Specify BYADDR/BYVALUE and (NON)ASGN for each parameter

• And specify (NON)CONNECTED for each array parameter

• Also specify BYADDR/BYVALUE for the RETURNS

• Also include an OPTIONS attribute and specify therein the LINKAGE as

well as NODESCRIPTOR options (as appropriate)

• Industry-standard API designed to create portable C/C++
applications to exploit shared-memory parallelism

• Users can create or migrate parallel applications to take
advantage of the multi-core design of modern processors

• Consists of a collection of compiler directives and library
routines

• New SMP option to allow OpenMP parallelization
directives to be recognized

• Only supported in 64-bit

• Executable must be run under USS

• Thread-safe version of standard library must be used inside
the parallel regions

• Not supported with Metal C

OpenMP API 3.1 [C/C++]

52

53

Declare your variables

• A common sign in Texas:

– Trespassers will be prosecuted or shot

• Those who don’t declare their variables deserve the same

fate

• Use the RULES(NOLAXDCL) compiler option to enforce

this in PL/I

54

Declare your variables with good names

• Generally, you should not name a variable after its type,

• i.e. do not code the following

DCL BASED_FB15 FIXED BIN(15) BASED;

DCL

1 ELEMENT_REC BASED,

2 NEXT_PTR PTR,

2 PREV_PTR PTR,

2 DATA, ….

• Because this name becomes meaningless if PTR becomes
OFFSET

55

Declare your variables with attributes

• Simply declaring the name is not good

• i.e. don’t code: DCL RC;

• Because then RC is FLOAT DEC(6) when FIXED BIN(31)

was probably what was wanted.

• The compiler will issue warning message IBM1215 for such

declares – or message IBM1216 if part of a structure

56

Declare your variables with attributes

• A common way this error occurs is in code such as

– DCL RC1, RC2 FIXED BIN(31) INIT(0);

• Enterprise PL/L issues message IBM1215 saying that RC1 is
declared without any attributes

• And like the old compiler, Enterprise PL/I will give RC1 the
attributes FLOAT DEC(6) – not FIXED BIN

• The declare above is not the same as

– DCL (RC1, RC2) FIXED BIN(31) INIT(0);

57

Declare your variables with attributes

• Some customer code contained this code

DCL

PARDIASE CHAR(20),

1 INDIASE1 BASED (PTPDIASE),

2 C1CODIA CHAR(1),

2 C1FECDI DEC FIXED(9),

2 C1DIADI CHAR(9),

2 C1ABRDI CHAR(3),

2 C1RESDI;

• Here the compiler issues the message IBM1216 saying that
C1RESDI is declared without any attributes

• Again, C1RESDI will get the attributes FLOAT DEC(6)

58

Declare your variables with attributes

• However, this means the structure needs 22 bytes

DCL
PARDIASE CHAR(20),
1 INDIASE1 BASED (PTPDIASE),

2 C1CODIA CHAR(1),
2 C1FECDI DEC FIXED(9),
2 C1DIADI CHAR(9),
2 C1ABRDI CHAR(3),
2 C1RESDI;

• And then this later bit of code overwrites 2 bytes of storage

PTPDIASE = ADDR(PARDIASE);
INDIASE1 = ‘’;

• This leads to a protection exception in some circumstances, and
remember, this is a user error, not a compiler error

59

Declare your variables with sensible attributes

• You will get warning message IBM1091 with text

– FIXED BIN precision less than storage allows

• If you declare (or use in a built-in)

– SIGNED FIXED BIN with precision other than 7, 15, 31 or
63

– UNSIGNED with precision other than 8, 16, 32 or 64

• Most users would think this couldn’t possibly be an issue
for them

60

Declare your variables with sensible attributes

• But this banking code copies an array to a new array twice as
large

40.1 UBSEMB:PROC(ACCOUNT_TABLE) REORDER;

42.1 DCL 1 ACCOUNT_TABLE(*) CONTROLLED,
43.1 2 CUSTOMER_NAME CHAR(120),
44.1 2 ACCT_INSTR_NUMBER CHAR(17),
45.1 2 ACCT_INSTR_CODE CHAR(8),
46.1 2 ORIGINAL_BLNCE_AMT CHAR(9),
47.1 2 DATE_OF_LAST_TXN,
48.1 3 YEAR CHAR(4),
49.1 3 MONTH CHAR(2),
50.1 3 DAY CHAR(2);

55.1 DCL NEW_SIZE FIXED BIN(5) INIT(0);
56.1 DCL OLD_SIZE FIXED BIN(5) INIT(0);
57.1 DCL RECORD_NO FIXED BIN(5) INIT(1);
58.1 DCL 1 TEMP_TABLE(*) CONTROLLED,
59.1 2 CUSTOMER_NAME CHAR(120),
60.1 2 ACCT_INSTR_NUMBER CHAR(17),
61.1 2 ACCT_INSTR_CODE CHAR(8),
62.1 2 ORIGINAL_BLNCE_AMT CHAR(9),
63.1 2 DATE_OF_LAST_TXN,
64.1 3 YEAR CHAR(4),
65.1 3 MONTH CHAR(2),
66.1 3 DAY CHAR(2);

61

Declare your variables with sensible attributes

• Via this small bit of code

68.1 NEW_SIZE = HBOUND(ACCOUNT_TABLE.CUSTOMER_NAME,1) * 2;
69.1 ALLOCATE TEMP_TABLE(NEW_SIZE);
70.1 TEMP_TABLE(*) = '';
71.1 OLD_SIZE = HBOUND(ACCOUNT_TABLE.CUSTOMER_NAME,1);
72.1 DO RECORD_NO = 1 TO OLD_SIZE;
73.1 TEMP_TABLE(RECORD_NO) = ACCOUNT_TABLE(RECORD_NO);
74.1 END;
75.1 FREE ACCOUNT_TABLE;
76.1 ALLOCATE ACCOUNT_TABLE(NEW_SIZE);
77.1 ACCOUNT_TABLE = TEMP_TABLE;
78.1 FREE TEMP_TABLE;
79.1 END; /*UBSEMB*/

• And it abends

• Only because the customer ignored message IBM1091 flagging
that a variable was declared as FIXED BIN(5) (when 15 was
almost certainly intended)

62

Declare your variables with sensible attributes

40.1 UBSEMB:PROC(ACCOUNT_TABLE) REORDER;

42.1 DCL 1 ACCOUNT_TABLE(*) CONTROLLED,
43.1 2 CUSTOMER_NAME CHAR(120),
44.1 2 ACCT_INSTR_NUMBER CHAR(17),
45.1 2 ACCT_INSTR_CODE CHAR(8),
46.1 2 ORIGINAL_BLNCE_AMT CHAR(9),
47.1 2 DATE_OF_LAST_TXN,
48.1 3 YEAR CHAR(4),
49.1 3 MONTH CHAR(2),
50.1 3 DAY CHAR(2);

55.1 DCL NEW_SIZE FIXED BIN(5) INIT(0);
56.1 DCL OLD_SIZE FIXED BIN(5) INIT(0);
57.1 DCL RECORD_NO FIXED BIN(5) INIT(1);
58.1 DCL 1 TEMP_TABLE(*) CONTROLLED,
59.1 2 CUSTOMER_NAME CHAR(120),
60.1 2 ACCT_INSTR_NUMBER CHAR(17),
61.1 2 ACCT_INSTR_CODE CHAR(8),
62.1 2 ORIGINAL_BLNCE_AMT CHAR(9),
63.1 2 DATE_OF_LAST_TXN,
64.1 3 YEAR CHAR(4),
65.1 3 MONTH CHAR(2),
66.1 3 DAY CHAR(2);

63

Describe your interfaces

• This starts with how you declare external routines

• Do not declare them without a parameter list as in

– DCL A EXT ENTRY;

• This lets you pass any number of arguments of any type to this
routine without the compiler being able to check your code

• The compiler would quietly accept all of these

– CALL A;

– CALL A(TIMESTAMP);

– CALL A(2, JJJJ);

64

Describe your interfaces

• Be accurate – if the routine has no parameters, say so

– DCL A EXT ENTRY();

• Or if the routine should receive one string, declare it as

– DCL A EXT ENTRY(CHAR(*));

• Now the compiler can flag bad calls of this routine

• And if a string parameter must have a certain length, say that:

– DCL A EXT ENTRY(CHAR(17));

• But then you need to be especially on watch for messages about “dummy” arguments

• Let the compiler work for you by telling it

• The hardware to exploit

• The importance of compile-time vs. execution performance

• More precise details about the source code

• Sensitiveness of module size

• Work together with the compiler

• Writing good code

• Make use of BIFs and #pragmas

• Exploit the language features

• Tell the compiler what you know

Recap

65

• z/OS C/C++ Programming Guide

• Part 5. Performance optimization

• http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zo

s.v2r1.cbcpx01/cbc1p2399.htm

• Enterprise PL/I for z/OS Programming Guide

• Chapter 13. Improving performance

• http://publibfp.boulder.ibm.com/epubs/pdf/ibm4pg03.pdf

Additional Reading Materials

66

http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zos.v2r1.cbcpx01/cbc1p2399.htm
http://publibfp.boulder.ibm.com/epubs/pdf/ibm4pg03.pdf

• Users of:

• PL/I

• C/C++

• NOOPTIMIZE/OPTIMIZE(0), OPTIMIZE(2), OPTIMIZE(3)

• ARCH(7), ARCH(8), ARCH(9), ARCH(10)

• C/C++ only:

• TUNE

• LP64

• PDF

• HOT

• IPA

Quick Survey

67

• Connect with us

• Email me at elderon@us.ibm.com

• Rational Café - the compilers user community & forum

• C/C++: http://ibm.com/rational/community/cpp

• PL/I: http://ibm.com/rational/community/pli

• RFE community – for feature requests

• C/C++:
http://www.ibm.com/developerworks/rfe/?PROD_ID=700

• PL/I: http://www.ibm.com/developerworks/rfe/?PROD_ID=699

• Product Information

• C/C++: http://www-03.ibm.com/software/products/us/en/czos

• PL/I: http://www-03.ibm.com/software/products/en/plicompfami

Thank You!

Questions?

68

mailto:dickson.chau@ca.ibm.com
http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/pli
http://www.ibm.com/developerworks/rfe/?PROD_ID=700
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www-03.ibm.com/software/products/us/en/czos
http://www-03.ibm.com/software/products/en/plicompfami

