
Insert
Custom
Session

QR if
Desired.

Tom Ross IBM

March 5, 2015

S16614: Practical Experiences about
COBOL Programming.
Make SOA Possible in
batch COBOL

2

Title: Practical experiences about COBOL
programming. Make SOA possible in COBOL

• Introduction
• Invoking web services in IMS, CICS and WAS
• ‘Calling’ Java from COBOL
• Example from COBOL Programming Guide
• Our ‘simple’ solution
• Recommended approach
• Hints and tips

3

Title: Practical experiences about COBOL
programming. Make SOA possible in COBOL

• Many applications are being rewritten as Web
Services

• New applications are often written as Web Services
• These parts can be combined into new applications
• In some cases, ‘old’ applications need to use these

new forms of applications
– Invoke a web service anywhere instead of just

calling a sub program in my z/OS region!
• Some solutions are available….

IMS Enterprise Suite SOAP Gateway

• IBM® IMS™ Enterprise Suite SOAP Gateway is an XML-based solution
that enables your IBM IMS applications to communicate outside the IMS
environment using SOAP, without requiring changes to your business
logic. The solution helps you modernize and gain more value from your
IMS assets, and is available at no cost.

• IMS Enterprise Suite SOAP Gateway provides these features and
benefits:
– IMS applications can provide and request web services regardless of

platform, environment, application language or programming model.
– Client applications, such as Microsoft .NET and Java, can submit

SOAP requests into IMS to drive the business logic of your COBOL or
PL/I applications.

– IMS applications can send business event data to business event
processing and monitoring engines such as IBM WebSphere®
Business Events and IBM Business Monitor.

4

CICS Transaction Gateway

• IBM® CICS Transaction Gateway (CICS TG), a market-leading
Enterprise connector, is production proven by over a thousand
customers as a high performing, security-rich, and scalable method
of service-oriented architecture (SOA) access to CICS, which:
– Delivers Java Enterprise Edition (JEE) standards-based access

to CICS applications, while requiring minimal changes to CICS
and usually no changes to existing CICS applications

– Provides quick and easy connector access to CICS applications
from a wide variety of environments, including Java, C/C++,
Microsoft .NET, and COBOL run times

– Allows the reuse of existing CICS applications as services in
comprehensive and sophisticated JEE and web services
solutions hosted on powerful application servers such as
WebSphere Application Server

5

WebSphere Application Server for z/OS
• IBM® WebSphere® Application Server for z/OS® helps provide availability

and security while reducing costs for business critical applications. It uses
the full capabilities of IBM System z® and IBM z/OS and enables: prioritized
workload management, advanced transactional integrity, horizontal and
vertical scalability and data and workload co-location.

• WebSphere Application Server for z/OS helps you:
– Optimize developer productivity and provide continuous availability using

System z features and Liberty profile, a streamlined runtime environment for web
application deployments.

– Deploy and manage applications and services to meet the demands of your
growing business.

– Improve operations and resiliency through advanced application availability,
elasticity and quality of service.

– Provide rapid, scalable and secure enablement of we b, cloud and mobile
access to z/OS assets using IBM WebSphere Liberty z/O S Connect.

– Enhance security and control using integrated management
and administrative tools.

6

What about z/OS batch?

• Typically no J2EE server available
• Java can still do SOME things more easily than

COBOL can

☺☺☺☺

• HTTP calls!
• But my batch programs are COBOL!
• ‘Call’ Java from batch COBOL on z/OS?’

7

What about z/OS batch?

• What we wanted to do:

8

COBOL
QSAM
appl

RESTful
Web Service

JES WEB
HTTP
server

?

What about z/OS batch?

• What we tried to do:

9

COBOL
QSAM
appl

Java
With
HTTP
call

RESTful
Web Service

JES WEB
HTTP
server

What about z/OS batch?

• More detail about what we tried to do:

10

COBOL
QSAM
appl

Java
With
HTTP
call

RESTful
Web Service

JES
WEB
HTTP
server

Dynamic
CALL

OO COBOL
w/INVOKE

INVOKE HTTP
CALL

What about z/OS batch?

• This presentation will focus on these parts

11

Java
With
HTTP
call

OO COBOL
w/INVOKE

INVOKE HTTP
CALL

‘Calling’ Java from COBOL

• Change the mindset
– No programs in Java, no CALLs
– You CAN Invoke a Method in a Java class

• Let’s start with the example in COBOL
Programming Guide!

• Chapter 16, TSTHELLO example in section:
Example: compiling, linking, and running an
OO application using JCL

• Well, I thought it would be easy…

12

Problems found in PG example

• Copying text from .pdf to ISPF EDIT gave me non-editable
chars for apostrophes
– Or the apostrophes did not get copied in at all

• Executable (SYSLMOD) could not be in temp dataset!
• Bad format of run-time options
• Wrong attribute on STEPLIB
• Extraneous comma in JAVAOUT DD
• Invalid indentation for JAVAERR DD
• Missing .: in ENV file

13

Problems found in PG example

• Executable (SYSLMOD) could not be in temp dataset

// SYSLMODDD
DSN=&&GOSET(TSTHELLO),DISP=(MOD,PASS),UNIT=VIO,

// SPACE=(CYL,(1,1,1)),DSNTYPE=LIBRARY

• I could not get this to work with COBOL V5!

14

Problems found in PG example

This is what I got when I tried temp PDSE load library:

$HASP373 TSTHELLO STARTED - WLM INIT - SRVCLASS PRDB ATHI - SYS SA0W
HTRT01I CPU (Total) Elapsed CPU
HTRT02I Jobname Stepname RC I/O hh:mm:ss.th hh:m m:ss.th hh:mm:ss.th
HTRT03I TSTHELLO COMPILE 00 9972 00.05 01.77 00.05
HTRT03I TSTHELLO LKED 00 460 00.02 00.23 00.02
IEW4009I FETCH FAILED FOR MODULE TSTHELLO FROM DDNAME STEPLIB BECAUSE OF

AN I/O ERROR.
CSV031I LIBRARY SEARCH FAILED FOR MODULE TSTHELLO, RETURN CODE 24, REASON

CODE 2706043E, DDNAME STEPLIB
CSV028I ABEND806- 2C JOBNAME=TSTHELLO STEPNAME=GO
IEA995I SYMPTOM DUMP OUTPUT 938
SYSTEM COMPLETION CODE=806 REASON CODE=0000002C

• I changed to a permanent dataset and it worked fine!

15

Problems found in PG example

• Bad format of run-time options
//GO EXEC PGM=TSTHELLO,COND=(4,LT,LKED),

//
PARM=’/ENVAR("_CEE_ENVFILE=/u/ userid/ootest/tsthe
llo/ENV")

// POSIX(ON)

XPLINK(ON) ’

• Should be:
//GO EXEC PGM=TSTHELLO,COND=(4,LT,LKED),

//
PARM=’/ENVAR("_CEE_ENVFILE=/u/ userid/ootest/tsthe
llo/ENV")

// POSIX(ON) XPLINK(ON) ’

16

Problems found in PG example

• Wrong attribute on STEPLIB

//STEPLIB DD DSN=*.LKED.SYSLMOD,DISP= SHR

• Should have been (for temp dataset):

//STEPLIB DD DSN=*.LKED.SYSLMOD,DISP= PASS

17

Problems found in PG example

• Missing PATHOPTS for JAVAOUT DD

//JAVAOUT DD PATH=’/u/userid/ootest/tsthello/javaou t’,

• Should have been:

//JAVAOUT DD PATH=’/u/userid/ootest/tsthello/javaou t’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRUSR,SIWUSR,SIRGRP

• Result? No println output!

18

Problems found in PG example

• Invalid indentation for JAVAERR DD

//JAVAERR DD PATH=’/u/userid/ootest/tsthello/javaer r’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRUSR,SIWUSR,SIRGRP)

• Should have been:

//JAVAERR DD PATH=’/u/userid/ootest/tsthello/javaer r’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRUSR,SIWUSR,SIRGRP)

19

Problems found in PG example

Environment variable settings file, ENV
PATH=/bin:/usr/lpp/java/J5.0/bin.

LIBPATH=/lib:/usr/lib:/usr/lpp/java/J5.0/bin:/usr
/lpp/java/J5.0/bin/j9vm

CLASSPATH=/u/userid/ootest/tsthello

Should be:
CLASSPATH=.: /u/userid/ootest/tsthello

20

Our ‘simple’ solution

• Batch program processing QSAM data
• Needs actuarial information from Internet Web Service

– In our example, we used a simple system status Web

Service instead ☺

• Make DYNAMIC call to COBOL Web Service wrapper
• Web service wrapper uses INVOKE of Java
• Java will make HTTP call to Web Service using Apache
• Return info to Java, then to COBOL wrapper, then to Batch

application
• Is it do-able?

21

Our ‘simple’ solution

• Changes to batch application?
– Add dynamic CALL to COBOL wrapper
– Add runtime options:

• Must run with XPLINK runtime option
• Must also have ENVAR set

//GO EXEC PGM=CALLINVK,COND=(4,LT,LKED),

//
PARM='/ENVAR("_CEE_ENVFILE=/home/tmross/Ja
va/ENVS")

// POSIX(ON) XPLINK(ON)'

• If no pointer to ENV file with LIBPATH to JVM, then:

22

If no pointer to ENV file with LIBPATH to JVM, then :

COBOL program CALLINVK entered

CEE3501S The module libjvm.so was not found.

From entry point GetJVMPtr at compile
unit offset

+000000B2 at entry offset +000000B2 at
address 26EDF6F2.

CEE3DMP V2 R1.0: Condition processing resulted
in the unhandled

condition. 06/02/14 10:06:08 PM

23

Our ‘simple’ solution
COBOL wrapper for getting to Java
First: TSTHELLO example from PG

cbl dll,thread,pgmname(longmixed)
Identification division.
Program-id. "TSTHELLO" recursive. <* Upper case

name
Environment Division.
Configuration Section.
Repository. <* Case of class

name
Class HelloJ is "HelloJ". <* must match class

Data Division.
Procedure Division.

Display "COBOL program TSTHELLO entered"

Invoke HelloJ "sayHello"

Display "Returned from java sayHello to
TSTHELLO"

Goback.
End program "TSTHELLO".

24

Our ‘simple’ solution
COBOL wrapper for getting to Java
First: TSTHELLO example from PG

• This was what we ‘wrapped’:
HelloJ.sayHello

• Hello in System.out.println

class HelloJ {
public static void sayHello() {

System.out.println("Hello World, from
Java!");

}

}

25

Our ‘simple’ solution
COBOL wrapper for getting to Java
First: TSTHELLO example from PG

• Job output:

**** END OF MESSAGE SUMMARY REPORT ****

COBOL program TSTHELLO entered
Returned from java sayHello to TSTHELLO

• Contents of javaout:

26

Our ‘simple’ solution
COBOL wrapper for getting to Java
gradually add more: HelloString

cbl dll,thread,pgmname(longmixed)
Program-id. "INVKHSTR" recursive.
Environment Division.
Configuration Section.
Repository.

Class HelloString is "HelloString"
Class jstring is "jstring".

Data Division.
Working-Storage Section.
77 Url Pic X(50) Value

z'Tom'.
77 jstring1 Object Reference jstring.
77 jstring2 Object Reference jstring.
77 rc Pic s9(9) Comp-5.
77 ptr Pointer.
77 jstringlen Pic s9(9) Comp-5.
77 Returned_string Pic X(50).

27

Our ‘simple’ solution
COBOL wrapper for getting to Java
gradually add more: HelloString

Procedure Division.
Display "COBOL program INVKHSTR entered"

*** ********
**
* Convert string into Java string object

*** ********
**

Call "NewStringPlatform" <* Case
matters

using by value JNIEnvPtr
address of Url <* input
address of jstring1 <* output
0

returning rc
If rc Not = zero Then

Display "Error occurred creating jstring object"
Stop run

End- if
<* Different class

name
Invoke HelloString "sayHello" <* Same method na me!

using by value jstring1 <* input
returning jstring2 <* output

Display "Returned from java sayHello to INVKHSTR"

28

Our ‘simple’ solution
COBOL wrapper for getting to Java
gradually add more: HelloString

*** ***********
* Convert Java string object back into string – get length
*** ***********

Set ptr To address of jstringlen <* Get output addr
Call "GetStringPlatformLength" <* Case matters

using by value JNIEnvPtr
jstring2 <* input
ptr <* output
0

returning rc
Display "Returned from GetStringPlatformLength"
If rc Not = zero Then

Display "Error retrieving len of jstring object"
Stop run

Else
Display "The length of returned string is:" jstringlen

End-if

29

Our ‘simple’ solution
COBOL wrapper for getting to Java
gradually add more: HelloString

*** **********
* Convert Java string object back into string – get string
*** **********

Call "GetStringPlatform" <* Case matters
using by value JNIEnvPtr

jstring2
address of Returned_string
length of Returned_string
0

returning rc
If rc Not = zero Then

Display ‘Error occurred getting string ‘
‘ from jstring object’

Stop run
End-if
Display ‘sayHello returned: ’

Returned_string(1:jstringlen)
Display "About to leave INVKHSTR"
Goback.

End program "INVKHSTR".

30

Our ‘simple’ solution
COBOL wrapper for getting to Java
gradually add more: HelloString

• This is newer version of the Java:
HelloString.sayHello

• Hello in println and in return value

class HelloString {
public static String sayHello(String name) {

System.out.println("Hello, " + name);
return "Hello, " + name + " from Java!";

}
}

31

Our ‘simple’ solution
COBOL wrapper for getting to Java
gradually add more: HelloString

• Job output:
**** END OF MESSAGE SUMMARY REPORT ****

COBOL program INVKHSTR entered
Returned from java sayHello to INVKHSTR
Returned from GetStringPlatformLength
The length of returned string is:0000000022
sayHello returned: Hello, Tom from Java!
About to leave INVKHSTR

• Contents of javaout:

32

Debugging JNI calls is hard!

• A parm with no storage usually gets an 0C4, but with JNI services…

33

HTRT01I CPU (Total) Elapsed
HTRT02I Jobname Stepname ProcStep RC I/O hh:mm:ss.th hh:mm:ss.th
JVMDUMP032I JVM requested System dump using 'TMROSS.JVM.TDUMP.INVKREST
.D140519.T182116' in response to an event

IGD101I SMS ALLOCATED TO DDNAME (SYS00007) 925
DSN (TMROSS.JVM.TDUMP.INVKREST.D140519.T182116)
STORCLAS (OS390) MGMTCLAS (STANDARD) DATACLAS ()

IGD104I TMROSS.JVM.TDUMP.INVKREST.D140519.T182116 RETAINED, DDNAME=S
JVMDUMP032I JVM requested Java dump using '/home/tm ross/javacore.20140
519.182116.33558008.0002.txt' in response to an eve nt

BPXM023I (TMROSS) 929
JVMDUMP032I JVM requested Snap dump using '/home/tm ross/Snap.20140519.
182116.33558008.0003.trc' in response to an event

HTRT03I INVKREST GO 01 48292 01.36 09.49

Debugging COBOL to Java is hard!

• What happens when the JVM cannot find your called Java method?
– For example, incorrect location of Java package in CLASSPATH…

• .: comes first in CLASSPATH
• Name the .jar package, not just the directory
• If you make a mistake…

• And I did not have a main method!

34

**** END OF MESSAGE SUMMARY REPORT ****

Exception in thread "main"
*************************** BOTTOM OF DATA ***

Debugging COBOL to Java is hard!

• Name the .jar package, not just the directory
– Two things here

1.‘.’ For current directory
2.Directory that contains hello.jar

• hello.jar contains HelloJ.sayHello and HelloString.sayHello

CLASSPATH=.:/home/tmross/Java/hello.jar

35

Our ‘simple’ solution
COBOL wrapper for getting to Java
finally add: invokeGETAsXML

• We wrote a Java method
invokeGETAsXML

• It makes an HTTP call using Apache
• The HTTP server returns a system status

– In XML or JSON (we chose XML)
• Pass a url from COBOL to Java for the

HTTP server

36

Our ‘simple’ solution
COBOL wrapper for getting to Java
finally add: invokeGETAsXML

77 Url Pic X(60) Value
z'http://rdpweb01.ibm.com:7999/ZOS/resserv/status'.

* Followed by the same calls to JNI services as
* as earlier to convert Url string to jstring1

Invoke CobRest 'invokeGETAsXML'
using by value jstring1
returning jstring2

37

38

Invoke Apache HttpClient from Java on z

Structure of the sample project

Apache HttpComponent libraries

More Apache HttpComponent libraries

IBM JSON4J libraries

Our sample methods to invoke from COBOL

Our sample convenience and utility

methods that invoke Apache HttpClient

39

Simple REST interface

Invoke GET on a sample service that

returns another server’s status (UP

or DOWN) in JSON format

Same service but returning

result in XML format

40

What is needed for Java on z/OS?
Same as on other platforms!

• File system - HFS / zFS
• Where is Java installed? What level is

installed?
• Some handy environment variables
• RDz – Makes Java easier on/for z/OS
• Java Basics

– To compile – javac
– To execute the byte code - java

41

The Environment setup for Java –
things to know

• Where is Java Installed?
– JAVA_HOME=/usr/lpp/java/IBM/J7.0

export JAVA_HOME

• Where is the Java application executable?
– CLASSPATH=.:/home/tmross/Cobrest.jar

export CLASSPATH

• Where are the tool executables?
– PATH=.:/usr/lpp/java/IBM/J7.0/bin

export PATH

42

Writing, building, execution of Java 7 –
similar to other platforms

• Java application (CobRest.java)
• Use the Java Perspective in RDz, create a project

and write the Java application using all of the Eclipse
support

• Export the jar file (external jar)
• Setup a launch configuration to test

– Run … -> Host Java Application (New)
– Fill in details, include the CLASSPATH and any

environment variables

43

Writing, building, execution of Java 7 –
similar to other platforms

• Now you are ready to test the application – a few
ways to do this in RDz:
– From the Java Perspective

• Run … -> Host Java Application
(select the launch configuration you setup)

– From the zOS Perspective
• Launch the USS Shell
• Set the CLASSPATH, TZ, other env vars

(I use a shell script)
• java <thePackageName>

44

Result of running CobRest.java in RDz

Our ‘simple’ solution
COBOL wrapper for getting to Java
finally add: invokeGETAsXML

My ENV file in: /home/tmross/Java/ENVS

• First attempt we put all packages in CobRest.jar
• So, my ENVS file looked like this:

PATH=/bin:/usr/lpp/java/IBM/J7.0/bin
LIBPATH=/lib:/usr/lib:/usr/lpp/java/IBM/J7.0/bin:/u

sr/lpp/java/IBM/J7.0/bin/j9vm
CLASSPATH=.:/home/tmross/Java/CobRest.jar
COBJVMINITOPTIONS=-Xdump:ceedump -Xcheck:jni -

Xjit:verbose

• Explanation of JVM options:

-Xdump:ceedump *> Tells the JVM to put out a
CEEDUMP

-Xcheck:jni *> Use to investigate possible
JNI problems

-Xjit:verbose *> Enables JIT tracing
-Xcheck:jni:trace *> Enables JNI call tracing

45

46

Result of running CobRest.java from COBOL
return of “Debugging Java is hard!”

• With the Apache and other .jar files in CobRest.jar we got
abort in JVM when calling JNI services to convert returned
string object to string

• We used the extra debugging options for JVM and pulled in a
Java expert to diagnose the problem

• If we commented out the JNI GetString* calls, the job ended
with no clue that there had been an exception in the Java
code!

47

Result of running CobRest.java from COBOL

• With JNI trace option set on, we got this:

HTRT02I Jobname Stepname ProcStep RC I/O hh:mm:ss.th

JVMJNCK028E JNI error in GetStringLength: This function cannot
be called when an exception is pending

VMJNCK080E Error detected in the outermost frame of an attached
thread

JVMJNCK024E JNI error detected. Aborting.

HTRT03I INVKREST GO 1111 24755 00.41

48

Result of running CobRest.java from COBOL

• -Xcheck:jni:trace was what gave us the information
java.lang.NoClassDefFoundError: org.apache.http.client.methods.HttpRequestBase

at java.lang.J9VMInternals.verifyImpl(Native Method)
at java.lang.J9VMInternals.verify(J9VMInternals.java:94)
at java.lang.J9VMInternals.initialize(J9VMInternals.java:171)
at CobRest.invokeGETAsXML(CobRest.java:65)

Caused by: java.lang.ClassNotFoundException:
org.apache.http.client.methods.HttpRequestBase
at java.net.URLClassLoader.findClass(URLClassLoader.java:599)
at java.lang.ClassLoader.loadClassHelper(ClassLoader.java:760)
at java.lang.ClassLoader.loadClass(ClassLoader.java:728)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:325)
at java.lang.ClassLoader.loadClass(ClassLoader.java:707)

49

Result of running CobRest.java from COBOL

• It turns out we could not put all of the jar files in CobRest.jar.
• We separated them out, added the .jar paths to JENVS file:

PATH=/bin:/usr/lpp/java/IBM/J7.0/bin

LIBPATH=/lib:/usr/lib:/usr/lpp/java/IBM/J7.0/bin:/u sr/lpp/java/IBM/J7.0/
bin/j9vm

CLASSPATH=.:/home/tmross/Java/httpcore-ab-4.2.4.jar :

/home/tmross/Java/commons-logging-1.1.2.jar:

/home/tmross/Java/org.apache.httpcomponents.httpcli ent_4.2.3.jar:

/home/tmross/Java/JSON4J.jar:

/home/tmross/Java/httpcore-nio-4.2.4.jar:

/home/tmross/Java/httpcore-4.2.4.jar:

/home/tmross/Java/CobRest.jar

COBJVMINITOPTIONS=-Xdump:ceedump -Xcheck:jni

50

Result of running CobRest.java from COBOL

• Better, we got data back from the Web Service!
• But, we broke the Java compiler….

**** END OF MESSAGE SUMMARY REPORT ****

JVMJNCK001I JNI check utility installed. Use -Xchec k:jni:help for usage

COBOL program INVKREST entered

Unhandled exception

Type=Floating point error vmState=0x000565ff

J9Generic_Signal_Number=00040020 Signal_Number=0000 0008 Error_Value=000

Handler1=277155D8 Handler2=278145C8

Program_Unit_Name=./ Profiler.cpp

Program_Unit_Address=27F86090 Entry_Name=TR_ BranchProfileInfoManager ::g

R_Compilation*)

Entry_Address=27F86090

Method_being_compiled=java/util/zip/InflaterInputSt ream.read([BII)I

Target=2_60_20140106_181350 (z/OS 02.01.00)

CPU=s390 (24 logical CPUs) (0x1000000000 RAM)

----------- Stack Backtrace -----------

51

Result of running CobRest.java from COBOL

• So, until we get the Java fix, we turned off profiling in JSENV…
• COBJVMINITOPTIONS= -Xjit:disableInterpreterProfilin g

**** END OF MESSAGE SUMMARY REPORT ****

JVMJNCK001I JNI check utility installed. Use -Xcheck:jni:help
for usage

COBOL program INVKREST entered

Returned from Java invokeGETAsXML to INVKREST

Returned from GetStringPlatformLength

The length of returned string is:0000000070

invokeGETAsXML returned: <hosts> <host
ip=mvs099.rtp.raleigh.ibm.com:6968 status=UP/> </hosts>

About to leave INVKREST

******************************** BOTTOM OF DATA **************

52

ISPF tip, it helped me a lot in this exercise!

I could avoid jumping back and forth from OMVS to ISPF

53

ISPF tip, helped a lot in this exercise!

QUESTIONS?

54

