

Architectural Implementation Analysis A Comparative Methodology

Monday, March 02, 2015, 04:30PM-05:30PM Sheraton Seattle, Greenwood

Monte Bauman

mbauman@us.ibm.com

IBM Columbus

Enterprise Server Technical Support

SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.

Copyright (c) 2014 by SHARE Inc. 📀 💮 🏵 🎯 Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Presentation Plan

- The Challenge
- An Approach IBM IT Optimization
- Architecture Analysis with RACEa
- Conclusion I need your help

The Challenge

The Challenge

Run the right work on the right platform ... optimizing cost time risk and capability

The Challenge Making Everyone Happy

The Challenge Making Everyone Happy... Not Only Now ... But Over Time ...

Systems of IT: Cloud Service Delivery

8

Systems of Record / Engagement / Insight / IT SHARE Educate · Network · Influence Analysis Report **Systems** "Cloud" SCM Service Delivery IDE ^{IDE} Analytics Terminate **RTA** Report Optimize \mathbf{T} Operate les Co Systems stems Deploy BP Model Subscr Legac Analyze Recordata Offer Present Insight TA stems Integration Design Orfected Service E OD ID gagemen ETL Sensor Thin Smart ► RW-OD RW-ID Client Car Complete your session evaluations online at www.SHARE.org/Seattle-Eval in Seattle 2015 9

"Optimally" Executing All These Workloads is a Challenge..

SHARE Educate · Network · Influence

10

No single platform can do it all (maybe that's why we offer more then one!)

Optimizer Analysis Report ETL SCM Analyze ۸. T SSL Virtualization Predictive Mediation Analytics Messaging Terminate Hi-RTA Report Optimize **Events** Thread **Rules/BPM** Operate Parallel ing Java Processing Code Deploy Predict XML Numeric 4 Master Scoring Intensive Thread Subscribe Analyze Computing 4 Rules Offer Columnar App SMT 4 Batch SQL Row egra Design Smart SQL Browser Phone Temporal Meter SQL SIMD Small Connected block Service API Consumer Economy Instrumented Large access block Random access Smart read Thin Sensor Car TT-1D Client access Data Complete your session evaluations online at www.SHARE.org/Seattle-Eval in Seattle 2015 Replication

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

11

in Seattle

The Penalties of IT Un-Optimization

An Approach – IBM IT Optimization

16

in Seattle

17

RACEv

- Right-fitting applications into consolidated environments
 - Spreadsheet-based tool
 - Technical analysis
 - Cost analysis
 - TCO Scorecard

Scorpion

- IBM Global Business Service
 - Consulting Engagement
- CIO/budget & down analysis
 - Report for the CIO

Eagle

- Consulting Engagement
- Bottom-up technical and TCO analysis
 - TCO Scorecard

Workload Placement IT Optimization Process

Architecture Analysis with RACEa

RACEa - Step by Step

- 1. Understand RACEa's architecture taxonomy
- 2. Document project description
- 3. Describe project attributes
- 4. Calibrate scoring attributes and tables
- 5. Setup architecture component relationships
- 6. Describe architecture implementation one
- 7. Describe architecture implementation two (three/four)
- 8. Review output reports
- 9. Implement the optimal architecture implementation

RACEa's Architecture Taxonomy

in Seattle 2015

28

Taxonomy: A Node in the Architecture...

Node

- Code node contains code
- Data node contains data
- **Originator** node contains a device or sensor or other "internet of things" thing
 - Container "holds" the code or data
- Usually middleware like WAS or DB2 or Apache
 - **Platform** "holds" the container
 - Usually a combo of hardware and hypervisor (optional) and operating system

Platform Container Originator Code or Data

Taxonomy: Clusters and Connectors

30

Tier 2 Tier 1 Code-based Cluster **Connections** 2 Nodes Platform Platform Container interactions Container Connector Container How nodes connect Originator Originator Code or Connection Code or How fast / how distant Data Data How much data flows and how often ٠ Payload **Clusters** Connector Connection Cluster Payload Type of cluster • Code cluster Container cluster (like RAC) Originator • Code or Platform cluster (like Sysplex) • Data Type of cluster connection Container Local Area Network Platform **Coupling Links / Coupling Facility** in Seattle

Taxonomy: "Production" and ...

Taxonomy Elements

- Originator
 - Mobile device, internet of things thing, browser, etc.
- Code
 - HTML, Java, COBOL, config-files, etc.
- Data
 - Rows (tables), records (files), streams, etc.
- Container
 - Middleware
- Platform
 - Server, hypervisor (optional), and operating system (typically)
- Inbound and Outbound Connector
 - Payload and Inter-Node Invocation Frequency
- Inbound and Outbound Connection
 - Type and Distance
- Cluster Type
 - Code cluster
 - Container cluster
 - Platform cluster
 - Inter-Cluster Communication

Project Attributes

- Project description
 - Nature of project / purpose of analysis
- Custom one-off project
 - In which case automation (provisioning/orchestration) is not important
- Pattern-based highly replicated project
 - In which case automation is essential
- Something in between
 - In which case automation is important, but not essential
- Ample opportunities exist for localizing the tool's merit and complexity scoring system in simple weighted scoring tables

Scoring Attributes and Tables

- Element Ownership
- Element Disposition
- Element Provisioning Source
- Element Deployment Technique
- Quality of Service Confidence

	Merit Score Weights		
		Project Type	
	Highly Custom One- of-a-Kind Project	Project with both pattern based and one of a kind componentry	Highly automatable highly replicated pattern-based project
Assessment Attributes	1	2	3
Element Ownership	4	4	4
Element Disposition	7	7	7
Element Provisioning Source	5	6	7
Element Deployment Technique	4	7	9
Quality of Service Confidence	10	9	8

- Element Ownership
 - Corporate
 - Partner
 - Customer
 - Vendor/Supplier

Assessment Attribute 1: Element Ownership	Code	Data	Conta
Corporate	10	10	10
Partner	5	5	5
Customer	1	1	1
Vendor/Supplier	7	5	5

Scoring Attributes – Element Disposition

- Element Disposition
 - New
 - Extended
 - Existing / Shared

Assessment Attribute 2: Element Disposition	Code	Data	Container
New	5	5	5
Extended	7	7	7
Existing / Shared	10	10	10
n/a	0	0	0

Scoring Attributes – Element Provisioning Source

- Element Provisioning Source
 - Whitespace-Pool
 - Upgrade-Pool
 - New
 - Provisioning Not Required

Assessment Attribute 3: Element Provisioning Source	Code	Data	Containe
Whitespace-Pool	8	8	8
Upgrade-Pool	6	6	6
New	4	4	4
Provisioning Not Required	10	10	10

- Element Deployment Technique
 - Custom
 - Pattern-Based
 - Orchestrated-Pattern
 - Deployment Action Not Required

Assessment Attribute 4: Element Deployment Technique	Code	Data	Container
Custom	4	4	4
Pattern-Based	6	6	6
Orchestrated-Pattern	8	8	8
Deployment Action Not Required	10	10	10

Scoring Attributes – QoS Confidence

- Quality of Service Confidence
 - High Confidence
 - Medium Confidence
 - Low Confidence
 - No Confidence

Assessment Attribute 5: Quality of Service Confidence	Code	Data	Container
High Confidence	10	10	10
Medium Confidence	7	7	7
Low Confidence	4	4	4

Architecture Component Relationships

- **Customizable Configuration Tables**
 - Use Case 1 describe what your enterprise supports
 - For application development lifecycle support
 - Use Case 2 describe what is possible
 - For enterprise architecture development
- Setup valid relationships between elements
 - Populate drop-down selection lists
 - The containers that can hold code
 - e.g. "WAS-ND" can hold "Java"
 - The containers that can hold data
 - e.g. "DB2" can hold "Row" (or "Table", if you prefer)
 - The platforms that can hold containers
 - e.g. "z/OS on zEC12" can hold "DB2"
 - The connectors that connect containers
 - e.g. "WAS-ND" supports "JCA"
 - The connections that support connectors
 - e.g. "JCA" can flow over "Local_LAN"

 Code, Data, or Originator Element	Candidate Containers	····		
Java	WAS-ND	Liberty	CICS	Tomcat
COBOL	CICS	JES	IMS	DB2-SP
 Complete your session evaluations online at www.SHARE.org/Seattle-Eval			SHARE	

Untille at www.Shake.urg/Seatt

40

Implementation One ...

- Map the logical architecture to a physical architecture
- For each node:
 - Choose code (or data) to use
 - Choose containers to use
 - Choose platforms to use
 - Choose connectors to use
 - Choose connections to use
 - Choose clustering and cluster connections to use
 - For each element ... pick assessment attribute4s
 - Got another node? … add one! (add as many as you like!!!)
- Describe the physical architecture for production
 - Describe for test, QA, etc. (by adding more and more nodes)
- Concentrate on the things that vary between options
- Build the 1st ... then up to 3 more (total of 4) ... one per sheet

Implementation One ...

	1	2
Tier Label	WAS Layer	CICS Layer
Description (Optional)	WAS	CICSPlex
Application Development Lifecycle Stage	Production	Production
Tier Quality of Service Requirement	High Quality of Service	High Quality of Service
Cluster Type	Not a Cluster	Container Cluster
Number of Nodes in Cluster	0	2
Intra-Cluster Communication	None	System z Coupling Facility
Tier Type (Originator/Code/Data)	Code	Code
Originator/Code/Data Selection	Java	COBOL
Container Selection	WAS-ND	CICS
Platform Selection	Windows-VM-x86	z/OS
Inbound Connector Selection		JCA
Inbound Connection Selection		Local_LAN
Inbound Average Payload Size		Small
Outbound Connector Selection	JCA	
Outbound Connection Selection	Local_LAN	
Outbound Average Payload Size	Small	
Average Processing Load Estimate	Medium-Light	Medium
Average Invocations of This Tier Per Transaction (Per Execution)	1	4

Analysis Output Report

- After two or more architecture implementations are described you can compare them on the "ScoreCard"
- ScoreCard Elements:
 - Relative Overall Merit Score
 - Relative Complexity Score
 - Relative Processing Burden Score
 - Relative Networking Burden Score
 - Relative Bill of Materials Report

Overall Merit Scoring

- Blended (weighted) score
 - Based upon each component's:
 - Ownership selection
 - Disposition selection
 - Provisioning Source selection
 - Deployment Technique selection
 - Quality of Service Confidence selection
- Provides "relative" indicator of merit
 - Indeed ... all "scores" in this tool are "relative"
 - And only of value used within the tool to compare options

Complexity Scoring

Assessment Attribute 2: Element Disposition	Complexity
New	10
Extended	6
Existing / Shared	4
n/a	0

Assessment Attribute 3: Element Provisioning Source	Complexity
Whitespace-Pool	2
Upgrade-Pool	6
New	10
Provisioning Not Required	0

Assessment Attribute 4: Element Deployment Technique	Complexity
Custom	10
Pattern-Based	7
Orchestrated-Pattern	4
Deployment Action Not Required	0

Processing Burden Scoring

Processing Load Table		
Unknown	0	
Light	1	
Medium-Light	10	
Medium	100	
Medium-Heavy	1000	
Heavy	10000	

Network Burden Scoring

- Calibrating the "cost" of networking
- Remembering ... the best networking is NO networking

Connections						
Туре	SubType	Distance	Parameter Passing	Short Description	Score	Network Load
	Intra-Process		Parameter Passing by Reference	Call_by_Reference	10	0
	Call/Return		Parameter Passing by Value	Call_by_Value	9.9	0
Shared Memory	Inter-Process Call/Return	n/a	Parameter Passing by Value	Inter- Process_Call_by_Val ue	9.5	0
	Message Queue Put/Get		Parameter Passing by Value	Local_Message_Que ue	9	0
	LAN	Local_IP_Stack_Refl ection	Parameter Passing by Value	Local_IP_Stack_Refl ection	8	1
		Local_Virtual_LAN	Parameter Passing by Value	Local_Virtual_LAN	7	10
		SMC-R_Local_LAN	Parameter Passing by Value	SMC-R_Local_LAN	7.5	15
		Local_Shared_NIC	Parameter Passing by Value	Local_Shared_NIC	6	20
Natwork		Local_LAN	Parameter Passing by Value	Local_LAN	5	100
INELWOIK		Metro_LAN	Parameter Passing by Value	Metro_LAN	4	200
		Metro_WAN	Parameter Passing by Value	Metro_WAN	4	1000
	WAN WAN Regional_WAN National_WAN International_WAN	Regional_WAN	Parameter Passing by Value	Regional_WAN	3	1500
		National_WAN	Parameter Passing by Value	National_WAN	2	2000
		Parameter Passing by Value	International_WAN	1	2500	

Network Burden Scoring (cont.)

Network Payload Size Table						
Size	Bytes	Kbytes	Mbytes			
Very Small	1024	1	0.00			
Small	4096	4	0.00			
Medium	16384	16	0.02			
Large	262144	256	0.25			
Very Large	2097152	2048	2			
Huge	16777216	16384	16			

Bill of Materials

- List of all elements composing the architecture
- What's new list
- What's extended list
- What's reused (shared) list

ScoreCard

Architectural Analysis

Name

Description

Cluster Scoring Driginator/Code/Data Scoring Container Scoring Platform Scoring Inbound Connector Scoring Dutbound Connection Scoring Dutbound Connection Scoring Dutbound Connection Scoring Total Architectural Score Architectural Rank Drmalized Architectural Score

Complexity Analysis Cluster Scoring)riginator/Code/Data Scoring Container Scoring Platform Scoring Inbound Connector Scoring Jutbound Connection Scoring)utbound Connection Scoring

Total Complexity Score Complexity Rank ormalized Complexity Score

Topology ONE	Topology TWO	Topology THREE	Topology FOUR
WinTel	zLinux	AIX	z/OS
WAS on Windows on x86	WAS on zLinux	WAS on AIX	WAS on z/OS
303	303	303	303
548	548	548	548
534	561	534	561
534	561	561	561
190	190	190	190
190	190	190	190
257	281	257	309
257	257	257	309
2813	2891	2840	2971
4	2	3	1
0.947	0.973	0.956	1.000

Topology ONE	Topology TWO	Topology THREE	Topology FOUR
28	28	28	28
24	24	24	24
27	27	27	27
27	27	27	27
0	0	0	0
200	200	200	200
127	91	127	42
127	127	127	42
560	524	560	390
1	3	1	4
0.188	0.176	0.188	0.131

ScoreCard (cont.)

Load Analysis	Topology ONE	Topology TWO	Topology THREE	Topology FO
Networking Load	1638400	16384	1638400	0
Processing Load	410	410	410	410
Total Complexity Score	1638810	16794	1638810	410
Complexity Rank	1	3	1	4
Normalized Complexity Score	551.602	5.653	551.602	0.138
_				-
Bill of Materials Lists	Topology ONE	Topology TWO	Topology THREE	Topology FOU
New	Java + WAS-ND + Windows-VM-x86 + JCA	Java + WAS-ND + zLinux + JCA	Java + WAS-ND + AIX- Power-LPAR + JCA	Java + WAS-ND + z JCA
Unique New Elements Count	4	4	4	4
Total New Elements Count	5	5	5	5
Extended	* + Local_LAN	* + Local_IP_Stack_Reflection	* + Local_LAN	* + Inter- Process_Call_by_\
Unique Extended Elements Count	1	1	1	1
Total Extended Elements Count	2	2	2	2
Existing / Shared	* + COBOL + CICS + z/OS	* + CICS + z/OS	* + COBOL + CICS + z/OS	* + COBOL + CICS ·
Unique Existing / Shared Elements Count	3	2	3	3
Total Existing / Shared Elements Count	3	2	3	3
Unique Number of Elements	8	7	8	8
Total Number of Elements	10	9	10	10

Conclusion

Keys to Success

- Look at the options (for projects (for patterns))
- Understand the options (what you have (what you could have)
- Pick the right option (For the right reason)
- Systematically
 - Adaptable
 - To technology as it evolves (change is constant)
 - To "local factors" as they evolve (change is constant)
 - Repeatable
 - Facilitate understanding, teaming, and learning

Executing a RACEa Workshop

- Architecture Analysis RACEa Workshop
 - Typically one-half to one day on-site tooling-facilitated nocharge workshop
 - With application architects and platform architects & others
 - (1) define logical system architecture
 - (2) define rendition 1 architecture implementation
 - (3) define rendition 2 (3/4) architecture implementation(s)
 - (4) calibrate scoring tables
 - (5) examine results, discuss, calibrate, loop
 - (6) finalize results and report

Next Steps

- RACEg
 - TCO Analysis Tool
 - beta testers needed
- RACEf
 - Requirements-Based Platform Selection Tool
 - beta testers needed
- RACEa
 - Architecture Analysis Tool
 - beta testers needed
 - need calibration data / network & processing burden data

The Final Chart

- Any questions?
- Any suggestions?
- Any way I can be of service?
 - Monte Bauman
 - Enterprise Server Technical Support
 - IBM Columbus
 - <u>mbauman@us.ibm.com</u>

Thank You

Network Latency Matters

The Objective: Determine the actual latency incurred when making off-platform calls

This study provides response time measurements for two simple TCP/IP configurations.

Two System z LPARs on the same zEC12 server share an OSA-Express adapter in the 1st measurement.

In the second, the same two LPARs use two different OSA cards connected to the same router (the LPARs are one network hop away)

Test Environment Comparison

Shared OSA Configuration

One-Hop Route Configuration

Controlled Test Environment for Apples to Apples Comparison

Server Constants

- Same zEC12 processor was used for all tests
 - z/TPF LPAR with one dedicated CP
 - zLinux LPAR with one dedicated IFL
- Same driver was used in all tests
 - Same number of driver instances was run for each comparison test
- The only difference in a given comparison test was the network path used

Message Driver Input

- The number of driver instances to start
- The message size (This is the amount of user data in each request message and each response message)
- The delay factor (which is how long to wait after receiving a response before sending the next request message)
- Number of messages to send before the driver exits

Each Instance of the Driver Does What

- Starts a long running TCP socket
- Loops N times doing the following:
 - Save current time (T1)
 - Issue socket send() API to send request message of size X
 - Issue socket read() API to read the response message
 - Get current time (T2) and calculate round trip time (RTT) for this request/response message pair (T2-T1) and then adjust the average RTT

This is the RTT from the application perspective – this is not the network (TCP) RTT

- Sleep for a user specified amount of time
- Ends the socket

Round Trip Time - Test Results

Message Rate (Messages/Second)	Shared OSA RTT (microseconds)	1-Hop Route RTT (microseconds)	RTT Ratio
10,000	159	275	1.73
20,000	181	345	1.90
30,000	216	553	2.56
40,000	260	724	2.78

1400-Byte Message Test

Message Rate (Messages/Second)	Shared OSA RTT (microseconds)	1-Hop Route RTT (microseconds)	RTT Ratio
2000	150	915	6.10
4000	153	920	6.01
6000	155	928	5.99
8000	159	934	5.87

10,000-Byte Message Test

Message Rate (Messages/Second)	Shared OSA RTT (microseconds)	1-Hop Route RTT (microseconds)	RTT Ratio
250	401	2530	6.31
500	467	2547	5.45
750	390	2556	6.55
1000	390	2564	6.57

100-Byte Message Test 500-Byte Message Test

Message Rate (Messages/Second)	Shared OSA RTT (microseconds)	1-Hop Route RTT (microseconds)	RTT Ratio
5,000	154	439	2.85
10,000	161	443	2.75
15,000	170	448	2.63
20,000	181	455	2.51

5000-Byte Message Test

Message Rate (Messages/Second)	Shared OSA RTT (microseconds)	1-Hop Route RTT (microseconds)	RTT Ratio
500	550	2120	3.85
1000	551	2120	3.85
1500	550	2130	3.87
2000	552	2394	4.33

20,000-Byte Message Test

Message Rate (Messages/Second)	Shared OSA RTT (microseconds)	1-Hop Route RTT (microseconds)	RTT Ratio
125	362	4288	11.88
250	361	4344	12.00
375	367	4377	11.93
500	371	4390	11.83

Summary (Shared OSA vs 1-Hop Route)

Message Size	Average RTT Ratio	Average Extra Time Per Message (microseconds)
100	2.2	270
500	2.7	280
1400	6.0	292
5000	4.0	1640
10,000	6.2	2137
20,000	11.9	3984

