
16566 - Raising Healthy Java apps in
CICS using the Java Health Center

Phil_Wakelin@uk.ibm.com

CICS Strategy & Design, IBM Hursley UK

Disclaimer
IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal

without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product direction

and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise, or

legal obligation to deliver any material, code or functionality. Information about potential future

products may not be incorporated into any contract. The development, release, and timing of any

future features or functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a

controlled environment. The actual throughput or performance that any user will experience will

vary depending upon many factors, including considerations such as the amount of

multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and

the workload processed. Therefore, no assurance can be given that an individual user will achieve

results similar to those stated here.

3

Agenda

• What is the Health Center

• Installing into CICS Explorer

• Monitoring JVM server

4

IBM Developer Kits for Java
ibm.biz/javasdk

WebShere Liberty Profile
wasdev.net

5

Very low overhead live monitoring capability for Java and Node.js
� Pre-installed in IBM SDKs for Java since Java 5
� Built on live sampling within the JVM

Provides insight into runtime and application execution, including
� Memory and CPU usage
� Garbage Collection
� Application execution

Visualization provided via Eclipse Client UI
� Available from Eclipse Marketplace
� Available from IBM Support Assistant
� Eclipse p2 install

Data access API provided
� Allows creation of custom monitoring tools
� Full API Javadoc available

IBM Monitoring and Diagnostics: Health Center

6

IBM Monitoring and Diagnostics: Health Center

Memory Utilization
Detect native memory leaks in application
Determine if external forces are using more memory
View components using the most native memory

Environment
Hardware and Operating System Configuration
Process environment and configuration
Highlights incorrect or non-standard configurations

CPU Utilization
Visualizes process CPU usage over time
Visualizes system CPU usage over time

7

IBM Monitoring and Diagnostics: Health Center

Object Allocations
Understand types of data being allocated
Determine which code is allocating data

Threads
List of current threads and states
Number of threads over time
See contended monitors

Garbage Collection
Visualizes heap usage and GC pause times
Identifies memory leaks
Suggests command-line and tuning parameters

8

IBM Monitoring and Diagnostics: Health Center

Lock Profiling
Always-on lock monitoring
Allows the usage of all locks to be profiled
Identifies points of contention that affect scaling

Live runtime control
Trigger dumps
Enable additional data collection

Method Profiling
Always-on profiling shows application activity
Identifies the hottest methods in an application
Full call stacks to identify where methods are being

called from and what methods they call
No byte code instrumentation, no recompiling

9

Help -> Install New Software -> Add
http://public.dhe.ibm.com/software/websphere/runtimes/tools/healthcenter

Installing into CICS Explorer

10

� Using JMX connection directly to application

Deployment Modes – Point to Point

JVM server
Java (J9)

Application

Eclipse client JVM server

11

Setup

• JVM profile settings

-Xhealthcenter:port=8115
-Dcom.ibm.java.diagnostics.healthcenter.agent.iiop.port=8116

• Output - stderr
Dec 31, 2013 1:16:48 PM
com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunchMBean <init>

INFO: Agent version "2.2.0.20131003"

Dec 31, 2013 1:16:48 PM
com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunchMBean startMBeanServer

INFO: IIOP will be listening on port 8116

Dec 31, 2013 1:16:49 PM
com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunchMBean startAgent

INFO: Health Center agent started on port 8115.

• Check the Health Center agent is listening using TSO netstat command:-

NETSTAT (PORT 8115

MVS TCP/IP NETSTAT CS V2R1 TCPIP Name: TCPIP 13:55:46

User Id Conn State

CICS2A20 000DE8A6 Listen

Local Socket: ::..8115

Foreign Socket: ::..0

Define additional iiop
port if firewall rules
prevent dynamic

allocation

12

� Utilizes zFS file system to store hcd files until client connects
� Hcd files read directly by Eclipse client

Deployment Modes - Headless

JVM server
Java (J9)

Application

Eclipse client

JVM server

hcd
file

FTP binary transfer

• JVM profile settings

-Xhealthcenter:port=8115

-Dcom.ibm.java.diagnostics.healthcenter.agent.iiop.port=8116

-Dcom.ibm.java.diagnostics.healthcenter.data.collection.level=headless

-Dcom.ibm.java.diagnostics.healthcenter.headless.output.directory
=/cicsjava/logs/&APPLID;/&JVMSERVER;

-Dcom.ibm.java.diagnostics.healthcenter.headless.files.max.size=10000000

-Dcom.ibm.java.diagnostics.healthcenter.headless.run.number.of.runs=2

-Dcom.ibm.java.diagnostics.healthcenter.headless.files.to.keep=10

-Dcom.ibm.java.diagnostics.healthcenter.headless.run.duration=10

Can use CICS JVM
server symbols

Max file
size, 2GB

default

13

Setup - headless

Time in
minutes

14

� No data collection until client connects

Deployment Modes – Late attach

JVM server
Java (J9)

Application

Eclipse client

JVM server

15

Setup – Late attach

• JVM profile settings

-Xhealthcenter:port=8115

-Dcom.ibm.java.diagnostics.healthcenter.agent.iiop.port=8116

-Dcom.ibm.java.diagnostics.healthcenter.data.collection.level=off

No internal data
collection

16

System environment

17

GC Analysis

Garbage collection

18

256MGC

64M

Heap occupancy (25%)

Max heap (-Xmx)

200M

Java heapGC event

Current heap

Heap after GC event

• JVM Server- Garbage collection
– Performed in-line using standard JVM facilities
– Defaults to -Xgcpolicy:gencon

• GC triggered by object allocation failure
• All work in JVM stopped whilst collection occurs
• GC CPU split between T8 TCB and GC helper threads

• Generational Concurrent
– Heap is split into new and old segments
– Long lived objects are promoted to the old space (tenured)
– Short-lived objects are garbage collected quickly in the new space

(nursery)

Garbage Collection – JVM Server

19

• JVMServer
– Minor collections – for short lived/small objects
– Major(global) collections – for long lived objects

• Tuning strategy:
– Start JVM

• Default is gencon with 256MB max heap
• Run Java workload
• Analyse Heap usage

– Set Max Heap to Peak Heap + ~10%
• Check occupancy does not reach > 50% MaxHeap
• Check GC time < 2% of JVM time
• Check time between GCs > 1s
• Check GC times < 10ms

JVM Heap and Garbage collection

20

• Heap
– Reduce/increase max heap if peak does/does not reach max (Xmx)
– To fix size of nursery and tenured areas

» Pre-allocate heap to required size: -Xmx=-Xms
» Fix size of nursery area: -Xmnx=-Xmns
» Fix size of tenured area: -Xmox=-Xmos

• Compressed references
– -Xcompressedrefs
– Reduces heap usage and improves GC efficiency
– Works for (smaller) heaps up to 25GB
– Set as default in Java V7.1

• Shared class cache
– -Xshareclasses:name=cics.&APPLID;
– Enables Java6 shared class cache
– Improves startup time, class loading, and JITing (AOT)
– Ensure its not full, default is 16MB

» -Xscmx128M

JVM Tuning Options

21

• Monitored System->Garbage Collection and allocation data collection
– Object allocation data

• Use this view to identify code that is allocating large objects
• Set low and high thresholds using Expensive to collect.. Not for production

– Samples by object

• Identify code that is allocating large numbers of objects outside of the thread local heap.

• Enable collection of call stacks to show call hierarchy

Heap management views

22

• Method level profiling of the applications running within the JVM using JIT sampler
data filtered by class or package name.

• The Method profile view shows sample counts for specific methods.

• Self is when the method is at the top of a call stack and tree is when a method
appears in a call stack.

• Invocation and Called method views allow you to analyze the call path of each
profiled method.

Profiling

23

24

Thread analysis

• The Locking perspective profiles Java lock (aka monitors in Java) usage and
helps identify points of contention in the application or Java™ runtime
environment that prevent the application from scaling

• Useful metrics are:

- % miss:- percentage of non-recursive requests that had to wait for the lock

- Slow:- number of times a requests had to wait

- % util:- percentage of time this lock was held during the measurement interval

Lock analysis

25

Customising data collection

26

If an application generates more data than Health Center can process, it is possible that Health
Center might lose some data. If data loss occurs, you see a message about dropped data points in
the agent connection view.

You can reduce the likelihood of losing data by turning off the collection of data from areas that you
are not interested in.

To access these options, use Monitored JVM > Data Collection Settings.

• Various JVM diagnostics actions can be driven from the Health Center client by using Monitored JVM

• -> Request a dump to produce either Heap, System or Javacore dumps to a file

• -> Garbage Collection to select verbosegc data be written to a file

• -> Trace settings to enable and disable Java method tracing

Gathering trace

27

28

Performance

Measured using WebSphere App Server and the DayTrader benchmark with 50 clients

Running WAS 8.5.5, IBM Java 7 SR5, AIX 7.1, POWER7

Throughput determined by number of completed transactions on 4 saturated CPUs

• Validation in CICS has shown no measureable overhead in late attach mode

• 1% CPU overhead when client connected

80

85

90

95

100

105

99.01

Baseline

Network Client

Headless

Headless with ZIP

29

Demos

References

30

• IBM Monitoring and Diagnostics - Health Center:
https://www.ibm.com/developerworks/java/jdk/tools/healthcenter/

• IBM Support Assistant User's Guide
http://www.ibm.com/support/knowledgecenter/SSLLVC_4.1.0/com.ibm.java.diagnostics.healthcenter.
doc/homepage/plugin-homepage-hc.html

• Customizing perspectives in CICS Explorer - CICSdev article Extending CICS
Explorer: Creating custom perspectives

• Setting up Health Center in CICS Explorer - CICSdev article Integrating IBM
Health Center and CICS Explorer

• Analyzing JVM server performance - IBM Redpaper IBM CICS Performance
Series: CICS TS V4.2 and Java Performance – REDP4850

