

# Hadoop and data integration with System z

Dr. Cameron Seay, Ph.D — North Carolina Agricultural and Technical State University Mike Combs — Veristorm

March 2, 2015, Session 16423



SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.





# The Big Picture for Big Data

# The Big Picture for Big Data



#### "The Lack of Information" Problem

1 in 3

Business leaders frequently make decisions based on information they don't trust, or don't have

1 in 2

Business leaders say they don't have access to the information they require to do their jobs

83%

Of CIOs cited "Business Intelligence and Analytics" as part of their visionary plans to enhance competitiveness

60%

Of CIOs need to do a better job capturing and understanding information rapidly in order to make swift business decisions

### "The Surplus of Data" Problem

- "The 3 V's" of Big Data
  - Volume: More devices, higher resolution, more frequent collection, store everything
  - Variety: Incompatible Data Formats
  - Velocity: Analytics Fast
     Enough to be Interactive and
     Useful

(Doug Laney, Gartner Research)

# **Big Data: Volume**



SDDS telescope, 80 TB in 7 years



LSST telescope, 80 TB in 2 days



Compl

# Big Market, Big Growth







Complete your session evaluations online at www.SHARE.org/Seattle-Eval

# **Big Data: Variety**



#### 20% is "Structured"

- Tabular Databases like credit card transactions and Excel spreadsheets
- Web forms

### 80% is "Unstructured"

- Pictures: Photos, X-rays, ultrasound scans
- Sound: Music (genre etc.), speech
- Videos: computer vision, cell growing cultures, storm movement
- Text: Emails, doctor's notes
- Microsoft Office: Word,
   PowerPoint, PDF

# **Big Data: Velocity**

- To be relevant, data analytics must timely
- Results can lead to new questions; solutions should be interactive
- Information should be searchable





Multi-channel customer sentiment and experience and analysis



Detect life-threatening conditions at hospitals in time to intervene



Predict weather patterns to plan optimal wind turbine usage, and optimize capital expenditure on asset placement



Make risk decisions based on real-time transactional data



Identify criminals and threats from disparate video, audio, and data feeds

# Increasing needs for Detailed Analytics



- Baselining & Experimenting
  - Parkland Hospital analyzed records to find and extend best practices
- Segmentation
  - Dannon uses predictive analytics to adapt to changing tastes in yogurt

- Data Sharing
  - US Gov Fraud Prevention shared data across departments
- Decision-making
  - Lake George ecosystem project uses sensor data to protect \$1B in tourism
- New Business Models
  - Social media, location-based services, mobile apps

## Big Data Industry Value





#### US health care

- \$300 billion value per year
- ~0.7 percent annual productivity growth



#### Europe public sector administration

- €250 billion value per year
- ~0.5 percent annual productivity growth



#### Global personal location data

- \$100 billion+ revenue for service providers
- Up to \$700 billion value to end users



#### US retail

- 60+% increase in net margin possible
- 0.5–1.0 percent annual productivity growth



#### Manufacturing

- Up to 50 percent decrease in product development, assembly costs
- Up to 7 percent reduction in working capital



## Finance and Insurance

- ~1.5 to 2.5 percent annual productivity growth
- \$828 billion industry



Complete your session ex

SOURCE: McKinsey Global Institute analysis

## What is Hadoop and Why is it a Game Changer?



- Hadoop solves the problem of moving big data
  - Eliminates interface traffic jams
  - Eliminates network traffic jams
  - New way to move Data
- Hadoop automatically divides the work
  - Hadoop software divides the job across many computers, making them more productive

## **Without Hadoop**





# **Hadoop Projects & Ecosystem**







**Ambari** 

# **Typical Hadoop Cluster**

- NameNode
  - Files, metadata in RAM, logs changes
- Secondary NameNode
  - Merges changes. Not a backup!
- JobTracker
  - Assigns nodes to jobs, handles failures
- Per DataNode
  - DataNode— Files and backup; slave to NameNode
  - TaskTracker— Manages tasks on slave; slave to JobTracker





Complete your session evaluations online at www.SHARE.org/Seattle-Eval

BRAD HEDLUND .com

# Today's Big Data Initiatives: Transactions, Logs, Machine Data





N =465 (multiple responses allowed)



# IT leads Big Data usage.. but departments are catching up...

"What groups or departments are currently using Big Data/planning to use Big Data?"

| Marketing 47% (e.g. campaigns)         | IT Analytics 47% (e.g. network secure)                                                                      | Product Dev.<br><b>22%</b><br>(e.g. social feedback)                                                                                                                                                      |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sales<br>37%<br>(e.g. cross/upsell)    | Research 30% (e.g. simulation)                                                                              | Logistic & Distr. 18% (e.g. route opt.)                                                                                                                                                                   |
| Manufacturing 18% (e.g. process opt)   | GRC<br>15%<br>(e.g. auditing)                                                                               | Human Resources 11% (e.g. head hunting)                                                                                                                                                                   |
| Supply Chain<br>15%<br>(e.g. sourcing) | Other<br><b>7%</b>                                                                                          | Don't know                                                                                                                                                                                                |
|                                        | 47% (e.g. campaigns)  Sales 37% (e.g. cross/upsell)  Manufacturing 18% (e.g. process opt)  Supply Chain 15% | 47% (e.g. campaigns)  Sales 37% (e.g. cross/upsell)  Manufacturing 18% (e.g. process opt)  Supply Chain 15%  47% (e.g. network secure)  Research 30% (e.g. simulation)  GRC 15% (e.g. auditing)  Other 7% |

Source: Forrsights Bl/Big Data Survey

Base: 176 big data users and planners

# **Transaction Data = Mainframe Computers**



- Mainframes run the global core operations of
  - 92 of top 100 banks
  - 21 of top 25 insurance
  - 23 of top 25 retailers
- Process 60% of all transactions
- Mainframe computers are the place for essential enterprise data
  - Highly reliable
  - Highly secure

- IBM's Academic Initiative
  - 1000 higher education institutions
  - In 67 nations
  - Impacting 59,000 students
- However, mainframe data uses proprietary databases which must be translated to talk to formats familiar in "Big Data"





The most relevant insights come from enriching **your** primary enterprise data





## **Integration Problem For Data Scientists**

Top 5 Data Sources for Big Data Projects Today



"Survey Analysis - Big Data Adoption in 2013 Shows Substance Behind the Hype", Gartner, 2013, <u>Link</u>

"By most accounts of the dev effort in a big data project goes into data integration

...and only **20%** goes towards data analysis."

 Enterprise data analysts require near-realtime mainframe data

 Mainframe users wish to off-load batch processes to Hadoop for cost savings

"Extract, Transform, and Load Big Data With Anache Hedoop", Intel, 2013, Link

## **Obstacles to Include Mainframe Data**



1/ <u>Data Governance</u> as the data moves off z/OS operational systems

2/ <u>Data Ingestion</u> from z/OS into Hadoop (on or off platform) is a bottleneck (MIPS & ETL cost, Security around data access and transfer, Process Agility)

#### Lead to key requirements:

- Existing security policies must be applied to data access and transfer.
- There needs to be high speed / optimized connectors between traditional z/OS LPARs and the Hadoop clusters
- Ability to serve data transparently into Hadoop clusters on mainframe <u>AND</u> on distributed platform

# **Data Ingestion Challenges**





Extract from proprietary formats.

Aggregate or summarize.

Transform

Load

Staging

JCL, DB2, HFS, VSAM, IMS, OMVS, COBOL Copybooks, EBCDIC, Packed Decimal, Byte ordering, IPCS, z/VM, Linux on z

Hadoop, MongoDB, Cassandra, Cloud, Big Data Ecosystem, Java, Python, C++, Interface skills



Complete your session evals.

## vStorm Enterprise – Mainframe data to Mainstream





- IBM BigInsights
- Cloudera
- Hortonworks
- MapR





## **Financial Services Use Case**



| Problem                                                                                                                                                                                                                                                          | Solution                                                                                                                                                                                                                                                    | Benefits                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>High cost of searchable archive on mainframe</li> <li>\$350K+ storage costs (for 40TB)</li> <li>MIPS charges for operation</li> <li>\$1.6M+ development costs due to many file types, including VSAM 2000+ man-days effort and project delay</li> </ul> | <ul> <li>Move data to Hadoop for analytics and archive</li> <li>Shift from z/OS to IBM Linux (processors) on z to reduce MIPS</li> <li>Use IBM SSD storage</li> <li>Use IBM private cloud softlayer</li> <li>Tap talent pool of Hadoop ecosystem</li> </ul> | <ul> <li>Reduction in storage costs</li> <li>Dev costs almost eliminated</li> <li>Quick benefits and ROI</li> <li>New analytics options for unstructured data</li> <li>Retains data on System z for security and reliability</li> </ul> |

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

23

## **Health Care Use Case**



| Identify risk factors by analyzing patient  | <ul> <li>31% reduction in re-<br/>admissions</li> </ul>                                                                                       |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| data* Create algorithms to predict outcomes | <ul> <li>\$1.2M savings in penalties</li> <li>No manual intervention</li> <li>No increase in staffing</li> <li>1100% ROI on \$100K</li> </ul> |
|                                             | •                                                                                                                                             |

## **Public Sector Use Case**



| Problem |                                                   |  |  |  |
|---------|---------------------------------------------------|--|--|--|
| •       | Mismanaged assets led to neighborhood, publicity, |  |  |  |
|         | law & order issues                                |  |  |  |
| •       | Post-2008 austerity                               |  |  |  |
|         | measures reduced budget                           |  |  |  |

Asset data was
 Mainframe based – no efficient offload and integration mechanism

#### Solution

- "Crowd source problem" reporting – cell phone photo, social media, GPS data
- Integrate social media reports with asset / governance data on Mainframe, achieving regulation conformity

#### **Benefits**

- Software cost of \$400K compares to \$2M consulting engagement
- Better maintained neighborhoods yield \$5.6M in higher taxes first year



#### Complete your session evaluations online at www.SHARE.org/Seattle-Eval

<sup>\*</sup> System z IMS database requires special skills to access without vStorm

## **Retail Use Case**



| Problem                                                                                                                                                                                                                                         | Solution                                                                                                                                                                                                                                           | Benefits                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Streams of user data not correlated</li> <li>e.g. store purchases, website usage patterns, credit card usage, historical customer data</li> <li>Historical customer data Mainframe based – no efficient, secure integration</li> </ul> | <ul> <li>Secure integration of historical customer data, card usage, store purchases, website logs</li> <li>Customer scores based on the various data streams</li> <li>High scoring customers offered coupons, special deals on website</li> </ul> | <ul> <li>19% increase in online sales during slowdown</li> <li>Over 50% conversion rate of website browsing customers</li> <li>Elimination of data silos – analytics cover all data with no more reliance on multiple reports / formats</li> </ul> |

# 27 Big Data at NCAT



### North Carolina Agricultural and Technical State University





- NC A&T State University
- Located in Greensboro, NC, enrollment approx. 10,500.
- One of the 100+ Historically Black Colleges and Universities
- Established in 1891 as a Land Grant College
- Still produces more African American engineers than any school in the world
- I am in the Computer Systems Technology Dept. in the School of Technology



# Enterprise Systems Program, School of Technology at NC A&T:



- Mission: To support education, research, and business development in the System z space
- NCAT System z Environment:
  - Since 2010
  - Z9, 18 GPs, no IFLs, 128GB storage, 4 TB DASD (online)
  - 44 TB DS8300 (offline)
  - 2 LPARs (using 1)
  - z/VM is the base OS, all other OSes are guests of z/VM
  - Plan in the works with our business partners to acquire a BC12
  - Using GPs as IFLs (special no-MIPS deal with IBM)
  - Allocate GPs to the LPAR
  - VM 5.4
  - SUSE 11, Debian, RHEL
  - DB2, LAMP, SPSS for System z, Cognos, zDoop and more



# System z as a Private Cloud



- Students & faculty need to rapidly deploy, clone, and turn down servers
  - Helps manage the student (user) learning process
- First university to adopt CSL Wave
- Adding rapid deployment of Hadoop clusters
- Early adopter of vStorm Enterprise
- On-demand scaling by simply adding IFLs
- No additional power or space
- Use existing skills, processes, security (RACF/LDAP), management tools



# **Research Support**



- Several researchers at A&T have a focus on analytics
- Areas of Focus
  - Sentiment Analysis (opinion analysis)
  - Health Informatics (fraud detection, Medicare/Medicaid)
  - Predictive Analytics (student outcomes, product viability,
- Faculty have expressed interest in Hadoop
  - Need to manage larger data sets
  - Collecting unstructured/non-relational data
  - Want to pool data without pre-determined query in mind
  - Interactive/discovery and query



etc.)

## **Education**



- 4 undergraduate courses: intro, intermediate, advanced mainframe operations and z/VM
- 2 graduate courses (mainframe operations, z/VM)
- Proposed graduate certificate of enterprise systems (under review)
- High school outreach programs in enterprise systems
- 1 semester zVM class (CPCMS, Install Linux as a guest, getting Linux running, using VM as a deployment tool for Linux)
- VM will be increasingly important; key to preparing students for careers in Big Data

# **Student Example**



- Over 70 students placed in enterprise systems positions
- Heavy focus on IBM's Master the Mainframe contest
- Two students participants in IBM's 50th Anniversary of the Mainframe
  - Dontrell Harris, a keynote speaker, capacity planning specialist at Met Life
  - Jenna Shae Banks, a judge for the first Master the Mainframe world championship
  - Placements at IBM, Met Life, USAA, BB&T, Fidelity, Wells Fargo, Bank of America, First Citizen's Bank, John Deere, State Farm and others

## **Big Data Initiative**



- Challenge & opportunity
  - Saw the potential for zVM application for Hadoop; most people focused on x86
  - Hot topic for research; important to students
  - Provide easy & controlled access to mainframe data
  - Enable the developer community to take advantage of the enterprise primary data in a model they understand
  - Familiar environment: Linux, Java, SQL & the hot technology: Hadoop
- Getting buy-in for z
  - Most don't know z at all
  - Dean, Chair, Chancellor, Provost: Needed to be sold; not IT people
  - Simplify!



# **Unlock New Insight and Reduce Cost**



- Do More
  - Analyze large amount of information in minutes
  - Offload batch processes to IFLs to meet batch window requirement
- Reduce Cost
  - Take advantage of IFLs price point to derive more insight
- Application extensibility achieved through newly available skillset

## System z Workloads



Complete your session evaluations online at www.SHARE.org/Seattle-Eval

# White Papers and Articles



- "The Elephant on z", IBM & Veristorm, 2014
  - www.veristorm.com/go/elephantonz
- "Bringing Hadoop to the Mainframe", Paul Miller, Gigaom, 2014
  - www.veristorm.com/go/gigaom-2014
- "Inside zDoop, a New Hadoop Distro for IBM's Mainframe",
   Alex Woodie, Datanami, 2014
  - www.veristorm.com/go/datanami-2014-04
- "vStorm Enterprise Allows Unstructured Data to be Analyzed on the Mainframe", Paul DiMarzio, 2014
  - www.veristorm.com/go/ibmsystems-2014-06

- "vStorm Enterprise vs. Legacy ETL Solutions for Big Data Integration", Anil Varkhedi, Veristorm, 2014
  - www.veristorm.com/go/vsetl
- "Is Sqoop appropriate for all mainframe data?".
  - Anil Varkhedi, Veristorm, 2014
    - www.veristorm.com/go/vssqoop
- IBM Infosphere BigInsights System z Connector for Hadoop
  - www.ibm.com/software/os/systemz/biginsightsz
     (Includes data sheet, demo video, Red Guide)
- Solution Guide: "Simplifying Mainframe Data Access"
  - http://www.redbooks.ibm.com/Redbooks.nsf/
     RedbookAbstracts/tips1235.html

## **Videos**



#### Introduction



www.veristorm.com/go/introvid11m

#### Webinar



www.veristorm.com/go/webinar-2014q3

#### Demo



www.veristorm.com/go/demovid2m



# **Any Questions?**

SHARE

- Mike Combs <u>mcombs@veristorm.com</u>
- Cameron Seay, Ph.D. cwseay@ncat.edu

 https://share.confex.com/share/ 124/webprogrameval/ Session16423.html





## **Abstract**



- Hadoop and data integration with System z
- http://www.veristorm.com/content/share-pittsburg-presentation
- Big Data technologies like Hadoop are transforming analytics and processing, but what is the role of System z? We'll examine System z advantages as a platform for Hadoop and as a rich source of enterprise data for processing in Hadoop both on and off the platform. How can System z and Hadoop respond quickly to the organizational needs to make data-driven decisions in near real-time, when the questions aren't well-known in advance?
- Dr. Cameron Seay, Ph.D., Assistant Professor, Computer Systems Technology, of North Carolina Agricultural and Technical State University will share his experience with Hadoop on z applied to analytics and research projects.
- Mike Combs, VP of Marketing, Veristorm, will discuss how rapid, notransformation access to mainframe data from Hadoop can enable new solutions, including lightweight performance management and capacity planning.