
Insert

Custom

Session

QR if

Desired.

JSR-352 – The Future of Java Batch

and WebSphere Compute Grid

Session 16384

David Follis

IBM

© 2014 IBM Corporation

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal
without notice at IBM’s sole discretion. Information regarding potential future products is
intended to outline our general product direction and it should not be relied on in making a
purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise, or
legal obligation to deliver any material, code or functionality. Information about potential future
products may not be incorporated into any contract. The development, release, and timing of any
future features or functionality described for our products remains at our sole discretion

Performance is based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput or performance that any user will experience
will vary depending upon many factors, including considerations such as the amount of
multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and
the workload processed. Therefore, no assurance can be given that an individual user will
achieve results similar to those stated here.

3

WebSphere Application Server

4

Session Title Time Room Speaker

16379 WebSphere Liberty Profle, Windows and
z/OS, Hands-on Lab

Monday 4:30 Redwood Follis/Stephen

16380 z/OS Connect: Opening up z/OS Assets to
the Cloud and Mobile Worlds

Tuesday 1:45 Virginia David Follis

16381 WebSphere Liberty Profile and Traditional
WebSphere Application Server – What's
New?

Tuesday 3:15 University Follis/Stephen

16509 Debug 101-Using ISA Tools for Apps in
WebSphere Application Server z/OS

Wednesday 3:15 Virginia Mike Stephen, Joran Siu

16383 IBM Installation Manager for z/OS System
Programmers: Web-based Installs, Fix
Packs, and How iFixes Really Work.

Thursday 8:30 University Don Bagwell, Bryant
Panyarachun

16384 JSR 352 - The Future of Java Batch and
WebSphere Compute Grid

Thursday 10:00 University David Follis

16382 Common Problems and Other Things You
Should Know about WAS on z/OS

Thursday 4:30 Virginia Mike Stephen

16385 Configuring Timeouts for WebSphere
Application Server on z/OS

Friday 10:00 Virginia Follis/Stephen

Overview
Setting the stage for the discussion of modern batch solutions

Batch (or Bulk) Processing

Examples of bulk processing …

Many definitions exist ... they all have in common the relative lack of human

interaction, and the expectation of results at a future time rather than immediately:

Request

Response

Request

Response

In general:
 Interaction is one-for-one ...

that is, request with matching

response

 Expectation is for response to

follow request in a

near-immediate span time

frame

Online Processing

Submit

Complete

Start

End
Process

In general:
 Interaction is one-for-many... that is, initial request

results in many results from processing

 Expectation is for results to finish within some

determined non-immediate time frame

Bulk Processing

Some Examples of Batch (or Bulk) Processing

What's Behind This? …

Just to set some context for the upcoming discussion

Month-End Tax or Fee Calculation and Billing
Customer records are processed with tax or other calculations processed against

activity. This may be part of a larger process of calculating amount owed and formulating

billing.
Period-End Statements and Reports

An example is investment portfolio results and reporting.

Data Transformation
Raw data records are processed with goal of transforming some aspect of the data

content or layout. Result is a second set of data with the intended formatting.

Data Analysis
Data records are analyzed to determine trends or patterns. Data mining to find

new potential markets is one example. Analyzing vast quantities of seismic data

is another.

Point is these are activities where processing in bulk is a better way
to maximize efficiency of data access and computer resources. The
completion time is determined but not immediate.

What's Behind This?

Approaches to Batch Modernization …

Every business has different motivators. The common ones we've seen:

Batch Window Compression
The window in time for batch processing is shrinking. There's a need to

better manage online and batch processing concurrently within the same

system.

Java Skills and Common Tooling
Java skills are more common that traditional programming skills. Further,

Java tooling for online work is powerful and capable of being used for batch

programming as well.

GP cycles and Offload to Specialty Engines
Cost pressures are creating a need to explore ways of offloading processing

cycles from GP to specialty engines such as zAAP or zAAP-on-zIIP.

Other motivators may exist. The key is that these motivators are
real and they are driving exploration of modern batch.

Approaches to "Batch Modernization"

Framework for discussion …

Generally speaking, we see two basic approaches:

Preserve Existing ... Java Batch for New

Leave existing batch processes as they are today, but as new requirements

come up then engineer them into the Java batch model

Re-Engineer Some Existing Batch Processes
Identify existing non-Java as candidates and then re-engineer them to operate

in a Java batch environment

Typical starting approach: identify batch processes with fewer

interdependencies and then work out from there

What we don't see is a "rip-and-replace"
strategy. That's too costly and too risky.
Always a reasoned incremental approach.

History of Java Batch in WebSphere
WebSphere has a long history of supporting Batch applications written

in Java

 In 2006 the WebSphere Extended Deployment suite of products included

“Business Grid”, which provided support for Java Batch applications.

 It was later renamed “Compute Grid” and released as a separate product. The

latest release is Compute Grid v8 and it supports WAS v7 and v8.

 In WAS v8.5, the Compute Grid functionality was merged with the Application

Server. The functionality today remains the same in both the Compute Grid

Feature Pack and WAS v8.5+.

 In 2012, IBM led the development of the Java Batch Open Standard (JSR-352)

through the Java Community Process.

The JSR-352 specification was approved in 2013

IBM contributed the Reference Implementation

 IBM has released beta functionality for JSR-352 and more for the WebSphere

Liberty Profile.

Statement of Direction

• IBM intends to support the JSR-352 framework, along with additional

functionality, in WebSphere Liberty Profile

• IBM intends to support the JSR-352 framework, along with additional

functionality, in WebSphere Application Server Full Profile release.

Open Standard Java Batch
A look at the JSR 352 specification

JSR 352 - "Batch Applications for the Java Platform"

Generic Diagram …

The V1.0 final release is dated April 18th of 2013. IBM served as specification lead

on this JSR. It is available for download from the web at the following URL:
http://jcp.org/aboutJava/communityprocess/final/jsr352/index.html

The document has a
very nice section titled

"Domain Language of
Batch" which provides

an overview of key
concepts and key
terminology
As well as detailed sections on the specification

interfaces and other details of the specification

If interested in this JSR, download and review is encouraged

13

Fundamental

Concepts

13

14

 Execution: JobInstance, JobExecution,

and StepExecution

 The state of a job is broken down

into various parts, and persisted in

the repository

– Submitting a job creates a

JobInstance, a logical representation

of a particular “run” of a job.

– A JobExecution is a single attempt to

run a JobInstance. A restart attempt

creates another JobExecution

– Similarly, a StepExecution is a single

attempt to run a step within a job. It is

created when a step starts execution.

15

Job, JobInstance, JobExecution

example

16

Facilitates Restart
 Job may not run to completion because of:

– Invalid data

– Failed to obtain lock

– Batch window closed – online work required priority

 On restart, resume where you left off:

– within the job - don’t rerun already completed steps

– within the step - pick up within data set at last

“checkpoint”

17

Chunk Loop

In EE this

“chunk” is

performed

in a single

global

transaction

Repeat chunk until reader says no more data

18

Three Key Concepts (Roles) ...

 JSR 352 defines

– Implementation: A programming model

for implementing the artifacts

– Orchestration: A Job Specification

Language, which orchestrates the

execution of a batch artifacts within a

job.

– Execution: A runtime environment for

executing batch application, according

to a defined lifecycle.

 Note: “key” concepts, not “new”

concepts!

– Roles and abstractions should be

familiar to SOA and JavaEE developers

19

 Anatomy of JSR352

 Those concepts define the anatomy of JSR 352:

Batch Applications for the Java Platform...

20

 Implementation: The programming model

 Chunk and Batchlet provide models for

implementing a step.

 Contexts provide Job- and Step- level

runtime information, and provide

interim data persistence.

 Listeners provide callback hooks to

respond to lifecycle events on batch

artifacts.

 Partitioning provides a mechanism

imposing parallel processing on jobs

and steps

21

 Implementation: The programming model

 Chunk vs Batchlet

 Both are implementations of a step within a

batch job

 The chunk model

– Encapsulates a very common pattern: ETL

– Single “reader”, “processor” and “writer”

– Reader/Processor combination is invoked

until an entire “chunk” of data is processed

– Output “chunk” is written atomically

 Batchlet provides a “roll your own” step

type

– Invoked and runs to completion, producing a

return code upon exit.

22

Orchestration: The Job Specification

Language (JSL)

 The JSL defines a batch

job as an XML document

 Describes a step as an

assemblage of batch

artifacts

 Provides for the

description of steps, step

groupings, and execution

sequencing

23

 Execution: The JobOperator and Repository

 JobOperator is the runtime

interface for job management,

including start, stop, restart and

job repository related commands

 The Job Repository holds

information about completed and

executing jobs

 To start a batch job, get a

JobOperator instance use it to

start a job described (described by

JSL).

24

 ItemReader / ItemProcessor

‣ An ItemReader encapsulates the data access

and deserialization of a record.

‣No restriction on data access paradigm: use

DAO patterns, JDBC, JPA, Hibernate, Spring

Data, etc!

‣Checkpoint/Restart data provided as

Serializable argument to “open” and from

“checkpointInfo” methods.

 An ItemProcessor encapsulates the business

logic applied to each record

25

 ItemReader code - abstracted

Responsible for:

• Reading

• Positioning

26

 ItemWriter

 An ItemWriter is the output

counterpart to ItemReader

 Primary difference is that writeItems

accepts a “chunk” of output objects

(as a list) to serialize.

 Again, no restriction on data access

paradigm!

27

 The Batch Descriptor and Job Specification

 batch.xml defines

and names the

default JSL ref-to-

Java artifact

mapping

 sample.xml is an

example JSL

document for

SampleBatchApp

28

The Execution

 Package the application as a

standard JAR or WAR for

deployment in JavaSE or EE

environments

– batch.xml goes in META-INF or

WEB-INF/classes/META-INF

– JSL may go in META-INF/batch-

jobs, or submitted from an external

source (up to the provider!)

29

Skip and retry

 Job Designer (Orchestrator) may decide to

tolerate a certain number of failures via

JSL include/exclude of specific-typed

exceptions

• Similarly, certain exceptions can be

declared in JSL to be handled by the

container re-starting process of the

current chunk (retry-with-rollback) or

the current item (retry no-rollback)

30

Conditional Execution

(transitioning)

 Exit Status provides a string based

return code from step

– Job designer can use this to control flow of

execution between steps (glob patterns

supported)

31

Job Management - More

 JobOperator exposes stop() to stop

currently-running job (to be

restarted later).

 The door is left open for more

advanced batch job management

systems to be built!

– Integration into existing enterprise

schedulers

– Plenty of options, but currently left to

the provider to implement

32

Java EE Integration

 JSR-352: Java Batch is included in

Java EE 7

 Provides EE clustering, security,

resource management, etc to Java

Batch applications

 Performance benefits to

dispatching into long-running,

reusable container

– JIT compilation through the first

couple runs

– Eliminates overhead of starting /

stopping JVM

33

 Parallel Job Processing

 Splits and Flows provide a mechanism

for executing job steps concurrently at

the orchestration layer

 A flow is a sequence of one or more

steps which execute sequentially, but

as a single unit.

 A Split is a collection of flows that may

execute concurrently

– A split may only contain “flows”; a step

is not implicitly a flow

 This is done entirely in the JSL

descriptor

– Imposed on the batch application with

no code changes!

34

Parallel Job Processing

 Step-level parallelism can be

achieved programmatically using

step partitioning

 A partitioned step runs as multiple

instances with distinct property sets

 PartitionMapper defines the number

of partitions, and property values for

each partition

– Can be a fixed set of partitions in JSL

– Can be dynamic using a PartitionMapper

implementation

35

No new Java artifacts

 Not necessarily the general case

 Might have to

– Coalesce Exit Status (PartitionAnalyzer)

– Process Intermediate results on parent thread

(PartitionCollector->PartitionAnalyzer)

– Perform other tasks on end of partition (PartitionReducer)

 Also might want to programmatically partition

(PartitionMapper) rather than via JSL

36

Parallel Job Processing

37

Some subtleties

38

 Context gotchas

 JobContext/StepContext is sort of “thread-local” (yet

partitions run on their own thread)

– No built-in way to simply write to JobContext in step 1 and

then access the data from partitions in partitioned step 2

– If this seems crazy, consider partitions running in separate

JVMs

 Careful with transient data in JobContext. If we restart

job in the middle of step 2 then transient data from step 1

won’t be there

Why Java Batch and Liberty?

• We have wrapped all the qualities of service of the Liberty

profile around the batch programming model

– Dynamic configuration

– Operational management

– Transactions

– Logging

– High availability

– Scalability

– Tooling

More about Operational Management

• REST API

– Java Batch in the Liberty profile

provides an easy to use rest interface

to remotely manage your batch jobs

– Ability to start, stop, restart, view job

instance and execution data, and

access job logs

• Job Logging

– Server logs are interleaved with

application records for easy

debugging

• External scheduler integration

– Provides the ability to combine

enterprise quality scheduling with

batch

JSR-352

Job

Logging

REST

API

External Scheduler

Support

More about tooling

• WebSphere Developer Tools

– Create Java Batch Applications using the JSR-352

programming model and XML job definitions

– Job Creation Wizards

– JSL Editor

– Java class wizards

– Simple to submit, test, and debug applications

– Remote deployment and debug capabilities

– Simple graphical UI to monitor jobs

