
Insert
Custom
Session
QR if
Desired.

DB2 10 and 11 for z/OS –
Implementing and Using Autonomic
Statistics
Session #16327
John Iczkovits
Iczkovits@us.ibm.com
IBM

March 2, 2015

• Title: DB2 10 and 11 for z/OS - Implementing and Using Autonomic
Statistics

• Abstract: DB2 10 and 11 have a neat feature, automatically executing
RUNSTATS on required objects. By the way, you get to choose when
and how to execute RUNSTATS. The actual implementation however
is not straight forward. Come to this presentation and learn how to
successfully implement and review the output for this new feature.

• Special thanks to IBM’s Bjoern Broll
• Objective 1: Learn what autonomic statistics is

Objective 2: Learn how to setup autonomic statistics
Objective 3: Learn how the entire process executes
Objective 4: Learn how to determine success or failure of the
executions
Objective 5: Learn how to view all of the results from the executions

3

Agenda

• Introduction
• New RUNSTATS

features
• AutoStats

– Design
– Interfaces
– Installation
– Example Scenario

• Considerations
• Test and results

4

What autonomic statistics offers

• Collecting stats is a difficult and time consuming manual
process
– Need to look at the queries to figure out what stats are needed
– Need to repeatedly look at the RTS tables to figure out when to

recollect

• Inadequate stats collection leads to poor query performance or
inconsistent query performance (sometimes the query runs well
and sometimes it runs poorly)

• Solution is to automate the process
– More efficient
– More accurate
– More stable

5

DB2 V8-9 (state-of-the-art)

CATALOG RUNSTATS

TABLESPACES

DSNACCOX (R)

DSNACCMO

6

Autonomic Statistics Management

• Reduces much of the work currently done by DBA's
regarding database statistics management by adding
functions to DB2 which will perform those tasks without the
need for DBA involvement. These tasks include:
– Identifying what stats to collect (minimal)
– Storage of RUNSTATS profiles
– Identifying when stats need to be collected or re-collected
– Invoking the stats collection service at the correct time with

the proper stats collection criteria

7

New RUNSTATS features

8

New RUNSTATS features
• SET PROFILE

– Allows RUNSTATS to generate a statistics profile from the options
specified in the current RUNSTATS invocation, store this profile in the
system catalog table SYSIBM.SYSTABLES_PROFILES

• USE PROFILE
– Allows RUNSTATS to use a previously stored statistics profile to gather

statistics for a table
– The statistics profile is created using the SET PROFILE option and is

updated using the UPDATE PROFILE option
– The column, column group, and index specifications stored in the statistics

profile are used. These may not be specified as part of the control
statement.

• DELETE PROFILE
– This option will cause RUNSTATS to delete the stored statistics profile

from table SYSIBM.SYSTABLES_PROFILES
– Column, column group, and index specifications are not allowed as part of

the control statement when DELETE PROFILE is used
• UPDATE PROFILE

– Allows RUNSTATS to update an existing statistics profile in the system
catalog tables with the options specified in the current RUNSTATS
invocation

– If the column or column group specification already exists in the profile, the
new specification will replace the existing one

9

New catalog table SYSIBM.SYSTABLES_PROFILES

• RUNSTATS profiles are stored in the new
SYSIBM.SYSTABLES_PROFILES table

• The profile is table based
• The associated RUNSTATS options are stored in the

PROFILE_TEXT column
• These options have the same meaning as they do when

specified directly in the RUNSTATS statement
• Any profile modifications done through SQL statements

must follow the same restriction, or error messages will
result when the profile is used.

• The PROFILE functions cannot be executed when there
are syntax errors in the statistics profile. Syntax errors
may be corrected using RUNSTATS UPDATE PROFILE
or SQL statements, or by deleting the profile with
RUNSTATS DELETE PROFILE or SQL DELETE.

10

Previewing a stats profile

• Stats profiles can be previewed using the PREVIEW
option.

• When executing RUNSTATS with the PREVIEW option,
DB2 only prints the stats profile for each table to
SYSPRINT and normal utility execution does not take
place.

• An alternative is executing SELECT * FROM
SYSIBM.SYSTABLES_PROFILES

11

New RUNSTATS feature

• TABLESAMPLE SYSTEM
– This option allows RUNSTATS to collect statistics on a

sample of the data pages from the table
– System sampling considers each page individually, including

that page with probability P/100 (where P is the value of
numeric-literal) and excluding it with probability 1-P/100

– The size of the sample is controlled by the integer parameter
in parentheses, representing an approximate percentage P of
the table to be returned. Only a percentage of the data pages
as specified through the numeric-literal parameter will be
retrieved and used for the statistics collection.

– Only valid on single-table table spaces.

12

Design of AutoStats

13

Key Stored Procedures used with autonomic
statistics – created in installation job DSNTIJRT

• ADMIN_UTL_MONITOR (Administration Statistics Monitor)
– Determines which stats should be collected / recollected

• ADMIN_UTL_EXECUTE (Administration Alert Execution)
– Used for solving alerts written by ADMIN_UTL_MONITOR

within timewindows defined in
SYSIBM.SYSAUTOTIMEWINDOWS

• ADMIN_UTL_MODIFY
– Maintains the history table SYSIBM.SYSAUTORUNS_HIST

and the alert table SYSIBM.SYSAUTOALERTS

• Authorization - Only DB2 Administrators having system
DBADM authority or higher are authorized to manage and
run AUTOSTATS procedures.

14

UDFs required for autonomic statistics created in
installation job DSNTIJRT

• ADMIN_TASK_LIST
• ADMIN_TASK_STATUS
• Authorized IDs must have call privileges

15

Catalog tables required for auto statistics for
SELECT and UPDATE

• SYSIBM.SYSAUTOALERTS
• SYSIBM.SYSAUTORUNS_HIST
• SYSIBM.SYSAUTOTIMEWINDOWS
• SYSIBM.SYSTABLES_PROFILES
• Authorized IDs must have the privilege to select and modify

these tables

16

Catalog tables required for read – authorized IDs
must have read access

• SYSIBM.SYSTABLESPACESTATS (note, auto stats does
not use SYSINDEXSPACESTATS)

• SYSIBM.SYSTABLESPACE
• SYSIBM.SYSDATABASE
• SYSIBM.SYSTABLES
• SYSIBM.SYSINDEXES
• SYSIBM.SYSKEYS
• SYSIBM.SYSCOLUMNS
• SYSIBM.SYSCOLDIST
• SYSIBM.SYSDUMMY1
• SYSIBM.UTILITY_OBJECTS

17

AutoStats Idea

MONITOR
STATISTICS
(ADMIN_UTL_MONITOR)

ALERTS

SOLVE
ALERTS
(ADMIN_UTL_EXECUTE)

CATALOG RUNSTATS

TABLESPACES

DB2 Scheduler

18

NOTE – the RTS will be
read as well depending on
what is being executed.

Architecture

ADMIN_UTL_MONITOR

SYSAUTOALERTS

DB2 Scheduler

SYSAUTORUNS_HISTSYSAUTOTIMEWINDOWS

ADMIN_UTL_MODIFYADMIN_UTL_EXECUTE

writecall read read / write

Note - table SYSTABLES_PROFILES is not listed on this slide

19

20

Architecture explained from previous page

1. ADMIN_UTL_MONITOR is called by ‘DB2 scheduler for
administrative tasks' regularly specified by the customer's setup.

2. ADMIN_UTL_MONITOR checks the table spaces and tables for
old, missing, and inconsistent statistics and writes an alert for
every table space (-partition) / table which needs a RUNSTATS.
Afterwards ADMIN_UTL_MONITOR schedules
ADMIN_UTL_EXECUTE in DB2 for administrative tasks for
direct execution.

3. ADMIN_UTL_EXECUTE is called by ‘DB2 scheduler for
administrative tasks’. If at the current point-in-time a time window
exists ADMIN_UTL_EXECUTE starts to run RUNSTATS for the
table spaces listed in SYSAUTOALERTS and updates the status
of the alerts, otherwise ADMIN_UTL_EXECUTE reschedules
itself for the next maintenance window.

21

Technical details – Interfaces to AutoStats
New tables

New stored procedures

22

SYSIBM.SYSAUTOTIMEWINDOWS

SYSIBM.SYSAUTOTIMEWINDOWS (

WINDOW_ID BIGINT NOT NULL GENERATED ALWAYS AS IDENTITY,

DB2_SSID CHAR(4),

MONTH_WEEK CHAR(1) NOT NULL,

MONTH INTEGER,

DAY INTEGER,

FROM_TIME TIME,

TO_TIME TIME,

ACTION VARCHAR(256),

MAX_TASKS INTEGER,

PRIMARY KEY(WINDOW_ID));

SYSAUTOTIMEWINDOWS

23

SYSIBM.SYSAUTOALERTS

SYSIBM.SYSAUTOALERTS (

ALERT_ID BIGINT NOT NULL GENERATED ALWAYS AS IDENTITY,

HISTORY_ENTRY_ID BIGINT NOT NULL,

ACTION VARCHAR(32) NOT NULL,

TARGET_QUALIFIER VARCHAR(128) NOT NULL,

TARGET_OBJECT VARCHAR(128) NOT NULL,

TARGET_PARTITION SMALLINT NOT NULL,

OPTIONS VARCHAR(4000),

CREATEDTS TIMESTAMP NOT NULL WITH DEFAULT,

DURATION INTEGER,

STATUS VARCHAR(32),

STARTTS TIMESTAMP,

ENDTS TIMESTAMP,

OUTPUT CLOB(2M),

RETURN_CODE INTEGER,

ERROR_MESSAGE VARCHAR(1331),

ROWID ROWID NOT NULL GENERATED ALWAYS);

SYSAUTOALERTS

24

SYSAUTORUNS_HIST
SYSIBM.SYSAUTORUNS_HIST

SYSIBM.SYSAUTORUNS_HIST (

HISTORY_ENTRY_ID BIGINT NOT NULL GENERATED ALWAYS AS IDENTITY,

PROC_NAME VARCHAR(128) NOT NULL,

STARTTS TIMESTAMP,

ENDTS TIMESTAMP,

OUTPUT CLOB(2M),

ERROR_MESSAGE VARCHAR(1331),

RETURN_CODE INTEGER,

ROWID ROWID NOT NULL GENERATED ALWAYS);

25

SYSPROC.ADMIN_UTL_MONITOR

Tasks:
– Identifies out-of-date / missing / inconsistent statistics
– Writes alerts for out-of-date / missing / inconsistent

tablespaces to SYSIBM.SYSAUTOALERTS
– Schedules ADMIN_UTL_EXECUTE in „DB2 scheduler for

administrative tasks“ (immediate execution)

ADMIN_UTL_MONITOR

SYSPROC.ADMIN_UTL_MONITOR (

IN options VARCHAR(30000)

OUT history-entry-id BIGINT

OUT return-code INT

OUT message VARCHAR(1331)

);

26

SYSPROC.ADMIN_UTL_MONITOR

Options
– restrict-ts

– WHERE CLAUSE ON SYSIBM.SYSTABLESPACESTATS
– For example, exclude all objects with the database name of DSNDB01 and

DSNDB06. Another example, only include objects with a database name of
JOHNICZ and table spaces starting with ‘JOHN’.

– statistics-scope:
– BASIC - Out-of-date statistics are checked, such as whether RUNSTATS has been

run since the last LOAD or REORG operation or whether the number and
percentage of changes in a table space are greater that a defined threshold. BASIC
is the default value.

– PROFILE - Out-of-date statistics and the completeness of statistics are checked,
including whether all statistics in the table profile have been collected.

– PROFILE-CONSISTENCY - Out-of-date statistics, the completeness of statistics,
and the consistency of statistics are checked.

– stand-alone
– Prohibits interaction with „DB2 scheduler for administrative tasks“
– This option is needed when another scheduler than the DB2 scheduler is used
– This option can also be used to review what objects are set for alerts, but not

execute the RUNSTATS
– Also review running in a Data Sharing environment

ADMIN_UTL_MONITOR

27

SYSPROC.ADMIN_UTL_MONITOR

Options
– Runstats

– SAMPLING-THRESHOLD (TABLE CARDF)
– SAMPLING-RATE (1-100)

– Thresholds
• RTS

– PCT-CHANGES
– NUM-CHANGES
– NUM-MASS-DELETES

ADMIN_UTL_MONITOR

28

SYSPROC.ADMIN_UTL_MONITOR

Options
– Thresholds

• Inconsistencies
– TABCARD-LESS-THAN-COLCARD
– TABCARD-LESS-THAN-COLGROUPCARD
– SUM-OF-FREQUENCY-GREAT-THAN-ONE
– FREQUENCY-OUT-OF-RANGE
– NUMBER-OF-FREQUENCY-RECORDS-GREATER-THAN-COLGROUP-CARD
– MAXIMUM-FREQUENCY-LESS-THAN-RECIPROCAL-OF-COLGROUP-CARD
– COLGROUP-CARD-GREATER-THAN-SUPERSET-COLGROUP-CARD
– PRODUCT-OF-COLCARD-LESS-THAN-COLGROUP-CARD
– QUANTILE-CARD-GREATER-THAN-COLCARD
– QUANTILE-CARD-GREATER-THAN-COLGROUP-CARD
– SUM-OF-HISTOGRAM-GREATER-THAN-COLCARD
– SUM-OF-HISTOGRAM-GREATER-THAN-COLGROUP-CARD
– SUM-OF-HISTOGRAM-FREQUENCY-GREATER-THAN-ONE
– QUANTILE-FREQUENCY-OUT-OF-RANGE
– TABCARD-LESS-THAN-INDEX-KEYCARD
– TABCARD-NOT-EQUAL-UNIQUE-INDEX-FULLKEYCARD
– INDEX-FULLKEYCARD-LESS-THAN-FIRSTKEYCARD
– INDEX-FULLKEYCARD-LESS-THAN-ANY-KEY-CARD
– SINGLE-COL-INDEX-FULLKEYCARD-NOT-EQUAL-FIRSTKEYCARD
– DIFFERENT-COLGROUP-CARD-FROM-INDEXES
– DIFFERENT-COLGROUP-CARD-FROM-COLDIST-AND-INDEX
– DIFFERENT-SINGLE-COLGROUP-CARD-FROM-INDEXES
– DIFFERENT-SINGLE-COLGROUP-CARD-FROM-COLDIST-AND-INDEX
– DRF-LESS-THAN-NPAGES
– DRF-GREATER-THAN-TABCARD

ADMIN_UTL_MONITOR

29

SYSPROC.ADMIN_UTL_EXECUTE

Tasks
– Solve alerts listed in SYSIBM.SYSAUTOALERTS within

timewindows defined in SYSIBM.SYSAUTOTIMEWINDOWS
• Prioritization of alerts
• Parallel execution of RUNSTATS

– Reschedule itself

ADMIN_UTL_EXECUTE

SYSPROC.ADMIN_UTL_EXECUTE (

IN options VARCHAR(30000)

OUT history-entry-id BIGINT

OUT return-code INT

OUT message VARCHAR(1331)

);

30

SYSPROC.ADMIN_UTL_EXECUTE

Options
– stand-alone

– Prohibits interaction with „DB2 scheduler for administrative
tasks“. This option is needed when another scheduler than
the DB2 scheduler (ADMT STC) is used or when running on
a specific Data Sharing member.

ADMIN_UTL_EXECUTE

31

SYSPROC.ADMIN_UTL_MODIFY

• Maintenance: Removes old entries in
SYSIBM.SYSAUTORUNS_HIST &
SYSIBM.SYSAUTOALERTS

• Options
– history-days: Number of days after which solved alerts and

log entries should be removed

SYSPROC.ADMIN_UTL_MODIFY (

IN options VARCHAR(30000)

OUT history-entry-id BIGINT

OUT return-code INT

OUT message VARCHAR(1331)

);

ADMIN_UTL_MODIFY

32

Installation process

33

Installation

Add RUNSTATS maintenance window
(Sunday 0-12)

Step 1

I have to define maintenance
windows in which autonomic
RUNSTATS calls are allowed

Add RUNSTATS maintenance window (Saturday 0-12),
SSID = VA1A

Mo Tu We Th Fr Sa Su

VA1A

VA1B

VA1C

Add RUNSTATS maintenance window (Wednesday 12-24),
SSID = VA1B

SYSAUTOTIMEWINDOWS

34

Installation

Call ADMIN_TASK_ADD(

„SYSPROC“,

„ADMIN_UTL_MONITOR“, // Proc

....

„0 22 * * *“, // Interval

„DBNAME not in (...)“

....)

Step 2

I have to schedule
ADMIN_UTL_MONITOR in the
DB2 scheduler for administrative
tasks

Now, everyday at 10 pm ADMIN_UTL_MONITOR is called (options = DBNAME not in (...)).

DB2 Scheduler

35

Installation

Call ADMIN_TASK_ADD(

„SYSPROC“,

„ADMIN_UTL_MONITOR“, // Proc

....

„0 22 1 * *“, // Interval

„DBNAME in (...), SCOPE=DETIAL“

....)

Step 2(a) optional

I can schedule other instances of
ADMIN_UTL_MONITOR(s) with
different options

Now another instance of ADMIN_UTL_MONITOR is called with options (DBNAME in (...) and
SCOPE=DETAIL) on every 1st day of the month.

DB2 Scheduler

36

Installation

Step 3

Schedule cleanup Stored
Procedure

Question: „How long do I want to
keep the history log and alerts?“

Call ADMIN_TASK_ADD(

„SYSPROC“,

„ADMIN_UTL_MODIFY“, // Proc

....

„0 22 1 * *“, // Interval

„history=30d“

....)

Now ADMIN_UTL_MODIFY is called on every 1st day of month.

DB2 Scheduler

37

Installation

Step 4

Get some coffee and watch DB2
maintaining itself ;-)

History log can be found in
SYSIBM.SYSAUTORUNS_HIST
& SYSIBM.SYSAUTOALERTS

SYSAUTOALERTS

SYSAUTORUNS_HIST

38

Example of how to configure and monitor AutoStats
via SQL

39

STEP 1: Define the maintenance windows in which RUNSTATS is
allowed to run autonomously

Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)
values(NULL,' W',NULL,1, '00:00','23:59:59','RUNSTATS', 1);

Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)
values(NULL,' W',NULL,2, '00:00','23:59:59','RUNSTATS', 1);

Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)
values(NULL,' W',NULL,3, '00:00','23:59:59','RUNSTATS', 1);

Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)
values(NULL,' W',NULL,4, '00:00','23:59:59','RUNSTATS', 1);

Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)
values(NULL,' W',NULL,5, '00:00','23:59:59','RUNSTATS', 1);

Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)
values(NULL,' W',NULL,6, '00:00','23:59:59','RUNSTATS', 1);

Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)
values(NULL,' W',NULL,7, '00:00','23:59:59','RUNSTATS', 1);

This example allows RUNSTATS to be executed every day of the week at any time. The default for MAX_TASKS
when set to NULL is run as many parallel tasks as possible.

For DB2_SSID, it refers to the DB2 member name on which the planned tasks are to be run. If this column
contains NULL in a Data Sharing environment, the tasks during this time window can be run on any DB2
member. Refer to “FAQ – How do I use the scheduler in a Data Sharing environment?” later in this
presentation.

For week, day 1 is Monday, not Sunday, same as with SYSIBM.SYSINDEXCLEANUP

40

select * from SYSIBM.SYSAUTOTIMEWINDOWS
select * from SYSIBM.SYSAUTOTIMEWINDOWS

WINDOW_ID DB2_SSID MONTH_WEEK MONTH DAY FROM_TIME TO_TIME ACTION MAX_TASKS
--------- -------- ---------- ----- --- --------- ------- - -------- ---------

28 DBP1 W NULL 1 00:00:00 23:59:59 RUNSTATS 1
29 DBP1 W NULL 2 00:00:00 23:59:59 RUNSTATS 1
30 DBP1 W NULL 3 00:00:00 23:59:59 RUNSTATS 1
31 DBP1 W NULL 4 00:00:00 23:59:59 RUNSTATS 1
32 DBP1 W NULL 5 00:00:00 23:59:59 RUNSTATS 1
33 DBP1 W NULL 6 00:00:00 23:59:59 RUNSTATS 1
34 DBP1 W NULL 7 00:00:00 23:59:59 RUNSTATS 1

In this example (slightly different than the previous page) we only want executions on DBP1

Note – If you are installing DB2 10 or a subsequent release, DSNTIJTC
creates SYSAUTOTIMEWINDOWS. If you are migrating to DB2 10,
DSNTIJEN (ENFM) creates it in step ENFM0001 – ENFM start . It is part of
table space SYSTSATW with index DSNTWX01.

If DB2 is running V10 NFM or higher and SYSIBM.SYSAUTOTIMEWINDOWS
is empty, DSNTRIN in job DSNTIJRT will initialize it with 7 rows of data as
shown above. Execute RUNSTATS daily at anytime. The WINDOW_ID is 1-7.
If the rows exist, there is no reason to manually add the rows – you are ready
to run unless you want to modify the schedule.

41

FAQ, I want to schedule runs daily except for the f irst
day on the month – do not run at all, and on the 15 th of
the month only run from 1 to 3 am.
• There is no way of telling the scheduler not to run on a specific

day. An alternative:
Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)

values(NULL,‘ M',NULL,2, '00:00','23:59:59','RUNSTATS', 1);
Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)

values(NULL,‘ M',NULL,3, '00:00','23:59:59','RUNSTATS', 1);

etc.
Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)

values(NULL,‘ M',NULL, 15, '01:00',‘02:59:59', 'RUNSTATS', 1);
Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)

values(NULL,‘ M',NULL,16, '00:00','23:59:59','RUNSTATS', 1);

etc.
Insert into SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MAX_TASKS)

values(NULL,‘ M',NULL,31, '00:00','23:59:59','RUNSTATS', 1);

• In this case as an alternative - first SELECT * FROM
SYSIBM.SYSAUTOTIMEWINDOWS and verify only the seven rows
inserted during the install/migration process exist to execute daily. Delete all
of the rows (DELETE FROM SYSIBM.SYSAUTOTIMEWINDOWS). Insert
one row for every day of the month (instead of week) except for day 1, and
on day 15 change the times. Make sure you change MONTH_WEEK from
‘W’ weekly to ‘M’ monthly.

42

Step 2: S chedule ADMIN_UTL_MONITOR in the DB2 scheduler for
administrative tasks

Call sysproc.admin_task_add(user-id,password,NULL,N ULL,NULL,NULL ,'*/30 * * *
*' ,NULL,NULL,NULL,NULL, 'SYSPROC','ADMIN_UTL_MONITOR','select ''statistics-
scope=BASIC'',0,0,'''' from
sysibm.sysdummy1' , NULL,NULL,NULL, 'ADMIN_UTL_MONITOR_1','ADMIN_UTL_MONITOR
scheduled every 30 minutes, statistics-scope=BASIC' , 0,NULL);

Call sysproc.admin_task_add(user-id,password,NULL,N ULL,NULL,NULL ,'* 1 * *
*' ,NULL,NULL,NULL,NULL, 'SYSPROC','ADMIN_UTL_MONITOR','select ''statistics-
scope=PROFILE-CONSISTENCY'' , 0,0,'''' from
sysibm.sysdummy1' , NULL,NULL,NULL, 'ADMIN_UTL_MONITOR_2','ADMIN_UTL_MONITOR
scheduled once a day at 1 am, statistics-scope=PROF ILE-CONSISTENCY', 0,NULL);

In this case we have enabled two instances of
ADMIN_UTL_MONITOR:

1. One instance which is scheduled every 30 minutes (on the
hour) on a low detail level

2. One instance which is scheduled every day at 1 am on a high
detail level

43

Date and time differences between
SYSIBM.SYSAUTOTIMEWINDOWS and
ADMIN_UTL_MONITOR

• SYSIBM.SYSAUTOTIMEWINDOWS is a DB2 table that works
in the same date and time format you are used to

• The Stored Procedures used for autonomic statistics use the
UNIX cron date and time format

• Both the CRON and usual time format can be run at different
non–consecutive times of the day. For example, of the 15th of
the month, execute RUNSTATS at 1 to 3 am and at 7 to 9 pm:

Insert into
SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID,MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MA
X_TASKS)

values(NULL,‘ M',NULL, 15, '01:00',‘02:59:59', 'RUNSTATS', 1);

Insert into
SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID,MONTH_WEEK,MONTH,DAY,FROM_TIME,TO_TIME,ACTION,MA
X_TASKS)

values(NULL,‘ M',NULL, 15, ‘19:00',‘20:59:59', 'RUNSTATS', 1);

44

Changing parameters for ADMIN_UTL_MONITOR

• You have everything in place, but you now want to change
ADMIN_UTL_MONITOR2 to execute at 6 am instead of 1
am
– Use Stored Procedure ADMIN_TASK_UPDATE
– Unlike ADMIN_UTL_ADD, ADMIN_UTL_UPDATE does not

have a parameter for the userid or password.
– The admin scheduler checks the password at

ADMIN_TASK_ADD time. If it is valid it stores the task in the
task list (without the password). Internally a different
approach is used to switch to the context of the user (it runs
APF authorized and in key 0), so there is no need to know
the password of the user. Scheduled jobs should not be
affected when a user changes their password.

45

Removing ADMIN_UTL_MONITOR – you no longer want
to run ADMIN_UTL_MONITOR_1 every 30 minutes

• CALL
sysproc.admin_task_remove('ADMIN_UTL_MONITOR_1',0,'')

• Before executing admin_task_remove:
SELECT * FROM TABLE (DSNADM.ADMIN_TASK_LIST()) AS T ;

USERID POINT_IN_TIME PROCEDURE_SCHEMA PROCEDURE_NAME TASK_NAME

------- ------------- ---------------- --------------- -- --------------------------

JOHNICZ */30 * * * * SYSPROC ADMIN_UTL_MO NITOR ADMIN_UTL_MONITOR_1

JOHNICZ SYSPROC NULL ADMIN_UTL_EX ECUTE DB2 AUTO PROCEDURE EXECUTE

• After executing admin_task_remove:
SELECT * FROM TABLE (DSNADM.ADMIN_TASK_LIST()) AS T ;

USERID POINT_IN_TIME PROCEDURE_SCHEMA PROCEDURE_NAME TASK_NAME

------- ------------- ---------------- --------------- -- --------------------------

JOHNICZ SYSPROC NULL ADMIN_UTL_EX ECUTE DB2 AUTO PROCEDURE EXECUTE

• Even though the SELECT still returns a row for
ADMIN_UTL_EXECUTE, it is no longer executed

• Both SELECT * FROM TABLE
(DSNADM.ADMIN_TASK_LIST()) AS T and SELECT * FROM
TABLE (DSNADM.ADMIN_TASK_STATUS()) AS T show that
the last execution of ADMIN_UTL_EXECUTE was in the past.

46

FAQ – RUNSTATS is eligible to run 24 hours a day, 7
days a week, how do I make sure specific objects on ly
execute during a specific period?

• I want to make sure that eligible RUNSTATS for all objects can
execute all day, except database ABC can only execute from 1
– 3 am, but database XYZ can only execute from 9 – 11 pm.
– Set up at least two monitor Stored Procedures using specific cron

times and the restrict-ts parameter.
– As an alternative, you can have one monitor Stored Procedure

that executes at periodic intervals for all objects excluding
databases ABC and XYZ. You have a second monitor Stored
Procedure used for database ABC only with a specific time frame.
You have a third monitor Stored Procedure used for database
XYZ only with a specific time frame.

47

Step 3 (OPTIONAL): S chedule ADMIN_UTL_MODIFY in 'DB2 scheduler for
administrative tasks' to delete old alerts and history logs regularly

Call sysproc.admin_task_add(user-
id,password,NULL,NULL,NULL,NULL,'* * 1 *
*',NULL,NULL,NULL,NULL,'SYSPROC','ADMIN_UTL_MO
DIFY','select ''history-days=30'',0,0,'''' from
sysibm.sysdummy1',NULL,NULL,NULL,'ADMIN_UTL_MO
DIFY','ADMIN_UTL_MODIFY executed on every first day
of the month',0,NULL);

48

Step 4: We use Data Studio to monitor
the autonomic stored procedures

select * from sysibm.sysautoalerts
(Alerts found by ADMIN_UTL_MONITOR + status of the alerts)

after ADMIN_UTL_MONITOR was executed.

after ADMIN_UTL_EXECUTE finished executing

49

Step 5: Output from second row (previous page)
50

Step 6: select * from sysibm.sysautoruns_hist (History for each autonomic
stored procedure call, Start time, End time, what was done, etc)

51

Step 7: some more details from the ADMIN_UTL_MONITOR call
52

Considerations

53

What to think about before setting up autonomic
statistics
• Get used to running and understanding Stored Procedures

– How do I run a Stored Procedure and how do I monitor the results?
– Setting up the monitor requires one Stored Procedure to add

another Stored Procedure that will invoke another Stored
Procedure.

• Autonomic statistics first made its debut in DB2 LUW and was
then ported to DB2 for z/OS
– There is very limited information regarding how to setup and use

autonomic statistics, some of the better material resides in the LUW
manuals. For example, review:
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic
=%2Fcom.ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0054371.html

– The date and time coded in the Stored Procedures are in UNIX
Cron format. Review the “UNIX cron Format” in the above link.

54

What to think about before setting up autonomic sta tistics
• On what schedule should RUNSTATS potentially execute?
• What happens if a RUNSTATS starts near the end of the time schedule and now

has to run for an extensive period?
• How many RUNSTATS should run simultaneously?
• If running in a Data Sharing environment, which member should RUNSTATS and

the monitor execute on?
• How often should the monitor Stored Procedure run?
• Are there objects that require special statistics?
• Which objects should be included or excluded for analysis?
• Should objects recommended for RUNSTATS execute or just be reported on?
• Which statistics scope should be run on which schedule?
• Will the ADMT scheduler be used or an operating system one?
• How often should the log file and alert history be cleaned up?
• How will the log file and alert history be reviewed for unsuccessful executions?

What action should be taken?
• RUNSTATS of objects helped (or hurt) dynamic SQL, but what will you do about

static and REBIND?
• Is DSNACCOX also run? If it is, how will it be used along side auto stats?
• How will I deal with auto stats running at the same time as my maintenance

window for REORG then inline stats? How about scheduled RUNSTATS?

55

Running Stored Procedures

• You can write your own code for the Stored Procedures or use a tool
such as Data Studio or Optim Query Tuner. My tests used OWQT
4.1.0.1.

• Use the Data perspective to run Stored Procedures in Data Studio or
OWQT.
– After connecting to a DB2, setup a SQL script by clicking on “Run SQL”
– You may run one or more SQL statements and/or Stored Procedures
– Results will be on the bottom of the screen
– You may save your SQL scripts and results

• When coding Stored Procedures, be very careful of using ‘ vs ‘’ vs “
(single quote vs. double single quote vs. double quote). Incorrect usage
will cause many frustrating failures.

• When Stored Procedures require a userid and password such as for
admin_task_add you must use an authorized id and password used to
sign onto TSO.

56

Scheduling autonomic statistics

• STC ADMT can be used to schedule the Stored
Procedures required for autonomic statistics
– STC ADMT running does not mean you are ready to go. You

will require additional RACF authorization is receiving the
following:

ICH408I USER(STCRACF) GROUP(SYS1)
NAME(RACF STC USERID)

IRRPTAUTH.DBP1ADMT.JOHNICZ CL(PTKTDATA)
INSUFFICIENT ACCESS AUTHORITY
FROM IRRPTAUTH.*.* (G)
ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE

)

57

Scheduling autonomic statistics

• Verify that optional install job DSNTIJRA was executed
before scheduling any required Stored Procedures.

• If scheduled Stored Procedures do not execute during the
required timeframe, execute the following (partial results):

SELECT * FROM TABLE (DSNADM.ADMIN_TASK_LIST()) AS T;

USERID POINT_IN_TIME PROCEDURE_SCHEMA PROCEDURE_NAME

------- ------------- ---------------- -----------------

JOHNICZ */30 * * * * SYSPROC ADMIN_UTL_MONITOR

From the above SELECT we find that ADMIN_UTL_MONITOR is called every 30
minutes

SELECT * FROM TABLE (DSNADM.ADMIN_TASK_STATUS()) AS T;
TASK_NAME STATUS MSG

------------------- ------ --

ADMIN_UTL_MONITOR_1 NOTRUN DSNA691I DSNA6THD THE ADMIN SCHEDULER DBP1ADMT CANNOT GENERATE A PASSTICKET FOR TASK

From the above SELECT we find that the ADMIN_UTL_MONITOR Stored Procedure
was not run because DSNTIJRA was not executed enabling pass tickets

58

Scheduling autonomic statistics
• Output from DB2 command DISPLAY PROCEDURE

shows that Stored Procedure ADMIN_UTL_MONITOR
was not executed:

DSNX940I -DBP1 DSNX9DIS DISPLAY PROCEDURE REPORT F OLLOWS -
------- SCHEMA=SYSIBM
PROCEDURE STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV
SQLCAMESSAGE

STARTED 0 0 1 0 0 DBP1WLM_GENERA L
------- SCHEMA=SYSPROC
PROCEDURE STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV
DSNWZP

STARTED 0 0 1 0 0 DBP1WLM_NUMTCB 1
ADMIN_TASK_ADD

STARTED 0 0 1 0 0 DBP1WLM_GENERA L
ADMIN_INFO_SSID

STARTED 0 0 1 0 0 DBP1WLM_GENERA L
ADMIN_COMMAND_DB2

STARTED 0 0 1 0 0 DBP1WLM_GENERA L
ADMIN_COMMAND_DSN

STARTED 0 0 1 0 0 DBP1WLM_REXX
ADMIN_INFO_SYSPARM

STARTED 0 0 1 0 0 DBP1WLM_NUMTCB 1
DSNX9DIS DISPLAY PROCEDURE REPORT COMPLETE
DSN9022I -DBP1 DSNX9COM '-DISPLAY PROC' NORMAL COM PLETION

59

DB2 output from command DISPLAY PROCEDURE
when the monitor and execute Stored Procedures
were run

DSNX940I -DBP1 DSNX9DIS DISPLAY PROCEDURE REPORT F OLLOWS -

------- SCHEMA=SYSIBM

PROCEDURE STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV

SQLCAMESSAGE

STARTED 0 0 1 0 0 DBP1WLM_GENERA L

------- SCHEMA=SYSPROC

PROCEDURE STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV

DSNWZP

STARTED 0 0 1 0 0 DBP1WLM_NUMTCB 1

DSNUTILU

STARTED 0 0 1 0 0 DBP1WLM_UTILS

ADMIN_TASK_ADD

STARTED 0 0 1 0 0 DBP1WLM_GENERA L

ADMIN_UTL_SORT

STARTED 0 0 1 0 0 DBP1WLM_GENERA L

ADMIN_INFO_SSID

STARTED 0 0 1 0 0 DBP1WLM_GENERA L

ADMIN_COMMAND_DB2

STARTED 0 0 1 0 0 DBP1WLM_GENERA L

ADMIN_COMMAND_DSN

STARTED 0 0 1 0 0 DBP1WLM_REXX

ADMIN_TASK_UPDATE

STARTED 0 0 1 0 0 DBP1WLM_GENERA L

ADMIN_UTL_EXECUTE

STARTED 0 0 1 0 0 DBP1WLM_GENERA L

ADMIN_UTL_MONITOR

STARTED 0 0 1 0 0 DBP1WLM_PGM_CO NTRO

L

ADMIN_INFO_SYSPARM

STARTED 0 0 1 0 0 DBP1WLM_NUMTCB 1

ADMIN_UTL_SCHEDULE

STARTED 0 0 1 0 0 DBP1WLM_GENERA L

DSNX9DIS DISPLAY PROCEDURE REPORT COMPLETE

60

61

FAQ – Can AUTOSTATS and Manual RUNSTATS
Coexist?

• When the DB2 subsystem is configured with AUTOSTATS
enabled, would it still allow users (or tools) to retain the
freedom to run RUNSTATS manually?

• Can these two modes of operation coexist?
• The answer is YES. AUTOSTATS and manual RUNSTATS run

do not interfere with one another.
• Manual stats collection can be run from time to time, with or

without AUTOSTATS enabled. There is no required changes
from the usual practice or procedure.

• Be careful that manual and auto stats do not update the same
objects.

• Review DB2 Utilities manual – see section “Combining
autonomic and manual statistics maintenance”

62

FAQ – How do I use the scheduler in a Data Sharing
environment?
• I have a three member Data Sharing environment DBP1, DBP2, and DBP3 –

some options:
• Run ADMIN_UTL_MONITOR and ADMIN_UTL_EXECUTE on any member

– For the sysautotimewindows table, specifying NULL for DB2_SSID
would allow Stored Procedures ADMIN_UTL_MONITOR and
ADMIN_UTL_EXECUTE to run on any member. Each Stored
Procedure can run on different members.

– Keep in mind, ADMT’s TASKLIST data set and database DSNADMDB
are shared by all three members, therefore all three members know
that one of the members ran the task.

• Run ADMIN_UTL_MONITOR on member DBP2 only
– For the sysautotimewindows table, specifying DBP2 for DB2_SSID

would allow Stored Procedure ADMIN_UTL_MONITOR to run on
member DBP2 only, but ADMIN_UTL_EXECUTE will run on any
member

– If you want both Stored Procedures ADMIN_UTL_MONITOR and
ADMIN_UTL_EXECUTE to run on DBP2 only, invoke both with stand-
alone=yes and use ADMIN_UTL_ADD to manually run
ADMIN_UTL_EXECUTE. In this case ADMIN_UTL_EXECUTE will
require very low overhead to periodically check the window set in
sysautotimewindows.

63

IBM Automation Tool for autonomic statistics

• If you want to make your life much easier and not go
through the manual steps to setup autonomic statistics
which can be very error prone, use IBM’s Automation tool.
See:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.js
p?topic=%2Fcom.ibm.db2tools.haa41.doc.ug%2Ftopics%2Fh
aaucon_autostats_overview.htm

64

Using your own operating system scheduler
instead of DB2’s STC ADMT

• If you choose your own operating system scheduler instead
of DB2’s STC ADMT:
– Pass the required parameters to your operating system

scheduler
– Schedule the ADMIN_UTL_MONITOR and the

ADMIN_UTL_EXECUTE Stored Procedures with the stand-
alone parameter.

– Be aware that in this case ADMIN_UTL_EXECUTE cannot be
scheduled by ADMIN_UTL_MONITOR or
ADMIN_UTL_EXECUTE to resolve the alerts.

– Schedule ADMIN_UTL_EXECUTE to run to resolve alerts

65

Manuals and sites for autonomic statistics
• DB2 Installation and Migration Guide – review sections regarding

the auto stats Stored Procedures
• DB2 Managing Performance – see section “Automating statistics

maintenance”
• DB2 SQL Reference – see section “DB2 catalog tables”. Review

SYSIBM.SYSAUTOALERTS, SYSIBM.SYSAUTORUNS_HIST,
and SYSIBM.SYSAUTOTIMEWINDOWS. Table functions
ADMIN_TASK_LIST and ADMIN_TASK_STATUS

• DB2 Utilities manual – see section “Combining autonomic and
manual statistics maintenance”

• DB2 10 for z/OS Technical Overview Redbook – see sections
DB2-supplied stored procedures, Administrative task scheduler,
Administration enablement, DB2 statistics routines, Autonomic
statistics, Using RUNSTATS profiles, Updating RUNSTATS
profiles, Deleting RUNSTATS profiles, Combining autonomic and
manual statistics maintenance

• http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?top
ic=%2Fcom.ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0054371.html

66

Test and results

67

Test with five variations – all table spaces, no ind exes

1. JOHNITS1 – inserted one row followed by regular
RUNSTATS TABLE(ALL)

2. JOHNITS2 – inserted many identical rows without any
RUNSTATS

3. JOHNITS3 – inserted many rows with a variation, 99%
zipcode 23190, 1 % with 11234 followed by regular
RUNSTATS TABLE(ALL)

4. JOHNITS4 – inserted many rows with a variation, 99%
zipcode 23190, 1 % with 11234 followed by special
RUNSTATS with COLGROUP for the zip code and SET
PROFILE, then double the size of the table with no
RUNSTATS

5. JOHNITS5 – inserted many rows followed by regular
RUNSTATS TABLE(ALL), then DELETE from table
(mass delete) with no RUNSTATS

68

Results after autonomic statistics run with BASIC,
partial output from sysibm.sysautoalerts

ACTION TARGET_QUALIFIER TARGET_OBJECT OPTIONS
-------- ---------------- ------------- -------------- -------------------------
RUNSTATS DSNDB04 JOHNITS2 TABLE("JOHN ICZ"."JOHNITB2") USE PROFILE
RUNSTATS DSNDB04 JOHNITS4 TABLE("JOHN ICZ"."JOHNITB4") USE PROFILE

1. JOHNITS1 – inserted one row followed by regular RUNSTATS
TABLE(ALL) – auto RUNSTATS not run

2. JOHNITS2 – inserted many identical rows without any RUNSTATS –
auto RUNSTATS executed

3. JOHNITS3 – inserted many rows with a variation, 99% zipcode 23190,
1 % with 11234 followed by regular RUNSTATS TABLE(ALL) – auto
RUNSTATS not run

4. JOHNITS4 – inserted many rows with a variation, 99% zipcode 23190,
1 % with 11234 followed by special RUNSTATS with COLGROUP for
the zip code and SET PROFILE, then double the size of the table with
no RUNSTATS – auto RUNSTATS executed

5. JOHNITS5 – inserted many rows followed by regular RUNSTATS
TABLE(ALL), then DELETE from table (mass delete) with no
RUNSTATS – auto RUNSTATS not run. WARNING – RUNSTATS
should have run because RTS shows mass deletes>0. S ee APAR
PM95437. Without this fix autostats is ignoring tabl e spaces with a
RTS datasize of zero

69

Results after autonomic statistics run with BASIC, partial
output from sysibm.sysautoalerts and
sysibm.sysautoruns_hist

sysibm.sysautoalerts

ACTION TARGET_QUALIFIER TARGET_OBJECT OPTIONS

-------- ---------------- ------------- ---------------------------------------

RUNSTATS DSNDB04 JOHNITS2 TABLE("JOHNICZ"."JOHNITB2") USE PROFILE

RUNSTATS DSNDB04 JOHNITS4 TABLE("JOHNICZ"."JOHNITB4") USE PROFILE

sysibm.sysautoruns_hist

TABLESPACE DSNDB04.JOHNITS2 REASON(no recent statistics found) ALERT written on
DSNDB04.JOHNITS2 with options (TABLE("JOHNICZ"."JOHNITB2") USE PROFILE)

TABLESPACE DSNDB04.JOHNITS4 REASON(no recent statistics found) ALERT written on
DSNDB04.JOHNITS4 with options (TABLE("JOHNICZ"."JOHNITB4") USE PROFILE)

1. JOHNITS2 – inserted many identical rows without any
RUNSTATS – auto RUNSTATS executed

2. JOHNITS4 – inserted many rows with a variation, 99%
zipcode 23190, 1 % with 11234 followed by special
RUNSTATS with COLGROUP for the zip code and SET
PROFILE, then double the size of the table with no
RUNSTATS – auto RUNSTATS executed

70

Notes regarding this test

• Could not export nor save the results correctly in xls or notepad
correctly. The xls version did not save all of the data, some was
truncated, the notepad and wordpad versions did not process
the title breaks appropriately. Needed to manually save the
data to a txt file and then use a third party tool to open the data
correctly.

• Autonomic statistics does not replace the Data Studio or
OWQT Stats Advisor. In the case of JOHNITS3 and JOHNITS4
auto statistics did not use a COLGROUP even though there
was a distribution issue. You must still periodically run Stats
Advisor. Auto stats will use the RUNSTATS PROFILE once set.

• Autonomic statistics does not integrate with DB2 11
SYSIBM.SYSSTATFEEDBACK and DSN_STAT_FEEDBACK.

71

Autonomic statistics use of
SYSIBM.SYSTABLES_PROFILES

SCHEMA TBNAME PROFILE_TYPE PROFILE_TEXT PROFILE_UPDATE PROFILE_USED
-------- -------- ------------ ----------------------- ---------------------------- ----------------------- --- -----------------
JOHNICZ JOHNITB4 RUNSTATS COLUMN (ZIPC) COLGRO UP (ZIPC) FREQVAL COUNT 15 MOST 2014-02-13 15:20:35 .443766 2014-02-13 15:20:35.443766
JOHNICZ JOHNITB1 RUNSTATS COLUMN("FNAME","LNAM E",“ZIPC") INDEX(ALL) 2014-02-17 17:00:05. 499402 NULL
JOHNICZ JOHNITB2 RUNSTATS INDEX(ALL) 2014-02-17 17:00:05.50 0781 NULL
JOHNICZ JOHNITB3 RUNSTATS COLUMN("FNAME","LNAM E",“ZIPC") INDEX(ALL) 2014-02-17 17:00:05. 502202 NULL
JOHNICZ JOHNITB5 RUNSTATS COLUMN("FNAME","LNAM E",“ZIPC") INDEX(ALL) 2014-02-17 17:00:05. 514561 NULL

• JOHNITB4 was manually added via RUNSTATS SET PROFILE without
INDEX(ALL), all others added automatically added by auto stats.

• INDEX(ALL) is added to the ones auto stats added even though none of the
tables have indexes. This is done in case indexes are added in the future.

• Output from sysibm.sysautoalerts
DSNUGPRF - THE STATS PROFILE WITH STATSTIME = 0000-00-00-00.00.00.000000 FOR TABLE 2014-02-17
17:00:12.145416> JOHNITB2 HAS BEEN USED

DSNUGPRF - THE STATS PROFILE WITH STATSTIME = 2014-02-13-15.20.35.443766 FOR TABLE 2014-02-17
17:00:12.147256> JOHNITB4 HAS BEEN USED

72

