
© 2009 IBM Corporation

Structured Programming in Assembler
Session 16321

IBM HLASM – SHARE – Seattle 2015

© 2015 IBM Corporation

Richard Cebula (riccebu@uk.ibm.com) IBM HLASM

mailto:riccebu@uk.ibm.com

2 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

Who am I?

■ Richard Cebula – HLASM, IBM Hursley, UK

■ riccebu@uk.ibm.com

■ Develop and support the following products:
– HLASM
– SuperC
– XREF
– IDF
– DISASM
– Structured Programming Macros

mailto:riccebu@uk.ibm.com

3 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming

■ Structured Programming for Assembler!?

■ Control sections - C-, R-, DSECTs, COM and DXD's

■ The location counter and USING statements

■ Type-checking in HLASM

■ Structured Programming Macros (SPMs)

 Source If Applicable

4 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming

■ Structured Programming for Assembler!?
– Yes!
– HLASM is the High Level Assembler providing an extensive list of features for

assembler programmers
– HLASM can help programmers to:

● Organise their assembler code better
● Maintain their code better
● Increase code reuse

■ Remember, HLASM is available for all z Systems operating systems: z/OS, z/VM, z/VSE,
z/Linux (inc. z/TPF)

 Source If Applicable

5 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming

 Source If Applicable

Control sections

6 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Source and Object Modules

■ An HLASM program consists of a number of sections of varying types

■ The programmer should distinguish between:
– Source Module

● The source module is the division of code during assembly time
● Each source module is assembled into a separate object module
● Note that there is not always a 1-to-1 relationship between a source file and a

source module
– Object Module

● The object module is the produced output from the assembler
● The layout of the object module is determined by the type assembler options

used
● HLASM supports OBJ, GOFF and ELF object file formats

 Source If Applicable

7 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Source and Object Modules

Copybooks

Source

Copybooks

Source

Copybooks

Source

Object Object

HLASMHLASM

ObjectObjectObjectObject

Load
Module

Load
Module

ObjectObjectObjectObject BinderBinder

8 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Source Module – Sections

■ Source module is comprised of 1 or more assembler statements

■ Starts with any assembler statement except for MEXIT and MEND

■ Ends with an END statement

■ The BATCH option allows for more than a single source module to be specified in the same
input stream

– HLASM can take many source files on the same input stream, e.g. via use of the
COPY statement

– If HLASM encounters an END statement during processing then it completes
assembling the source module.

– If further input is found and the BATCH option is on (the default) then HLASM begins
the assembly of a new source module

 Source If Applicable

9 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Single VS Batch Assembly

Copybooks

Source

Copybooks

Source

Copybooks

Source

Object

HLASMHLASM

Object*

Copybooks

Source

In batch mode, all output is written to a single output object file.
*On z/Linux, use RPM asma90-1.6.0-27 or higher with the -R option to output to an object
archive

10 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Object Module – Sections

■ In the load module model, a control section is the smallest subdivision of a program that can
be located as a unit

■ Each assembled control section contains the object code for machine instructions and data

■ Each source module (consisting of 1 or more source files) is assembled into 1 relocatable
object module.

■ The binder combines the object code of 1 or more sections into a load module (or program
object)

– The binder also calculates any addresses and space needed for common sections
and external dummy sections from different object module

■ The program loader loads the load module into virtual storage and converts any relocatable
addresses into fixed locations

 Source If Applicable

11 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Creating Sections

■ The first section of a program maybe initiated via the START, CSECT or RSECT assembler
instructions

– START – initiates the first or only section of a source module
– CSECT – can be used anywhere in the source module to initiate or continue a

control section
– RSECT – similar to CSECT but causes the assembler to check for possible

violations of reenterability

■ Unnamed sections are those that do not have a name – although this is valid, it is not
recommended.

 Source If Applicable

12 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Reference Control Sections

■ Reference control sections are used for referencing storage areas or to describe data and
are not assembled into object code

– Started by the DSECT, COM and DXD statements
– As with other forms of control sections, they continue until interrupted by either

another control section or an END statement

■ DSECT – Dummy control section
– Reference control section that describes the layout of data in storage without

reserving any virtual storage
– There is no object code nor space in the object module reserved. A DSECT will

cause the assembler to assign location values for the DSECT's symbols relative to
its beginning

– Data can be referred to symbolically by using the symbols defined in the dummy
section

 Source If Applicable

13 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Reference Control Sections

■ COM – Common control section
– Allows for the definition of a common storage area in one or more source modules
– At link time, only one copy of a COM section is created for all the object modules

being linked as a single program
– Only the storage area is provided – the data must be provided at execution time

■ External dummy sections
– Created via DXD, DSECT and CXD instructions or via the Q-type address constant
– To use:

● Use a DXD instruction to define the external dummy section
● Provide a Q-type constant to address the external dummy section
● Use the CXD instruction to obtain the total length of all external dummy sections
● Allocate the storage required as calculated by the CXD
● Address the allocated storage (plus any offset into the areas as required)

 Source If Applicable

14 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Subroutines

■ Breaking sections of code out into subroutines is one of the easiest ways to structure
programs.

■ If the subroutine is close to the code that calls it then the following code should suffice:
bas r14,mysubroutine

■ However, if the subroutine is beyond the range of an active using then an A-type address
constant should be used instead:

l r15,=A(mysubroutine)
basr r14,r15

■ This technique only works for addresses which can be resolved during assembly time.

 Source If Applicable

15 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – External Subroutines

■ An external reference is a symbol that is unresolvable at assembly time. Instead, the symbol
is resolved by the binder when the object files are linked together.

■ To make a symbol externally available, the module in which the symbol is declared must
either define it as the name of a control section or as an ENTRY, e.g.:

 MYSUB ENTRY

■ Note that START, CSECT, RSECT are automatically considered as ENTRY symbols

■ In the module that references the external symbol, the external symbol must be declared as
EXTRN before being used:

 EXTRN MYSUB
...some code...
subaddr dc a(MYSUB)

■ The WXTRN instruction can also be used instead of EXTRN. However
– For EXTRN, if the symbol is not found from the list of modules being linked, then a

library search is performed to try and find the symbol
– For WXTRN, no library search is performed

 Source If Applicable

16 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – External Subroutines

■ Alternatively, the V-type constant automatically declares a symbol as EXTRN:

 Source If Applicable

mod1 CSECT
mod1 AMODE 31
mod1 RMODE 24
 using *,15
 l 15,=v(mod2)
 basr 14,15
 br 14

mod2 CSECT
mod2 AMODE 31
mod2 RMODE 24
 la 15,2
 br 14

mod1 CSECT
mod1 AMODE 31
mod1 RMODE 24
 Using *,15
 extrn mod2
 l 15,=a(mod2)
 basr 14,15
 br 14

mod2 CSECT
mod2 AMODE 31
mod2 RMODE 24
 la 15,2
 br 14

17 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Using CSRs – z/OS only

■ For z/OS 1.13 and above, with HLASM APAR PM74898 applied and for GOFF only...

■ Conditional Sequential RLDs, (CSRs) allow an assembler programmer to specify multiple
external references in a single V-type address constant separated by colons, e.g.:

my_modules dc v(mod1:mod2:mod3)

■ The assembler program continues to use the V-type as normal but:
– When the binder goes to resolve the external symbol, it will resolve it to the first

available external symbol
– If the first symbol isn't present, then the 2nd available symbol is chosen and so on...

■ For a more detailed look at how to use CSRs see:
 http://www.ibm.com/support/docview.wss?uid=swg21598283

http://www.ibm.com/support/docview.wss?uid=swg21598283

18 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming

 Source If Applicable

The location counter and USINGs

19 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Using the location counter

■ The location counter is an internal count from the start of the source module in bytes and is
represented by the symbol *

■ The LOCTR instruction maybe used to specify multiple location counters within a control
section.

■ Each location counter is given consecutive addresses and the order of location counters
produced is dependent on the order in which they are defined

■ A location counter continues until it is interrupted by the START, CSECT, DSECT, RSECT,
CATTR or LOCTR instructions

■ Specifying LOCTR to an already defined location counter will resume that counter

 Source If Applicable

20 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – The USING statement

■ The USING specifies a base register for a series of location counter displacements to a
particular symbol within a control section

■ There have been improvements to HLASM's USING statement including 'Labeled USINGs'
and 'Dependent USINGs'

– Labeled USINGs
● Allow simultaneous references to multiple instances of an object
● Allow one object to be referenced per register

– Dependent USINGS
● Address multiple objects with a single register
● Allow for a program to require fewer base registers
● Allow for dynamic structure remapping during execution

 Source If Applicable

21 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Labeled USINGs

■ The labeled USING statement has the syntax in the form:
– qualifier USING base,register

■ A symbol can be referenced by prefixing it with a qualifier and therefore the same symbol
may be addressed by 2 or more base registers at the same time, e.g.

■ Without labeled USINGs, the above MVC would have to be written using manually
calculated offsets, e.g.

 Source If Applicable

* COPY THE CUSTOMER DETAILS TO THE NEW CUSTOMER RECORD
CSTMR1 USING CUST_DATA,R4
CSTMR2 USING CUST_DATA,R5

MVC CSTMR2.CUST_DETAILS,CSTMR1.CUST_DETAILS
L R3,NEW_CUST_NUMBER
ST R3,CSTMR2.CUST_NUM

* COPY THE CUSTOMER DETAILS TO THE NEW CUSTOMER RECORD
USING CUST_DATA,R5
MVC CUST_DETAILS,CUST_DETAILS-CUST_DATA(R4)

22 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Dependent USINGs

■ A dependent USING is one that specifies an anchor location rather than a register as its
operand

■ Allows the programmer to address more than one DSECT at the same time using the same
base register

■ HLASM will add the offset from REQI_DATA to XPL_DATA in order to generate the offsets
for the fields in the REQI_DATA DSECT based off register 10

■ The displacement limit for a dependent using is still limited to 4095 (as usual)

 Source If Applicable

* ADDRESS THE DATA IN BOTH XPL_DATA AND REQI_DATA
USING XPL_DATA,R10
USING REQI_DATA,L_XPL_DATA+XPL
LA R1,XPL_INPUT
LA R2,REQI_INPUT
. . .

23 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Labeled Dependent USINGs

■ Dependent USINGs can also have a label allowing for some complex USING issues to be
easily resolved using a single a base register

 Source If Applicable

USING E,7 1 Top level
* │
D1E USING D,D1 1 │ 2 Map D1 into E at D1
D1F1 USING F,D1E.F1 2 │ │ 3 Map F1 into D1 at F1
D1F2 USING F,D1E.F2 2 │ │ 3 Map F2 into D1 at F2
D1F3 USING F,D1E.F3 2 │ │ 3 Map F3 into D1 at F3
* │ 2 Middle level
D2E USING D,D2 1 │ │ Map D2 into E at D2
D2F1 USING F,D2E.F1 3 │ │ 3 Map F1 into D2 at F1
D2F2 USING F,D2E.F2 3 │ │ 3 Map F2 into D2 at F2
D2F3 USING F,D2E.F3 3 │ │ 3 Map F3 into D2 at F3
* │ 2 Middle level
D3E USING D,D3 1 │ │ Map D3 into E at D3
D3F1 USING F,D3E.F1 4 │ │ 3 Map F1 into D3 at F1
D3F2 USING F,D3E.F2 4 │ │ 3 Map F2 into D3 at F2
D3F3 USING F,D3E.F3 4 │ │ 3 Map F3 into D3 at F3

24 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Labeled Dependent USINGs

 Source If Applicable

* Move fields named X within DSECTs described by F
MVC D1F1.X1,D1F1.X2 Within bottom─level DSECT D1F1
MVC D1F3.X2,D1F1.X1 Across bottom─level DSECTs in D1
MVC D3F2.X2,D3F3.X2 Across bottom─level DSECTs in D3
MVC D2F1.X1,D3F2.X2 Across bottom─level DSECTs in D2 & D3

* Move DSECTs named F within DSECTs described by D
MVC D3E.F1,D3E.F3 Within mid─level DSECT D3E
MVC D1E.F3,D2E.F1 Across mid─level DSECTs D1E, D2E

* Move DSECTs named D within E
MVC D1,D2 Across top─level DSECTs D1, D2

25 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming

 Source If Applicable

HLASM Type Checking

26 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Type checking - TYPECHECK

■ HLASM provides a number of type-checking facilities to assist make programs safer to
change

■ HLASM type-checking is provided by the TYPECHECK option:

 Source If Applicable

27 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Type checking - TYPECHECK

■ MAGNITUDE
– Causes HLASM to perform magnitude validation of signed immediate data fields,

e.g.:
000000 A718 FFFF 0FFFF 7 lhi 1,x'ffff'
 ** ASMA320W Immediate field operand may have incorrect sign or magnitude

■ REGISTER
– Causes HLASM to perform type checking of register fields of machine instruction

operands, e.g.:
 00001 7 fpr1 equ 1,,,,fpr
000000 A718 FFFF 0FFFF 8 lhi fpr1,x'ffff'
** ASMA323W Symbol fpr1 has incompatible type with general register field

■ NOTYPECHECK
– Turns off all type-checking

 Source If Applicable

28 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Type checking – User types

■ The DC and DS statements allow users to create their own “Program Types” using the P
parameter, e.g.:

my_data dc cap(c'read')l3'this is my data'

■ The value of the program type is returned via the SYSATTRP macro function

■ The value of the assembler type is returned via the SYSATTRA macro function

■ The value of the type attribute is returned via the macro T' operator

 Source If Applicable

 &d_type setc sysattrp('my_data1')
 mnote *,'SYSATTRP is --> &d_type'
+*,SYSATTRP is --> read
 &d_type setc sysattra('my_data1')
 mnote *,'SYSATTRA is --> &d_type'
+*,SYSATTRA is --> CA
 &d_type setc t'my_data1
 mnote *,'SYSATTRA is --> &d_type'
+*,SYSATTRA is --> C
 my_data1 dc cap(c'read')l3'mr smith'

29 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Type checking – EQU

■ The EQU statement can be used to:
– Specify a 32-bit value used as the program type (4th operand of EQU)
– Specify a register type (5th operand of EQU)

■ The program type for an EQU symbol will be returned via the SYSATTRP function as for
macro symbols

■ The register types that are available to use are:
– AR – Access registers
– CR, CR32, CR64 – Control registers
– FPR – Floating point registers
– GR, GR32, GR64 – General purpose registers
– VR – z13 vector registers

■ Note that there is no vector register type-checking on pre-z/Architecture vector instructions
– The hardware hasn't been available to use for a while now...don't use them!!

 Source If Applicable

30 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming

 Source If Applicable

Structured Programming Macros

31 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Structured Programming Macros

■ HLASM provides a set of Structured Programming Macros (SPMs) as part of the HLASM
Toolkit feature

■ The SPMs provide
– Branching structures (if) – IF, ELSEIF, ELSE, ENDIF
– Looping structures (Do) – DO, ITERATE, DOEXIT, ASMLEAVE, ENDDO
– Searching – STRTSRCH, ORELSE, ENDLOOP, ENDSRCH, EXITIF
– N-way branching – CASENTRY, CASE, ENDCASE
– Selection on general sequential cases – SELECT, WHEN, NEXTWHEN,

OTHERWISE, ENDSEL

■ Why use SPMs?
– Improve code readability, maintainability, understandability
– Faster application development
– Cleaner code
– Eliminates extraneous labels – makes it easier to revise

 Source If Applicable

32 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Structured Programming Macros

■ Ever seen some code like this?

 Source If Applicable

CHK1 ICM 2,15,RETCODE RETURN CODE 0?
 BC 8,RETOK BRANCH TO RETURN OK
 SLL 2,2 MAKE BRANCH OFFSET
 ICM 3,15,RESN RETURN NOT 0 AND REASON PRESENT?
 BC 7,RESTAB(2) BRANCH INTO REASON TABLE
CHK2 L 15,CHKRES CALL CHECKRES SUBROUTINE
 BALR 14,15
 LTR 15,15 RETURN OK?
 BC 8,CHK1 GOTO REPEAT CHECKS
 BC 1,RETOK RETURN WILL DO
 BC 4,CHK1 LOOKUP REASON
RETOK C 2,=F'3' WAS RETURN LESS THAN 3?
 BC 4,CHKERRL4 YES
 LA 3,0
 BC 15,CONT242 CONTINUE CODE
CHKERRL4 L 15,OMINERR OUTPUT MINOR ERROR
CONT242 . . .

33 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Structured Programming Macros

■ Ever seen someone make a fix like this?

 Source If Applicable

CHK1 ICM 2,15,RETCODE RETURN CODE 0?
 BC 8,RETOK BRANCH TO RETURN OK
 SLL 2,2 MAKE BRANCH OFFSET
CHK1B ICM 3,15,RESN RETURN NOT 0 AND REASON PRESENT?
 BC 7,RESTAB(2) BRANCH INTO REASON TABLE
CHK2 L 15,CHKRES CALL CHECKRES SUBROUTINE
 BALR 14,15
 LTR 15,15 RETURN OK?
 BC 8,CHK1 GOTO REPEAT CHECKS
 BC 1,RETOK RETURN WILL DO
 BC 4,CHK1B LOOKUP REASON
RETOK C 2,=F'3' WAS RETURN LESS THAN 3?
 BC 4,CHKERRL4 YES
 LA 3,0
 BC 15,CONT242 CONTINUE CODE
CHKERRL4 L 15,OMINERR OUTPUT MINOR ERROR
CONT242 . . .

34 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Structured Programming Macros

■ Maybe the previous slides were a contrived example...you'd be surprised...
– CHK1B might be an easy fix for now but what will the code be like when we reach

CHK9C ... We've all seen it happen...

■ Why does assembler code have a reputation for always being an unmaintainable mess?
– Code gets maintained rather than developed...
– Documentation gets lost...
– Programmer's make bad choices...

■ What can we do to fix this?
– Structure your code
– Don't call everything tmp1, tmp2, temp1, temp2, etc.
– Use HLASM 's facilities to help you

 Source If Applicable

35 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – Structured Programming Macros

■ To use – just copy in the ASMMSP copybook
– By default, the SPMs produce based branch on condition instructions. To cause the

SPMs to produce relative branch instructions, use the ASMMREL macro:
ASMMREL ON

■ Global variables used by the macros begin with &ASMA_

■ User-visible macros have meaningful mnemonics
– Internal non-user macros begin with ASMM

 Source If Applicable

36 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - IF...

■ Provides simple selection for a given condition or instruction

■ Multiple forms of IF statement:
– IF (condition)
– IF (instruction, parm1,parm2,condition)
– IF (compare instruction,parm1,condition,parm2)
– IF CC=condition_code

■ Conditions may be joined together with Boolean operators
– AND
– OR
– ANDIF

● A OR B AND C → A OR (B AND C) but A OR B ANDIF C → (A OR B) AND C
– ORIF

● A AND B ORIF C OR D → (A AND B) OR (C OR D)
– NOT

 Source If Applicable

37 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - IF...

■ Provides simple selection for a given condition or instruction

■ Multiple forms of IF statement:
– IF (condition)

 Source If Applicable

...
LT R1,CUSTOMER_NUMBER
IF (Z) THEN

Code to assign a new customer number
ELSEIF (N) THEN

Code for negative customer number – error
ELSE

Look up the customer and do something useful
ENDIF
...

38 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - IF...

■ Provides simple selection for a given condition or instruction

■ Multiple forms of IF statement:
– IF (condition)

 Source If Applicable

...
LT R1,CUSTOMER_NUMBER
IF (Z) THEN

Code to assign a new customer number
ELSEIF (N) THEN

Code for negative customer number – error
ELSE

Look up the customer and do something useful
ENDIF
...

THEN is actually a comment – not needed

39 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - IF...

■ Provides simple selection for a given condition or instruction

■ Multiple forms of IF statement:
– IF (instruction, parm1,parm2,condition)

 Source If Applicable

...
IF (LT,R1,CUSTOMER_NUMBER,Z) THEN

Code to assign a new customer number
ELSEIF (N) THEN

Code for negative customer number – error
ELSE

Look up the customer and do something useful
ENDIF
...

40 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - IF...

■ Provides simple selection for a given condition or instruction

■ Multiple forms of IF statement:
– IF (compare instruction,parm1,condition,parm2)

 Source If Applicable

...
if (cli,x_val,eq,X'55'),OR, Value is x55? X
 (cli,x_val,eq,X'5D'),OR, Value is x5D? X
 (cli,x_val,eq,X'51'),OR, Value is x51? X
 (cli,x_val,eq,X'59') Value is x59?

Code goes here...
endif
...

41 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - IF...

■ Provides simple selection for a given condition or instruction

■ Multiple forms of IF statement:
– IF (compare instruction,parm1,condition,parm2)

 Source If Applicable

Remember to continue statements

...
if (cli,x_val,eq,X'55'),OR, Value is x55? X
 (cli,x_val,eq,X'5D'),OR, Value is x5D? X
 (cli,x_val,eq,X'51'),OR, Value is x51? X
 (cli,x_val,eq,X'59') Value is x59?

Code goes here...
endif
...

42 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - IF...

■ The following are the condition mnemonics permitted by the SPMs

 Source If Applicable

Case Condition
Mnemonics

Meaning Complements

After compare
instructions

H, GT
L, LT
E, EQ

Higher, greater
Less than
Equal

NH, LE
NL, GE
NE

After arithmetic
instructions

P
M
Z
O

Plus
Minus
Zero
Overflow

NP
NM
NZ
NO

After test under
mask
instructions

O
M
Z

Ones
Mixed
Zero

NO
NM
NZ

43 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - IF...

■ Provides simple selection for a given condition or instruction

■ Multiple forms of IF statement:
– IF CC=condition code

 Source If Applicable

...
L R15,TRREME
TRT 0(1,R6),0(R15)
IF CC=0,OR,CC=2 Did the operation complete?

Yes – let's examine register 2 for TRT result...
ELSE

Data was examined but there is still more to go...
Examine the result and re-drive the instruction

ENDIF
...

44 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs – DO...

■ Provides iterative execution

■ Multiple forms of DO statement:
– DO ONCE/INF...
– DO FROM=(Rx,i),TO=(Ry+1,j),BY=(Ry,k)...
– DO WHILE=(condition)...
– DO UNTIL=(condition)...

■ Loop control keywords
– DOEXIT – uses IF-macro style syntax to exit the current DO or any containing

labeled DO
– ASMLEAVE – unconditionally exit the current DO or any containing labeled DO
– ITERATE – requests immediate execution of the next loop iteration for the current or

any containing labeled DO

 Source If Applicable

45 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - DO...INF

■ Provides iterative execution

■ Multiple forms of DO statement:
– DO INF → infinite loop

 Source If Applicable

...
* Count the number of customers

XGR R2,R2 Clear the counter
DO INF

LT R3,CUSTOMER_NUMBER(R2) Get the next customer
DOEXIT (Z) Exit if at end
ALGFI R2,L'CUSTOMER_REC Increment counter

ENDDO
...

46 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - DO...FROM

■ Provides iterative execution

■ Multiple forms of DO statement:
– DO FROM → Counted loop – note that this generates a BCT

 Source If Applicable

...
* Output only top 10 customers

DO FROM=(R1,10)
L R3,CUSTOMER_NUMBER(R1) Get customer
OUTPUT_CUSTOMER CUST=R3 Call subroutine

ENDDO
...

47 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs - DO...

■ Provides iterative execution

■ Multiple forms of DO statement:
– DO FROM → Counted loop – note that this generates a BXH

 Source If Applicable

...
XC FLAG,FLAG Clear process flag
IF (CLI,INPUT_RECORD,NE,C'*') Not a comment?

DO FROM=(R1,1),TO=(R5,72),BY=(R4,1)
LA R2,INPUT_RECORD(R1) Get next character
...
IF (CLC,0(5,R2),EQ,=' END '),AND, X

(CLI,FLAG,EQ,2)
... Process the END record
ASMLEAVE Leave the process loop

ENDIF
ENDDO

ENDIF
...

48 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs – DO...Backwards...

■ Provides iterative execution

■ Multiple forms of DO statement:
– DO FROM → Counted loop – note that this generates a BXH

 Source If Applicable

...
XC FLAG,FLAG Clear process flag
IF (CLI,INPUT_RECORD,NE,C'*') Not a comment?

DO FROM=(R1,1),TO=(R5,72),BY=(R4,-1)
LA R2,INPUT_RECORD(R1) Get next character
...
IF (CLC,0(5,R2),EQ,=' END '),AND, X

(CLI,FLAG,EQ,2)
... Process the END record
ASMLEAVE Leave the process loop

ENDIF
ENDDO

ENDIF
...

49 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

HLASM Structured Programming – SPMs – SELECT...

■ Provides selective execution similar to an IF

 Source If Applicable

...
SELECT

WHEN (CLI,PREFIX,EQ,C'+')
MVC OUT_BUFFER(L'STMT_MACROEXP),STMT_MACROEXP

WHEN (CLI,PREFIX,EQ,C'=')
MVC OUT_BUFFER(L'STMT_COPYBOOK),STMT_COPYBOOK

WHEN (CLI,PREFXI,EQ,C' ')
MVC OUT_BUFFER(L'STMT_NORMAL),STMT_NORMAL

OTHERWISE
BAL R14,ERROR_ROUTINE Listing isn't correct...
J EXIT_ROUTINE

ENDSEL
* Output the type of statement encountered
...

50 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

Summary

■ Control sections – C-, R-, DSECTs, External dummy sections
– CSECT, RSECT, DSECT, DXD, COM

■ The location counter and USING statements
– LOCTR
– Labeled USINGs
– Dependent USINGs

■ Structured Programming Macros (SPMs)
– IF...ELSEIF...ELSE...ENDIF
– DO WHILE / UNTIL / FROM...ENDDO
– SELECT...WHEN...OTHERWISE...ENDSEL
– ASMLEAVE, DOEXIT

 Source If Applicable

51 © 2009 IBM Corporation
© 2015 IBM Corporation

Structured Programming in Assembler 16321 – SHARE – Seattle 2015

Where can I get help?

■ z/OS V2R1 Elements and Features
http://www.ibm.com/systems/z/os/zos/bkserv/v2r1pdf/#IEA

■ HLASM Publications
http://www.ibm.com/systems/z/os/zos/library/bkserv/v2r1pdf/#ASM

■ HLASM Programmer's Guide (SC26-4941-06)
http://publibz.boulder.ibm.com/epubs/pdf/asmp1021.pdf

■ HLASM Language Reference (SC26-4940-06)
http://publibz.boulder.ibm.com/epubs/pdf/asmr1021.pdf

■ HLASM Toolkit Features User's Guide (GC26-8710-10)
http://publibz.boulder.ibm.com/epubs/pdf/asmtug21.pdf

■ z/Architecture Principles of Operation
http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

http://www.ibm.com/systems/z/os/zos/bkserv/v2r1pdf/#IEA
http://www.ibm.com/systems/z/os/zos/library/bkserv/v2r1pdf/#ASM
http://publibz.boulder.ibm.com/epubs/pdf/asmp1021.pdf
http://publibz.boulder.ibm.com/epubs/pdf/asmr1021.pdf
http://publibz.boulder.ibm.com/epubs/pdf/asmtug21.pdf
http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

