
Insert
Custom
Session
QR if
Desired.

A Hitchhikers Guide
to Linux performance Issues

Christian Ehrhardt
IBM

4th August 2014
16244

2

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml
.

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.

Red Hat, Red Hat Enterprise Linux (RHEL) are registered trademarks of Red
Hat, Inc. in the United States and other countries.

 SUSE and SLES are registered trademarks of SUSE LLC in the United States
and other countries.

Java and Oracle are registered trademarks of Oracle and/or its affiliates.

Other product and service names might be trademarks of IBM or other
companies.

http://www.ibm.com/legal/copytrade.shtml

3

Agenda

● Disk performance approximately 55% of external support requests
● Network performance approximately 25% of external support requests
● Compiler two ISVs and one of the biggest logistic companies
● Huge pages beneficial in almost every huge installation

● In any environment from which we got support requests at least one of these
areas was set up sub-optimally wasting performance or efficiency
– So lets derive optimistically:

“maybe those people following this guide never have significant issues”
– Let us work on making you one of those

4

Disk I/O - benchmark description and configuration

● Flexible I/O Testing Tool (FIO)
– Benchmarking and hardware

verification / stress I/O devices
– Open Source (GPLv2)
– Easy to customize to needs

● Configuration
– 8 processors
– 512 MB main memory
– z196 connected to DS8800
– FICON Express 8s
– 64 single disks, each in

FICON and SCSI

FICON Port
FCP Port
Not used

System z DS8K

S
w

itc
h

5

● Storage server basics – various configurations possible
– Preferable many ranks into a extent pool with Storage Pool Striping (extents

striped over all ranks within extent pool)

Disk I/O – Storage Server DS8x00

P
ro

ce
ss

or
 C

om
pl

ex
 0

Ranks

2

0

4

Device Adapter

6

1

Disks

3

5

7P
ro

ce
ss

or
 C

om
pl

ex
 1

R
ea

d
 c

ac
he

N
V

S
R

ea
d

 c
ac

he
N

V
S

FICON/ECKD

FCP/SCSI

FICON/ECKD
Pool for Minidisks

6

Disk I/O – Volumes
● Extent pool with 8 disks a 4 GB defined

– Each rank has access to an adequate portion of the read cache and non-volatile storage
(NVS – write cache)

● Example: random access to one volume
– Usable portions of read cache and NVS very limited because just one rank is involved
– Only one Device Adapter (DA) in use

1

2

3

4

5

6

R
an

k/
A

rr
ay

s

7

Disk I/O – Volumes
● Extent pool with 8 disks a 4 GB defined

– Each rank has access to an adequate portion of the read cache and non-volatile storage
(NVS – write cache)

● Example: random access to one volume
– Usable portions of read cache and NVS very limited because just one rank is involved
– Only one Device Adapter (DA) in use

1

2

3

4

5

6

R
an

k/
A

rr
ay

s

Read
cache

NVSRead
cache

8

Disk I/O – Volumes with Storage Pool Striping (SPS)
● Extent pool example with 8 disks a 4 GB, with Storage Pool Striping (SPS)

– Each rank has access to an adequate portion of the read cache and non-volatile storage
(NVS – write cache)

● Example: random access to one SPS volume
– Usable portions of read cache and NVS much bigger because four ranks are involved
– Up to four Device Adapters (DA) are in use

1

2

3

4

5

6

R
an

k/
A

rr
ay

s

9

Disk I/O – Volumes with Storage Pool Striping (SPS)

1

2

3

4

5

6

R
an

k/
A

rr
ay

s

NVSNVS

NVS

NVS

NVS

Read
cache

Read
cache

Read
cache

Read
cache

● Extent pool example with 8 disks a 4 GB, with Storage Pool Striping (SPS)
– Each rank has access to an adequate portion of the read cache and non-volatile storage

(NVS – write cache)
● Example: random access to one SPS volume

– Usable portions of read cache and NVS much bigger because four ranks are involved
– Up to four Device Adapters (DA) are in use

10

Disk I/O – two volumes in a striped LVM

1

2

3

4

5

6

R
an

k/
A

rr
ay

s

● Extent pool example with 8 disks of 4 GB size
– Each rank has access to an adequate portion of the read cache and non-volatile storage

(NVS – write cache)
● Two volumes are used for the LVM

– Usable read cache portions and NVS very limited because only two ranks are involved
– Up to two Device Adapters (DA) are used for the connection to cache and NVS

11

Disk I/O – two volumes in a striped LVM

● Extent pool example with 8 disks of 4 GB size
– Each rank has access to an adequate portion of the read cache and non-volatile storage

(NVS – write cache)
● Two volumes are used for the LVM

– Usable read cache portions and NVS very limited because only two ranks are involved
– Up to two Device Adapters (DA) are used for the connection to cache and NVS

1

2

3

4

5

6

R
an

k/
A

rr
ay

s

NVSRead
cache

Read
cache

NVS

12

Disk I/O – two SPS volumes in a striped LVM

1

2

3

4

5

6

R
an

k/
A

rr
ay

s

● Extent pool example with 8 disks a 4 GB, with Storage Pool Striping (SPS)
– Each rank has access to an adequate portion of the overall amount of read cache and

non-volatile storage (NVS – write cache)
● Two SPS volumes are used for the LVM

– Usable portions of read cache and NVS much bigger because six ranks are involved
– Up to six Device Adapters (DA) are used for the connection to cache and NVS

13

Disk I/O – two SPS volumes in a striped LVM

● Extent pool example with 8 disks a 4 GB, with Storage Pool Striping (SPS)
– Each rank has access to an adequate portion of the overall amount of read cache and

non-volatile storage (NVS – write cache)
● Two SPS volumes are used for the LVM

– Usable portions of read cache and NVS much bigger because six ranks are involved
– Up to six Device Adapters (DA) are used for the connection to cache and NVS

1

2

3

4

5

6

R
an

k/
A

rr
ay

s

NVSRead
cache

Read
cache

Read
cache

Read
cache

Read
cache

Read
cache

NVS

NVS

NVS

NVS

NVS

14

Disk I/O - striping options

● Striping is recommended and will result in higher throughput
– Storage Pool Striped (SPS) disks with linear LV will perform better on

many disk I/O processes
– Device mapper striping on SPS disks will have good performance with

few disk I/O processes

Storage Pool
Striping (SPS) or
equivalent

Device mapper LV
striping

No striping

Performance
improvement

yes yes no

Processor
consumption in Linux

no yes no

Complexity of
administration

low high no

15

Disk I/O FICON / ECKD – number of paths in use

● Comparison of a single used subchannel to HyperPAV
– Multiple (in example eight) paths perform much better
– For reliable production systems you should use a multipath setup

1 2 4 8 16

Sequential Read

1 disk 1 path

1 disk 8 paths with HPAV

Number of accesses in parallel

16

Disk I/O FICON / ECKD – number of paths in use (cont.)

● iostat comparison (case 16 jobs in parallel)

...

04/10/14 23:52:20

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq­sz avgqu­sz await r_await w_await svctm %util

dasda 0.00 0.20 0.00 0.20 0.00 1.60 16.00 0.00 0.00 0.00 0.00 0.00 0.00

dasdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dasdc 2830.60 0.00 750.60 0.00 340915.20 0.00 908.38 36.06 48.03 48.03 0.00 1.33 100.00

…

...

04/11/14 01:15:31

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq­sz avgqu­sz await r_await w_await svctm %util

dasda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dasdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dasdc 10243.20 0.00 2700.40 0.00 1229968.00 0.00 910.95 32.87 12.16 12.16 0.00 0.34 92.20

...

17

Disk I/O FICON / ECKD – number of paths in use (cont.)

● DASD statistics comparison (case 16 accesses in parallel)
● One CCW program must be finished before the next can executed in one path case

– DASD driver queue size limited to maximal five entries
● First table shows the distribution in statistics of one to five requests queued

● When more paths are used the requests gets distributed and parallel execution is possible
– No more limitation to maximal five entries

● Second table shows a distribution in statistics with up to seventeen requests
queued

● Most of the time eight to twelve requests queued

14513 dasd I/O requests

with 13108456 sectors(512B each)

Scale Factor is 1

 __<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k

 _256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G

of req in chanq at enqueuing (1..32)

 0 29 5396 7643 1445 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

of req in chanq at enqueuing (1..32)

 0 14 8 28 95 85 181 1265 2958 3329 3755 1796 620 126 28 18

 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

18

Disk I/O FICON / ECKD – usage of DS8K processor complexes

● Comparison one DS8K processor complex versus both processor complexes with
LVM and HyperPAV
– Recommendation if throughput matters: redistribute workload over both

processor complexes
– Write performance depends on available non-volatile write cache (NVS)

1 2 4 8 16

Sequential Write

1 DS8K processor complex

2 DS8K processor complexes

Number of accesses in parallel

19

Disk I/O FICON / ECKD – usage of DS8K processor complexes

● Run iostat using command “iostat ­xtdk 10”
● iostat results for sequential write using one DS8K processor complex compared to

both processor complexes (16 streams write in parallel)
– Much more throughput for both processor complexes with more NVS

available
– Less await and service time with both processor complexes

04/11/14 04:29:07

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq­sz avgqu­sz await r_await w_await svctm %util

dasda 0.00 0.20 0.00 0.20 0.00 1.60 16.00 0.00 0.00 0.00 0.00 0.00 0.00

...

...

dasddz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dm­0 0.00 0.00 0.00 15577.60 0.00 1482777.60 190.37 139.00 9.41 0.00 9.41 0.06 100.00
...

04/11/14 20:58:22

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq­sz avgqu­sz await r_await w_await svctm %util

dasda 0.00 0.00 0.00 0.20 0.00 0.80 8.00 0.00 0.00 0.00 0.00 0.00 0.00

...

...

dm­0 0.00 0.00 0.00 33563.60 0.00 3194752.00 190.37 161.00 4.80 0.00 4.80 0.03 98.60

20

1 2 4 8 16

Sequential Write

LV linear

LV striped

Number of accesses in parallel

Disk I/O FICON / ECKD - LVM linear versus LVM striped
● Comparison Logical Volume linear versus Logical Volume striped

– Much more parallelism when using striping with a few jobs running
– Striping with sizes of 32kiB / 64 kiB may split up single big I/Os (bad)

● This applies especially to sequential workloads where read-ahead scaling
take place

– Striping adds extra effort / processor consumption to the system
● Eventually can consume the benefits of striping by cpu induced latencies

21

1 2 4 8 16

Sequential Read

1 disk 1 path

1 disk, 8 paths

Number accesses in parallel

Disk I/O FCP / SCSI – number of paths in use
● Comparison single path setup to many paths

– Multipath solution allows much more throughput
● Multipath requires some extra processor cycles

– Similar to comparison single subchannel versus HyperPAV
● For reliable production systems you should use a multipath setup anyway

– Failover does not increase the capacity available to a path group, while multibus
does

22

1 2 4 8 16

Random Write 1 DS8K processor complex

2 DS8K processor complexes

Number accesses in parallel

Th
ro

ug
hp

ut

● Comparison usage of one processor complex versus both processor
complexes with LVM
– Usage of both processor complexes has an advantage if NVS

became the limiting factor

Disk I/O FCP / SCSI - usage of DS8K processor complexes

23

● Use latest hardware if throughput is important
– Currently FICON Express 8S

● Use direct I/O and asynchronous I/O
– Requires support by your used software products
– More throughput at less processor consumption
– In most cases advantageous if combined

● Use advanced FICON/ECKD techniques such as
– High Performance FICON
– Read Write Track Data

● Use the FCP/SCSI datarouter technique for further speedup (~5-15%)
– Kernel parmline zfcp.datarouter=1, default on in more recent distribution

releases
– Requires 8S cards or newer

● Feature similar to the store-forward architecture of recent OSA Cards
– Allows the driver to avoid extra buffering in the card

● No in card buffering also means there can't be a stalling buffer shortage

Disk I/O – more tuning options

24

● Use as much paths as possible
– ECKD logical path groups combined with HyperPAV
– SCSI Linux multipath multibus

● Use all advanced software, driver and Hardware features
● Storage Server

– Use Storage Pool Striping (SPS) as a convenient tool
– Define extent pools spanning over many ranks
– Use both storage server complexes of the storage server (DS8x00)

● If you use Logical Volumes (LV)
– Linear: with SPS and random access
– Linear: with SPS and sequential access and many processes
– Striped: for special setups that proved to be superior to SPS

● So long story short: let nothing idle and use all you've got

Disk I/O – performance considerations summary

25

Agenda

● Disk performance approximately 55% of external support requests
● Network performance approximately 25% of external support requests
● Compiler two ISVs and one of the biggest logistic companies
● Huge pages beneficial in almost every huge installation

26

Network performance tuning

● It's not that hard actually...

net.core.netdev_max_backlog = 25000

net.core.somaxconn = 1024

net.ipv4.tcp_max_syn_backlog = 10000

net.ipv4.ip_local_port_range = 15000 65000

net.ipv4.tcp_fin_timeout = 1

net.ipv4.tcp_tw_reuse = 1

net.ipv4.tcp_tw_recycle = 1

net.ipv4.tcp_window_scaling = 1

net.ipv4.tcp_timestamps = 1

net.ipv4.tcp_sack = 1

net.ipv4.tcp_dsack = 1

net.core.wmem_max = 524288

net.core.rmem_max = 524288

net.ipv4.tcp_wmem = 4096 16384 524288

net.ipv4.tcp_rmem = 4096 87380 524288

27

Network performance tuning

● But seriously...
● We won't go into all the gritty details here

– Instead, we're going to introduce you to the concepts you can use
to improve your network performance

– If you really want to get into all the details (and especially how to
do it), there are slides that go into that in the appendix of this
presentation

28

Tuning parameters - MTU size

● The maximum size usable for payload data in a single IP packet
– Minus protocol headers

● The default for Ethernet is 1500
– 1492 for OSA in layer 3 mode

● You can increase this to reduce segmentation overhead and thus CPU
cycles
– Those frames are called “jumbo frames”
– Your infrastructure (switches, routers, …) must support those
– Normally up to 9000, for OSA in layer 3 mode up to 8992

● Ideally, your MTU should not exceed the MTUs used on all the hops
your packets pass through on their way to their target

Ethernet frame

E
th

e
rn

e
t

h
e

a
d

e
r

MTU size

IP
h

e
a

d
e

r

T
C

P
h

e
a

d
e

r

Application data

29

Tuning parameters - send / receive buffer size

● Buffer packets to accommodate for bandwidth mismatches between sender and receiver
– Both could be a source of latencies if they are not drained fast enough (buffer bloat)

● Linux automatically manages the size of these buffers
– You can set some bounds respected by the auto-tuning mechanism

● Depending on your scenario, bigger or smaller buffers work better
– HiperSockets vs. OSA

● For HiperSockets with a MTU > 8000, the buffer size should not exceed 524288
● For OSA, larger buffer sizes like 4194304 are preferred for optimal performance

– LAN vs. WAN
● Generally, if either your link speed or your round-trip latency (or both) increases,

you'll need bigger buffers (based on the bandwidth delay product).

Sender Receiver

In flight packets

Bandwidth delay product
(has to fit in receiver buffer to avoid drops)

30

Tuning parameters - OSA inbound buffer count

● You can limit the number of buffers the OSA adapter uses for inbound
connections

● The default here is 64
● For maximum performance, this should be increased to 128
● Caveat: this increases your memory consumption by 64 KiB per additional buffer

of buffers

X
 in

 fl
ig

ht Each X/2:
Flush buffers (CPU intensive)

Bigger buffer = lower flush rate = lower overhead

31

Tuning parameters - offloads

● Most network cards support some kind of hardware offloads
● Those shift work from the CPU to the network card itself
● The two most prominent here are TCP segmentation offload (TSO) and

generic receive offload (GRO)
● It is advisable to enable those

– Caveat: TSO only works for physical adapters in layer 3 mode
● Another relevant one would be TX and RX checksumming

Network stack

IFLs

Without offloading

IFLs

Network
adapter

With offloading

32

Agenda

● Disk performance approximately 55% of external support requests
● Network performance approximately 25% of external support requests
● Compiler two ISVs and one of the biggest logistic companies
● Huge pages beneficial in almost every huge installation

33

0%

5%

10%

15%

20%

25%

30%

Different GCC versions performance on z196

Industry standard benchmark (study)

O
ve

ra
ll

th
ro

ug
hp

ut
 c

ha
ng

e
 in

 %

GCC evolution

● Advantages of using current compilers are significant
– Improved machine support is introduced with newer GCC versions

● Distributors often back-port patches
– Applications of different characteristics will show different throughput

changes when using a newer compiler

34

GCC versions in Linux on System z supported distributions

Included in SUSE distribution Included in Red Hat distribution
GCC-3.3 05/2003 n/a
GCC-3.4 04/2004 n/a RHEL4 (z990 support)
GCC-4.0 04/2005 n/a n/a
GCC-4.1 02/2006 SLES10 (z9-109 support) RHEL5 (z9-109 support)
GCC-4.2 05/2007 n/a n/a
GCC-4.3 05/2008 n/a
GCC-4.4 04/2009 n/a
GCC-4.5 04/2010 SLES11 SP1 n/a
GCC-4.6 03/2011 SLES11 SP2 (z196 support)* n/a
GCC-4.7 03/2012 SLES11 SP3 (z196 support)* n/a
GCC-4.8 03/2013 SLES12 (zEC12 support)**** RHEL7 (zEC12 support)***
GCC-4.9 04/2014 n/a n/a

GCC
stream

x.y.0
release

SLES9 (z990 backport)

SLES11 (z10 backport)
RHEL6.1 / 5.6** (z196 backport)

* included in SDK, optional, not fully supported
** fully supported add-on compiler
*** as announced for RHEL7 beta by Red Hat (Dec 2013)
**** as seen in SLES12 beta

35

Optimizing C and C++ code

● Produce optimized code
– Options -O3 or -O2 (often found in delivered makefiles) are a good starting

point and are used in most frequently in our performance measurements
– Optimize GCC instruction scheduling with the performance critical target

machine in mind using -mtune parameter
● -mtune=values <z900, z990 with all supported GCC versions>
● <z9-109 with gcc-4.1>
● <z10 with SLES11 gcc-4.3 or gcc-4.4>
● <z196 with RHEL6 gcc-4.4, optional SLES11 SP1 gcc-4.5*, or GNU gcc-

4.6>
● <zEC12 with GNU gcc-4.8>

– Exploit also improved machine instruction set and new hardware capabilities
using the -march parameter

● -march=values <z900, z990, z9-109, z10, z196, zEC12> available with
the same compilers as mentioned above

● Includes implicitly -mtune optimization if not otherwise specified
● -march compiled code will only run on the target machine or newer

machines

* not fully supported version

36

GCC compile options

● Fine Tuning: additional general options on a file by file basis
– -funroll-loops often has advantages on System z

● Unrolling is internal delimited to a reasonable value by default
– Use of inline assembler for performance critical functions may have

advantages
– -ffast-math speeds up calculations (if not exact implementation of

IEEE or ISO rules/specifications for math functions is needed)
– -fno-strict-aliasing helps to overcome code flaws detected with newer

compiler versions

37

Agenda

● Disk performance approximately 55% of external support requests
● Network performance approximately 25% of external support requests
● Compiler two ISVs and one of the biggest logistic companies
● Huge pages beneficial in almost every huge installation

38

Huge pages – three kinds of exploitations

● Huge Pages exploited directly by applications
– Common exploiters using this approach are Java, Databases and

other common huge memory consumers

● Huge pages exploited via libhugetlbfs
– Common exploiters using this approach are administrators who force

an application to use huge pages without change to the application
itself

● Huge Pages exploited via transparent huge pages

– Common exploiters are full system environments starting with the
given releases

Application

Libraries

Kernel

“direct” use

libhugetlbfs

Transparent huge pages

Exploitation / knowledge
about huge pages starts

at different levels

39

Huge pages – three kinds of availability

● Huge Pages exploited directly by applications
– hugetlbfs support available from kernel 2.6.26 on (SLES 11, RHEL 6)

● Huge pages exploited via libhugetlbfs
– For libhugetlbfs System z support started with version 2.15

(SLES11-SP3, RHEL7*)

● Huge Pages exploited via transparent huge pages
– Allows transparent access to huge pages for any application
– Linux on System z support starting with kernel 3.7

● recommended usage starting with kernel 3.8
● Expected to be available with RHEL 7* and SLES 12*

– Check /sys/kernel/mm/transparent_hugepage/* in your live
system

*part of current public beta program content

40

● The kernel has to provide an amount of its memory as huge pages:
– Configure nr_hugepages

echo 2000 > /proc/sys/vm/nr_hugepages

– To make this change boot-proof add entry in sysctl.conf
sysctl -w vm.nr_hugepages=2000

● Could also be achieved via kernel parmline

– Mount hugetlbfs is only required by some applications, but never hurts
 mount -t hugetlbfs none /mnt/hugetlbfs

Huge pages – direct or via libtlbfs – 1. Preparation

41

● Applications that are coded to use huge pages need “their” parameters
– e. g. Java enables huge pages via ­Xlp for the Java Heap

● Starting with Java 7.1 huge pages are also used for classes
– e.g. for DB2 set ther vaiable DB2_LARGE_PAGE_MEM *

● libhugetlbfs enables other applications:
– Is linked dynamically without requiring code changes and recompilation
– Insert the library in the loading process exporting an LD_PRELOAD

statement
export LD_PRELOAD=libhugetlbfs.so

– Check if the certification of software products covers the usage of
libugetlbfs

● For both the most important part is, check that they are really used
– The memory is reserved for huge pages, if not used it is wasted
– Often if an application “just doesn't fit” it falls back to normal for all its

allocations

Huge pages – direct or via libtlbfs – 2. usage

42

Huge pages – transparent usage

● Transparent huge pages is the striving of the kernel to back memory with huge
pages
– Can be swapped, although they have to be broken into 4k to do so
– Are sensible to fragmentation, therefore there is a defrag daemon
– The usage of huge pages is not guaranteed
– All that management adds cpu overhead

● especially if fragmentation or swapping takes place

● Controlled via kernel parameter transparent_hugepage
<never, always, madvise>
– The default setting is “always”
– Can be configured at runtime in

/sys/kernel/mm/transparent_hugepage/*
– Madvise affects only special regions where applications set

MADV_HUGEPAGE
– Comes most likely with RHEL 7 and SLES 12 (as seen in beta programs)

43

Huge pages for Java standard benchmark

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Throughput

transparent huge pages off

transparent huge pages on

-Xlp set and transparent huge pages off

-Xlp set and transparent huge pages on

Number of Warehouses

Th
ro

ug
hp

ut
 in

 b
op

s

Significant values

Warm-up phase

● Usage of transparent huge pages doesn't conflict with direct usage of huge pages
– Processor savings are comparable for all cases using huge pages (~ 5.5 %)
– Usage of transparent huge pages yields ~ 5 % performance gain
– direct usage of huge pages (-Xlp) results in approximately the

same: ~ 5% performance gain

44

0

2

4

6

8

10

12

14

Base measurement

libhugetlbfs measurement

Test Cases

T
h

ro
u

g
h

p
u

t
Im

p
ro

ve
m

en
t

[%
]

libhugetlbfs for compute intense integer benchmark

● Application had no native huge page code
● Usage of libhugetlbfs yields ~ 4 % overall performance gain
● All measured real life applications show a performance improvement

– The degree of the performance improvement depends heavily on the
characteristic and quantity of memory accesses

– No tested application suffered from the usage of libhugetlbfs

45

Huge Pages for Oracle database memory

● Oracle Database uses many processes in parallel
● In general 10-15% can be gained by the reduction in processor usage as well

as having a lot more memory for applications that would be consumed in
Linux Page Tables

● The screen-shot shows that approximately 91GiB of memory were used for
page tables without defined huge pages
– At the same time system started slightly swapping

● Page tables were below 3G after switching to huge pages

46

Huge pages – usage considerations

● In Linux the terms “huge pages” and “large pages” are used synonymously

● Due to the fact that “normal” huge pages are not swappable they may increase
pressure on memory management
– If the system starts swapping frequently usage of huge pages may consume

more processor cycles than saved by huge pages in the first place

● In LPAR
– Decreased page table overhead by using hardware feature “Enhanced DAT”

● Under z/VM
– z/VM does not support huge pages for its guests (EDAT)
– Still Linux can “emulate” huge pages which still drops the page table sizes

● Can be useful for applications with a memory footprint > 10GB
● Trade-off “cpu cycles for huge page emulation” for

“page table size savings”

47

Huge Pages - comparison and conclusion

● Performance gains more or less equal, no matter which method is used
● Generally, transparent huge pages combine a lot of benefits: performance gain + low

administration effort
– Usage of transparent huge pages doesn't conflict with direct usage of huge pages
– Usage of libhugetlbfs is also beneficial but can't compete with the advantages of

transparent huge pages
– Watch out for support statements of Software regarding libhugetlbfs and

transparent huge pages
● Any of them is better than not using huge pages at all

– One has to evaluate for his own benefit and conditions

direct usage of huge pages
(provided by application code)

usage of huge pages via
libhugetlbfs

Transparent huge
pages

Administration Proper application configuration is
administration effort

Properly setting
LD_PRELOAD is
administration effort

No extra effort

Certainty Usage of huge pages guaranteed,
once allocated

Usage of huge pages
guaranteed, once allocated

Usage of huge pages if
resources are available

Overhead None None Defragmentation

Swap Not swappable Not swappable Swappable

48

Questions ?

● Further information is available at
– Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html
– Live Virtual Classes for z/VM and Linux

http://www.vm.ibm.com/education/lvc/

IBM Deutschland Research
& Development
Schoenaicher Strasse 220
71032 Boeblingen, Germany

Phone +49 (0)7031–16–3385
Email ehrhardt@de.ibm.com

Christian Ehrhardt

Linux on System z
System Software
Performance Engineer

http://www.ibm.com/developerworks/linux/linux390/perf/index.html%20
http://www.vm.ibm.com/education/lvc/

© 2014 IBM
Corporation

49

Backup

© 2014 IBM
Corporation

50

Network tuning details

 Here you'll find the detailed descriptions on how to adjust the network tuning parameters
talked about earlier in this presentation

© 2014 IBM
Corporation

51

Tuning parameters - inbound buffer count

 For servers with high network traffic the OSA inbound buffer count should be
increased to 128 to gain maximum performance

– Default inbound buffer count is 64
– Check actual buffer count with lsqeth ­p command
– We observed that the default of 64 limits the throughput of a HiperSockets connection

with 10 parallel sessions and more
– A buffer count of 128 leads to 8MiB memory consumption per device

• One buffer consists of 16 x 4KiB pages which yields 64KiB => 128 x 64KiB = 8MiB

 Set the inbound buffer count in the appropriate config file
– SUSE SLES10: in /etc/sysconfig/hardware/hwcfg­qeth­bus­ccw­0.0.F200 add
QETH_OPTIONS="buffer_count=128"

– SUSE SLES11: in /etc/udev/rules.d/51­qeth­0.0.f200.rules add
ACTION=="add", SUBSYSTEM=="ccwgroup", KERNEL=="0.0.f200",
ATTR{buffer_count}="128"

– Red Hat RHEL5/6/7: in /etc/sysconfig/network­scripts/ifcfg­<device> add
OPTIONS="buffer_count=128"

© 2014 IBM
Corporation

52

Tuning parameters - MTU size
 Choose your MTU size carefully. Set it to the maximum size supported by all hops

on the path to the final destination to avoid fragmentation.
– Use tracepath <destination> command to detect max MTU size
– Example shows router at 192.168.111.1 with MTU 1200

If the application sends in chunks of <=1460 bytes, use MTU 1500
• 1460 Bytes user data plus protocol overhead

– If the application is able to send bigger chunks, use MTU 8992
• Sending packets > 1460 bytes with MTU 8992 will increase throughput and save processor

cycles

 For VSWITCH, MTU 8992 is recommended
– Synchronous operation, SIGA required for every packet
– No packing like normal OSA cards
– No tso, tx-checksumming and rx-checksumming offloading

[root@x5perf2 ~]# tracepath 192.168.112.2
 1: 192.168.111.2 0.096ms pmtu 1500
 1: 192.168.111.1 0.248ms
 1: 192.168.111.1 0.269ms
 2: 192.168.111.1 0.224ms pmtu 1200
 2: 192.168.112.2 0.310ms reached

© 2014 IBM
Corporation

53

General tuning parameters (1/4)

 Command based tunings like ip and ethtool must be made persistent to survive a reboot

 System wide sysctl settings can be changed temporarily by the sysctl command or
permanently in /etc/sysctl.conf

 System wide window size applies to all network devices
– Applications can use setsockopt to adjust the window size for one device

• Has no impact on other network devices
• Disables window scaling which may have negative impact on throughput

© 2014 IBM
Corporation

54

General tuning parameters (2/4)

 Set the device transmission queue length from the default of 1000 to 3000
– ip link set <interface_name> txqueuelen 3000

 Following settings do not necessarily fit to every environment and are just a
starting point based on our experience

– Increase the processor input packet queue length from the default of 1000
• net.core.netdev_max_backlog = 25000

– Increase the maximum number of requests queued to a listen socket, default is 128
• net.core.somaxconn = 1024
• Can be too much if the server cannot handle (watch CPU utilization in sadc)

– Prevent SYN packet loss
• net.ipv4.tcp_max_syn_backlog = 10000
• Only meaningful if net.core.somaxconn is increased as well

© 2014 IBM
Corporation

55

General tuning parameters (3/4)

 Consider to increase port range for outgoing ports
– If server software binds to ports > 14999 adjust minimum value accordingly
– net.ipv4.ip_local_port_range = 15000 65000

 Settings to observe if you have a lot of sockets / connections sitting in TIME_WAIT
state (specified in seconds)

– Can be checked while an application is running by command

 netstat ­tan | awk '{print $6}' | sort | uniq ­c
• net.ipv4.tcp_fin_timeout = 1 < 1 for LAN|6 for WAN >

– Reuse active connection if application and protocol would allow it
• net.ipv4.tcp_tw_reuse = 1

– Make socket re-usable by switching on fast recycle
• net.ipv4.tcp_tw_recycle = 1

– Its worth trying settings net.ipv4.tcp_tw_reuse and net.ipv4.tcp_tw_recycle
together

© 2014 IBM
Corporation

56

General tuning parameters (4/4)

 TCP Extensions for High Performance as described by RFC1323, RFC2018 and
RFC2883

– Following parameters are enabled by default and should only be changed for a reason
• net.ipv4.tcp_window_scaling = 1
• net.ipv4.tcp_timestamps = 1
• net.ipv4.tcp_sack = 1
• net.ipv4.tcp_dsack = 1

Note: Linux sysctl settings are system wide and apply to all network devices

http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc2018
http://tools.ietf.org/html/rfc2883

© 2014 IBM
Corporation

57

HiperSockets recommendations (1/2)

 Frame size and MTU size are determined by chparm parameter of the IOCDS
– Calculate MTU size = frame size – 8KiB

 Select the MTU size to suit the workload
– If the application is mostly sending packets < 8KiB an MTU size of 8KiB is sufficient

 If the application is capable of sending big packets, a larger MTU size will
increase throughput and save processor cycles

 MTU size 56KiB is recommended only for streaming workloads when
application is able to send packets > 32KiB

 HiperSockets and OSA devices have contradictory demands regarding
maximum send /receive size and autotuning buffer

– For environments with OSA and HiperSockets trade-offs have to be made
– Suggested values for OSA devices (on page 28) are also applicable for

HiperSockets MTU 8KiB
– HiperSockets MTU sizes > 8KiB require smaller settings
– Maximum autotuning buffer size should not exceed 524288 bytes

© 2014 IBM
Corporation

58

HiperSockets recommendations (2/2)

 Maximum socket send / receive buffer size which may be set by using the
SO_SNDBUF / SO_RCVBUF socket option

– net.core.wmem_max = 524288
– net.core.rmem_max = 524288

 Set Linux maximum send / receive window size
– Does not override net.core.wmem_max and net.core.rmem_max
– Higher maximum window size leads to throughput degradation if MTU > 8 KiB
– net.ipv4.tcp_wmem = 4096 16384 524288
– net.ipv4.tcp_rmem = 4096 87380 524288

 Applications can use setsockopt to adjust the window size individually
– Has no impact on other network devices
– Disables window scaling which may have negative impact on throughput

© 2014 IBM
Corporation

59

OSA recommendations

 Maximum socket send / receive buffer size which may be set by using the
SO_SNDBUF / SO_RCVBUF socket option

– net.core.wmem_max = 4194304
– net.core.rmem_max = 4194304

 Set Linux maximum send / receive window size (default in current distributions)
– A higher Bandwidth Delay Product BDP (data in flight) requires higher window size

settings
– In a low latency LAN (low BDP) with a massive amount of parallel sessions lower values

might be an advantage
– Does not override net.core.wmem_max and net.core.rmem_max
– net.ipv4.tcp_wmem = 4096 16384 4194304
– net.ipv4.tcp_rmem = 4096 87380 4194304

http://en.wikipedia.org/wiki/Bandwidth-delay_product

© 2014 IBM
Corporation

60

Performance implications of window size

 HiperSockets: Smaller window size improves throughput

 OSA: Bigger window size improves throughput

HiperSockets
Max window size 512 KiB vs. 4096 KiB

Max win 512 KiB Max win 4096 KiB

A
p

p
lic

a
tio

n
 t

h
ro

u
g

h
p

u
t

OSA
 Max window size 512 KiB vs. 4096 KiB

Max win 512 KiB Max win 4096 KiB

A
p

p
lic

a
tio

n
 t

h
ro

u
g

h
p

u
t

© 2014 IBM
Corporation

61

OSA - TCP segmentation offload (TSO)

 TCP Segmentation Offload (TSO) moves the effort of cutting application data in
MTU sized packets from the TCP stack to the OSA hardware

– Does not affect packets < MTU size

 Network device must support outbound (TX) checksumming and scatter gather
(SG)

– Only in Layer3 mode and physical adapters (OSA in LPAR or direct attached in z/VM)
– Turn on scatter gather and outbound checksumming prior to configuring TSO
– Turn on or off with a single ethtool command

 When TCP segmentation is offloaded, the OSA feature performs the calculations
– Applies only to packets that go out to the LAN

 When Linux instances are communicating via a shared OSA port the packages are
forwarded by the OSA adapter but do not go out on the LAN

– Exchange packages directly and no TCP segmentation calculation is performed
– All TSO packets are dropped without warning because the qeth device driver cannot

detect this

ethtool ­K <interface_name> tx <on|off> sg <on|off> tso <on|off>
Example
ethtool ­K <interface_name> tx on sg on tso on

© 2014 IBM
Corporation

62

OSA – Generic Receive Offload (GRO)

Throughput

GRO GRO + TSO

Th
ro

ug
hp

ut

Processor consumption

GRO GRO + TSO

P
ro

ce
ss

o
r

cy
cl

e
s

p
e

r
M

iB

L
ow

e
r

is
 b

e
tt

e
r

 Generic Receive Offload (GRO) aggregates multiple incoming packets into a larger buffer
before they are passed higher up the networking stack

– Thus reducing the number of packets that have to be processed
– Default since SLES11 and RHEL6

 Throughput improvement at combined usage of GRO and TSO

 Tremendously less processor cycles needed at combined usage of GRO and TSO

© 2014 IBM
Corporation

63

OSA recommendations – priority queueing

 Consider to switch on priority queueing if an OSA Express adapter in QDIO
mode is shared amongst several LPARs

– Queues 0 to 3 can be used whereby queue 2 is used as default
– Queues are served in ascending order, queue 0 has highest priority

 How to activate
– SUSE SLES10: in /etc/sysconfig/hardware/hwcfg­qeth­bus­ccw­0.0.F200 add
QETH_OPTIONS="priority_queueing=no_prio_queueing:0"

– SUSE SLES11: in /etc/udev/rules.d/51­qeth­0.0.f200.rules add
ACTION=="add", SUBSYSTEM=="ccwgroup", KERNEL=="0.0.f200",
ATTR{priority_queueing}="no_prio_queueing:0"

– Red Hat RHEL5/6: in /etc/sysconfig/network­scripts/ifcfg­eth0 add
OPTIONS="priority_queueing=no_prio_queueing:0"

 Select on the most important stack only
– Priority queueing on one LPAR may impact the performance on other LPARs sharing

the same OSA card

© 2014 IBM
Corporation

64

SAP Enqueue Server recommendations

 SAP networking is a transactional type of workload with a packet size < 8KB

 SAP Enqueue Server requires a proper set default send window size of 4 x MTU
size

– Required because of sub optimal return code checking

 HiperSockets
– MTU 8192 is sufficient (default 4 x 8192 = 32768)

 OSA
– Recommended MTU size is 8192 (default 4 x 8192 = 32768)
– Alternatively if MTU size 8992 is used (default 4 x 8992 = 35968)

net.ipv4.tcp_wmem = 4096 32768 4194304
net.ipv4.tcp_rmem = 4096 87380 4194304

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

