
Session 16205
MQ: Beyond the Basics

Neil Johnston
IBM UK

neilj@uk.ibm.com

Agenda

 The Async Consume API

 MQ Client/SVRCONN Channels

 Async Put Response
 Read-ahead of messages

 Async Consume in Action - The MQ Channel
Initiator

 MQ Internals - The Queue Manager

The Async Consume API

The Classic MQ API
 The 'classic' MQ API is pretty easy to grasp

– You MQOPEN a queue

– You MQPUT a message to that queue

– You MQGET a message from the queue

 Everything happens synchronously and (from the
application programmer's perspective) on a single
thread

Client/ServerClient/Server

Asynchronous Consumption of Messages

 Can simplify programming in
many cases

 Allocates message buffers

 Wait on multiple queues

 Easy to cancel

 Can register an Event
handler

MQCONN

MQOPEN
MQCB

MQOPEN
MQCB

MQCTL

MQPUT
MQCMIT

Callback function

Asynchronous Consumption of Messages -
Notes

 Asynchronous consumer allows the application to register an interest in messages of a
certain type and identify a callback routine which should be invoked when a message
arrives. This has the following advantages to the traditional MQGET application.

 Simplifies programming
The application can continue to do whatever it was doing without needing to tie up a
thread sitting in an MQGET call.

 Allocates message buffers
The application does not need to 'guess' the size of the next message and provide a
buffer just large enough. The system will pass the application a message already in a
buffer.

 Wait on multiple queues
The application can register an interest in any number of queues. This is very much
simpler than using MQGET where one generally ended up polling round the queues.

 Easy to cancel
The application can use either MQCTL or MQCB to stop consuming from a queue at any
time. This is awkward to achieve when an application is using MQGET

 Can register an Event handler
The application is notified of events such as Queue Manager quiescing or
Communications failure.

N

O

T

E

S

Define your call-back functions
 MQOPEN a queue

 or MQSUB using MQSO_MANAGED

 MQCB connects returned hObj
to call-back function

 Operations (MQOP_*)

 CallbackType:

 Message Consumer

 Event Handler

MQCBD CBDesc = {MQCBD_DEFAULT};

cbd.CallbackFunction = MessageConsumer;
cbd.CallbackType = MQCBT_MESSAGE_CONSUMER;
cbd.MaxMsgLength = MQCBD_FULL_MSG_LENGTH;
cbd.Options = MQCBDO_FAIL_IF_QUIESCING;

MQOPEN(hConn,
 &ObjDesc,
 OpenOpts,
 &hObj,
 &CompCode,
 &Reason);

MQCB (hConn,
 MQOP_REGISTER,
 &cbd,
 hObj,
 &md,
 &gmo,
 &CompCode,
 &Reason);

The MQCB verb ties a function (described in the Call-Back Descriptor (MQCBD)) to an object
handle. This object handle is any object handle that you might have used for an MQGET.
That is, one that was returned from an MQOPEN call or an MQSUB call (using
MQSO_MANAGED for example).

The MQCB verb has a number of Operations. We see an example of MQOP_REGISTER on
this foil which tells the queue manager that this function (described in the MQCBD) should be
called when messages arrive for the specified object handle. You can do the inverse of the
operation with MQOP_DEREGISTER to remove a previously registered call-back function.
Also we have MQOP_SUSPEND and MQOP_RESUME which we will cover a little later.

There are actually two types of call-back function you can define. A message consumer which
is tied to an object handle, and receives messages or error notifications about the specific
queue such as MQRC_GET_INHIBITED; and an event handler which is tied to the
connection handle and receives error notifications about the connection such as
MQRC_Q_MGR_QUIESCING.

One of the benefits of using asynchronous consume is that the queue manager manages the
buffer your message is in. This means that your application doesn’t have to worry about
truncated messages and acquiring bigger buffers in the case of
MQRC_TRUNCATED_MSG_FAILED. The default is to use MQCBD_FULL_MSG_LENGTH,
but if you wish to restrict the size of messages presented to your call-back function, you can
put a length in the MaxMsgLength field of the MQCBD.

Define your call-back functions - Notes

N

O

T

E

S

MQGMO differences

MQGET Asynchronous Consume

Combining
MQGMO_BROWSE_FIRST +
MQGMO_BROWSE_NEXT

MQRC_OPTIONS_ERROR
Delivers first message then
automatically switches to
BROWSE_NEXT

MQGMO_WAIT with
MQGMO.WaitInterval = 0 MQGET will return immediately with

MQRC_NO_MSGS_AVAILABLE if
there are no messages

Only called with
MQRC_NO_MSGS_AVAILABLE if just
started or has had a message since
last 2033

MQGMO_NO_WAIT
The message consumer will never be
called with
MQRC_NO_MSGS_AVAILABLEMQGMO_WAIT with

MQGMO.WaitInterval =
MQWI_UNLIMITED

MQGET will never return with
MQRC_NO_MSGS_AVAILABLE

MQGMO_SET_SIGNAL Allowed Not allowed

MQGMO differences - Notes

The MQCB call provides an MQGMO structure which you will be familiar with
from using MQGET. The MQGMO is used for Asynchronous Consume as well
as for MQGET. It is after all the way to describe how to consume your
message whether synchronously or asynchronously. Some of the
attributes/options in the MQGMO operate slightly differently when used for
Asynchronous Consume and this foil details those differences.

MQGMO_WAIT with MQGMO.WaitInterval = 0 operates just like
MQGMO_NO_WAIT when one uses on an MQGET, but in the case of
asynchronous consumers we wish to avoid the consumer from polling in a
busy loop in this case, so it operates more like a backstop marker to show
when the end of a batch of messages has been reached.

Note that MQGMO_NO_WAIT, and MQGMO_WAIT with a WaitInterval of
MQWI_UNLIMITED are quite different when passed to MQGET but with the
MQCB call their behaviour is the same. The consumer will only be passed
messages and events, it will never be passed the reason code indicating no
messages. Effectively MQGMO_NO_WAIT will be treated as an indefinite
wait. This is to prevent the consumer from endlessly being called with the no
messages reason code.

N

O

T

E

S

Control your message consumption

MQCTL controls whether
message consumption is
currently active

Operations
 MQOP_START
 MQOP_START_WAIT
 MQOP_STOP
 MQOP_SUSPEND (MQCB too)
 MQOP_RESUME (MQCB too)

Give up control of the hConn for call-backs to use

Change current call-backs operating
 Either MQOP_SUSPEND the connection
 Or from within a currently called call-back

MQCTLO ctlo = {MQCTLO_DEFAULT};
ctlo.Options = MQCTLO_FAIL_IF_QUIESCIN
MQCTL(hConn,
 MQOP_START,
 &ctlo,
 &CompCode,
 &Reason);

...

MQCTL(hConn,
 MQOP_STOP,
 &ctlo,
 &CompCode,
 &Reason);

Once you have defined all your message consumers using MQCB calls – you
may have several – then use the MQCTL call to tell the queue manager you
are ready to start consuming messages. Once you have called MQCTL for a
specific hConn you give up control of that hConn and it is passed to the call-
backs to use. If you try to use it for any other MQ call you will receive
MQRC_HCONN_ASYNC_ACTIVE. The exception to this is another call to
MQCTL to either MQOP_STOP or MQOP_SUSPEND message consumption.

Use MQOP_STOP when your application is finished consuming messages.
Use MQOP_SUSPEND (and then subsequently MQOP_RESUME) when you
wish to briefly pause message consumption while you, for example,
MQOP_REGISTER another MQCB call or MQOP_DEREGISTER an existing
one. While the whole hConn is suspended none of the call-backs will be
delivered messages. You may wish to only suspend a particular object handle,
in which case you can use MQOP_SUSPEND on an MQCB call.

Calls to change the call-backs currently operating can also be made inside
another call-back removing the need to suspend the connection in order to
make changes such as this.

Control your message consumption - Notes

N

O

T

E

S

The Call-Back Function

Fixed prototype

Call-back context (MQCBC)

CallType – why fn was called

CompCode + Reason detail any
error

State – Consumer state

• Saves coding all
possible Reasons

A

struct tagMQCBC
{
 MQCHAR4 StrucId;
 MQLONG Version;
 MQLONG CallType;
 MQHOBJ Hobj;
 MQPTR CallbackArea;
 MQPTR ConnectionArea;
 MQLONG CompCode;
 MQLONG Reason;
 MQLONG State;
 MQLONG DataLength;
 MQLONG BufferLength;
 MQLONG Flags;
};

MQLONG MessageConsumer(MQHCONN hConn,
 MQMD * pMsgDesc,
 MQGMO * pGetMsgOpts,
 MQBYTE * Buffer,
 MQCBC * pContext)

Your call-back function can have any name you want, but it must conform to the
prototype shown. When called with a message, you are passed the Message Descriptor
(MQMD), the message buffer and the Get-Message Options structure (MQGMO) which
contains a number of output fields about the message you have been given. You will
know you have been given a message because the CallType field in the Call Back
Context (MQCBC) will be set to either MQCBCT_MSG_REMOVED or
MQCBCT_MSG_NOT_REMOVED (which one depends on the get options you used,
i.e. browse or a few specific errors).

Your message consumer can also be called with CallType set to
MQCBCT_EVENT_CALL (this is also the only way an Event handler can be called). The
message consumer will be given events that are pertinent to the queue it is consuming
from, for example, MQRC_GET_INHIBITED whereas the event handler gets connection
wide events. If there is an error to report, in the case of an MQCBCT_EVENT_CALL or
in some cases for MQCBCT_MSG_NOT_REMOVED, it will be reported in the
CompCode and Reason fields of the MQCBC. When a Reason code is delivered to a
call-back, the State field of the MQCBC details what has happened to the consumer as
a result of the specific Reason. It can be used to simplify application programming by
informing the application what has happened to the consumer function rather than the
application having to know for each reason code what the behaviour will be. States such
as MQCS_SUSPENDED_USER_ACTION which detail that some user intervention will
be needed before message consumption can continue.

The Call-Back function - Notes

N

O

T

E

S

The MQ Client:
Async Put Response

ClientClient

Asynchronous Put Response

MQCONN

MQOPEN

MQOPEN

MQPUT

MQPUT

MQPUT

MQPUT

MQCMIT

ServerServer

Asynchronous Put Response - Notes

Asynchronous Put (also known as 'Fire and Forget') is a recognition of
the fact that a large proportion of the cost of an MQPUT from a client
is the line turnaround of the network connection. When using
Asynchronous Put the application sends the message to the server
but does not wait for a response. Instead it returns immediately to the
application. The application is then free to issue further MQI calls as
required. The largest speed benefit will be seen where the application
issues a number of MQPUT calls and where the network is slow.

Once the application has competed it's put sequence it will issue
MQCMIT or MQDISC etc which will flush out any MQPUT calls which
have not yet completed.

Because this mechanism is designed to remove the network delay it
currently only has a benefit on client applications. However, it is
recommended that applications that could benefit from it, use it for
local bindings as well since in the future there is the possibility that the
server could perform some optimisations when this option is used.

N

O

T

E

S

Put Response Options

Returned (output) Message
Descriptor (MQMD)

ASYNC

• ApplIdentityData

• PutApplType

• PutApplName

• ApplOriginData

• MsgId

• CorrelId

SYNC

• Full MQMD is completed

FRUIT
Price/Fruit

MQPMO_ASYNC_RESPONSE
MQPMO_SYNC_RESPONSE

MQPMO_RESPONSE_AS_Q_DEF
MQPMO_RESPONSE_AS_TOPIC_DEF

DEFPRESP
● SYNC
● ASYNC

Put Response Options - Notes

You can make use of asynchronous responses on MQPUT by means
of an application change or an administration change. Without any
change your application will be effectively using
MQPMO_RESPONSE_AS_Q_DEF which will be resolved to
whatever value is defined on the queue definition. You can choose to
deliberately use asynchronous responses by using
MQPMO_ASYNC_RESPONSE, and you can choose to always have
synchronous responses by using MQPMO_SYNC_RESPONSE.

The queue and topic objects have an attribute DEFPRESP which is
where the MQPMO_RESPONSE_AS_Q_DEF/TOPIC_DEF are
resolved from. This has values ASYNC and SYNC.

Apart from not being informed of any failures to put the message on
the queue, the other change when using ASYNC is that only some
fields in the Message Descriptor (MQMD) are actually filled in when it
is returned as an output structure to the putting application. The
remaining fields are undefined when using ASYNC responses.

N

O

T

E

S

Last Error Retrieval

Application will not find out
about a failure to put to the
queue

A

struct tagMQSTS
{
 MQCHAR4 StrucId;
 MQLONG Version;
 MQLONG CompCode;
 MQLONG Reason;
 MQLONG PutSuccessCount;
 MQLONG PutWarningCount;
 MQLONG PutFailureCount;
 MQLONG ObjectType;
 MQCHAR48 ObjectName;
 MQCHAR48 ObjectQMgrName;
 MQCHAR48 ResolvedObjectName;
 MQCHAR48 ResolvedQMgrName;
};

MQSTS sts = {MQSTS_DEFAULT};
MQSTAT(hConn,
 MQSTAT_TYPE_ASYNC_ERROR,
 &sts,
 &CompCode,
 &Reason);

● Ignore the situation
● Issue an MQCMIT
● Issue the new verb MQSTAT

● Flush in-flight messages
● Return success/failure count

Because the client does not wait for a response from the MQPUT call
it will not be told at MQPUT time whether there was a problem putting
the message. For example, the queue could be full. There are three
things the application can do :

Ignore the situation
In many cases of say a non-persistent message the application does not care
too much whether the message makes it or not. If no response it received then
another request can be issued within a few seconds or whatever.

Issue an MQCMIT
If the messages put are persistent messages in syncpoint then if any of them
fail they will cause a subsequent MQCMIT call to also fail.

Issue the new verb MQSTAT
This new verb allows the application at any time to flush all messages to the
server and respond with how many of the messages succeeded or failed. The
application can issue this verb as often as required

Last Error Retrieval - Notes

N

O

T

E

S

MQ Client/SVRCONN
Read-Ahead of Messages

Read-Ahead of Messages

ClientClient

MQCONN

MQOPEN

MQGET

MQGET

MQGET

ServerServer Request for
‘n’ messages

Read-Ahead of Messages - Notes

Read Ahead (also known as 'Streaming') is a recognition of the fact that a large
proportion of the cost of an MQGET from a client is the line turnaround of the network
connection. When using Read Ahead the MQ client code makes a request for more than
one message from the server. The server will send as many non-persistent messages
matching the criteria (such as MsgId) as it can up to the limit set by the client. The
largest speed benefit will be seen where there are a number of similar non-persistent
messages to be delivered and where the network is slow.

Read Ahead is useful for applications which want to get large numbers of non-persistent
messages, outside of syncpoint where they are not changing the selection criteria on a
regular basis. For example, getting responses from a command server or a query such
as a list of airline flights.

If an application requests read ahead but the messages are not suitable, for example,
they are all persistent then only one message will be sent to the client at any one time.
Read ahead is effectively turned off until a sequence of non-persistent messages are on
the queue again.

The message buffer is purely an 'in memory' queue of messages. If the application ends
or the machine crashes these messages will be lost.

Because this mechanism is designed to remove the network delay it currently only has a
benefit on client applications. However, it is recommended that applications that might
benefit from it, use it for local bindings as well since in the future there is the possibility
that the server could perform some optimisations when this option is used.

N

O

T

E

S

Read-Ahead Options

MQOPEN

MQSUB
MQSO_MANAGED

MQOO_READ_AHEAD_AS_Q_DEF
MQOO_NO_READ_AHEAD
MQOO_READ_AHEAD
MQSO_READ_AHEAD_AS_Q_DEF

When using managed queues
● MQSO_NO_READ_AHEAD
● MQSO_READ_AHEAD

DEFREADA
● NO
● YES
● DISABLED

Read-ahead Options - Notes

You can make use of read-ahead on MQGET by means of an application
change or an administration change. Without any change your application will
be effectively using MQOO_READ_AHEAD_AS_Q_DEF on MQOPEN which
will be resolved to whatever value is defined on the queue definition. You can
choose to deliberately use read-ahead by using MQOO_READ_AHEAD on
your MQOPEN, and you can choose to turn off read-ahead by using
MQOO_NO_READ_AHEAD.

If you are using a managed destination on MQSUB, by default your application
will be effectively using MQSO_READ_AHEAD_AS_Q_DEF and taking its
value from the model queue that is used to base managed destinations on.
Non-durable subscriptions using the default provided model,
SYSTEM.NDURABLE.MODEL.QUEUE, will find that read-ahead is turned on.
You can choose to deliberately use read-ahead by using
MQSO_READ_AHEAD on your MQSUB, and you can choose to turn off read-
ahead by using MQSO_NO_READ_AHEAD on your MQSUB.

Queue objects have an attribute DEFREADA which is where the
MQOO/SO_READ_AHEAD_AS_Q_DEF are resolved from. This has values
YES and NO for this purpose and additionally a value DISABLED, which over-
rides anything specified by the application and turns off any request for read-
ahead on this queue.

N

O

T

E

S

Application Suitability for Read-Ahead

Suitable for:
● Non-persistent, non-transactional consumption of

messages intended for this client only
● Non-durable subscriber
● Response messages to a query

Not suitable for:
● Persistent, transactional messages
● Queues with many clients getting messages
● Applications that continually change message

selection criteria

Changing message selection
criteria can leave
unconsumed messages in
the read-ahead buffer

● Highlighted by DISPLAY
CONN TYPE(HANDLE)
with READA(BACKLOG) if
the number of these gets
so high as to affect the
efficiency of read-ahead

AMQ8276: Display Connection details.
 CONN(153FCC4720008402)
 EXTCONN(414D5143544553543220202020202020)
 TYPE(CONN)
 APPLTAG(D:\ReadAhead.exe) APPLTYPE(USER)
 ASTATE(NONE) CHANNEL(SYSTEM.DEF.SVRCONN)
 CONNAME(127.0.0.1)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)
 USERID(hughson)

 OBJNAME(Q1) OBJTYPE(QUEUE)
 OPENOPTS(MQOO_INPUT_SHARED,MQOO_READ_AHEAD)
 HSTATE(ACTIVE) READA(BACKLOG)

Application Suitability for Read-Ahead

Use of some options implicitly turns off read-ahead:

● Persistent messages – read-ahead turned off for
that message

● Certain MQGMO options – read-ahead turned off
for whole use of that object handle (see next
page)

Application Suitability for Read-Ahead

MQGMO options with Read-ahead
MQGET MQMD
values

MQGMO
fields MQGET MQGMO options

Permitted when read-
ahead is enabled and can
be altered between
MQGET calls

MsgId
CorrelId

MQGMO_WAIT
MQGMO_NO_WAIT
MQGMO_FAIL_IF_QUIESCING
MQGMO_BROWSE_FIRST
MQGMO_BROWSE_NEXT
MQGMO_BROWSE_MESSAGE_UNDER_CURSOR

Permitted when read
ahead is enabled but
cannot be altered
between MQGET calls

Encoding
CodedCharSet
ID
Version

MsgHandle

MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_NO_SYNCPOINT
MQGMO_ACCEPT_TRUNCATED_MSG
MQGMO_CONVERT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MSG
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_MARK_BROWSE_*
MQGMO_UNMARK_BROWSE_*
MQGMO_UNMARKED_BROWSE_MSG
MQGMO_PROPERTIES_*
MQGMO_NO_PROPERTIES

MQGET Options that are
not permitted when read
ahead is enabled

MQGMO_SET_SIGNAL
MQGMO_SYNCPOINT
MQGMO_MARK_SKIP_BACKOUT
MQGMO_MSG_UNDER_CURSOR
MQGMO_LOCK
MQGMO_UNLOCK MQRC_OPTIO

NS_ERROR

MQRC_OPTIO
NS_CHANGED

MQGMO options with Read-ahead - Notes

As noted on the previous page, some values you can specify on MQGET will
cause read-ahead to be turned off. The last row of the table indicate which
these are. If they are specified on the first MQGET with read-ahead on, read-
ahead will be turned off. If they are specified for the first time on a subsequent
MQGET then that MQGET call will fail with MQRC_OPTIONS_ERROR.

Some values cannot be changed if you are using read-ahead. These are
indicated in the middle row of this table and if changed in a subsequent
MQGET then that MQGET call will fail with MQRC_OPTIONS_CHANGED.

The client applications needs to be aware that if the MsgId and CorrelId values
are altered between MQGET calls, messages with the previous values may
have already been sent to the client and will remain in the client read ahead
buffer until consumed (or automatically purged).

Browse and destructive get cannot be combined with read-ahead. You can use
either, but not both. You can MQOPEN a queue for both browse and get, but
the options you use on the first MQGET call will determine which is being used
with read-ahead and any subsequent change will cause
MQRC_OPTIONS_CHANGED. You cannot therefore use
MQGMO_MSG_UNDER_CURSOR which is using the combination of both
browse and get.

N

O

T

E

S

Async Consume in Action
The MQ Channel Initiator

Async Consume In Action

 Here's a real-world example of the power of async
consume

 The channel initiator is a (very sophisticated) MQ
application

 In 'classic' SHARECNV(0) operation, an MQ
SVRCONN channel will just use the traditional MQ
API verbs to manipulate messages:

 MQGET
 MQPUT

 In principle the SVRCONN MCA 'mirrors' the MQ
API requests of the client

SVRCONN Channels with Traditional
MQGET Verbs – Getting a Message

Qmgr Chinit Client

Get message from MY.QUEUEMQGET from MY.QUEUE

Here's a message... Here's a message...

Async Consume In Action

 Let's modify this model to use async consume for
getting and putting messages

 Rather than using MQGET, we're going to get
messages as quickly as possible by consuming
them asynchronously from a queue

 Requires significant design and implementation
changes

– Not just replacing verbs

Async Consume – Getting Messages With
Read-Ahead

 Simple example consuming from a single queue

 We still MQOPEN the queue as usual

 Rather than getting from the queue we use:

 MQCB(register) to establish our MQGET options
(MQMD and MQGMO)

 MQCTL(start) will begin sending messages

Start async consume of msgsStart async consume of msgs

SVRCONN Channels with Async Consume –
Getting Messages With Read-Ahead

Qmgr Chinit Client

Open MY.QUEUE and Register consumerOpen MY.QUEUE and Register consumer

Here's a message... Here's a message...

Other Advantages of the Async Consume
Model for SVRCONNs

 Duplexed channels for additional control

– Administrative STOP-QUIESCE

– Heartbeats

– Performance

Considerations – Read Ahead

 Do we consume messages “forever” or can the
client throttle us?

 How do we stop consuming messages?

 What happens to messages we've sent but may
not have been received/processed?

Chinit Internals – Read Ahead

 MQ Client implements a “proxy queue” which acts
like a mini queue

 Holds messages that have been streamed to the
client via async consume but have not yet been
delivered to the application

 Client provides feedback to the server on the size
of this proxy queue, expressed as a size

 “I can now accept 1.5MB more data”...
 “I can now accept 500KB more data”...

 Chinit tracks how much is sent compared to most
recent response and keeps sending until proxy
queue is assumed full or new size information sent.

Async Put for the MQ Client

● Offers similar performance improvements to Async
Consume but for messages sent to the queue
manager

● Under the control of the application

● Application needs to know it's happening so it can
check for and respond to the asynchronous failures

SVRCONN Channels with Traditional
MQGET Verbs – Putting a Message

Qmgr Chinit Client

Put message to MY.QUEUEMQPUT to MY.QUEUE

Ok, MQCC=0 MQRC=0 Ok, MQCC=0 MQRC=0

250ms
250ms

MQ Clients

MQ V8 Client Attachment Feature is now

 FREE!*

*Also zero charge on WMQ 7.1 with PTF for APAR PI13429

MQ Internals
The Queue Manager

MQ Internals – QM Resource Managers

CONNECTION

MANAGER

RECOVERY

MANAGER

LOG

MANAGER

MESSAGE

MANAGER

DATA

MANAGER

BUFFER

MANAGER

LOCK

MANAGER

CF

MANAGER

COMMIT / BACKOUT UR

MQI

CKPT

CKPT

REDO / UNDO

URRELEASE

MQOPEN

Building blocks – resource managers

N

O

T

E

S

The queue manager is built from many resource managers (RMs)

A resource manager is a code package that encapsulates operations relating to a logically consistent set of
operations on a given resource (e.g. the log). If a party wishes to modify or query a resource, it must
access it through the appropriate resource manager.

Resource managers interact with each other to provide the MQI verb set.

The queue manager operation can be by understood by decomposing it into the interactions between these
resource managers. The most important are:

Connection Manager

Processes the application thread as it enters the queue manager.

Message Manager

Handles operations relating to messages, objects and triggering.

Data Manager

Processes objects and the physical storage of messages on disk pagesets, in the coupling facility or
in DB/2.

Begins transactions.

Buffer Manager

Handles the physical I/O to pagesets and ensures efficient buffering of data for data manager.

Handles checkpoints.

Building blocks – resource managers

N

O

T

E

S

Recovery Manager

Handles transactional operations (commit, backout).

Restart.

Log Manager

Provides interfaces to read from and write to the log efficiently, offloading of active logs, and the
management of the archive logs.

Lock Manager

Provides locks to enable transactional isolation.

Coupling Facility Manager

Provides queue manager relevant interfaces to the coupling facility.

Equivalent function to a combination of the other RMs.

Now we will discuss these queue manager resource managers in detail

We will also discuss the most important data structures, namely how data objects and messages are stored
on disk pagesets and Coupling Facility structures.

Distributed queuing is not part of the queue manager

Moving messages between queue managers is the responsibility of a separate address space called the
channel initiator ("Mover").

APPLICATION

MQCONN

MQOPEN

MQPUT

…

TRANSACTION
COORDINATOR

THREAD

EOT

EOMPHASE 1

PHASE 2

CONTROL
BLOCKS

CONNECTION
MANAGER

ADDRESS SPACE BOUNDARY

OTHER RESOURCE
MANAGERS

DATA

LOGS

CONTROL
BLOCKS

CONTROL
BLOCKS

MQ Internals – Connection Manager

Handling applications – Connection Manager

N

O

T

E

S

Connection Manager handles all MQI requests

Connection Manager can be considered the "front door" to the queue manager.

There is sufficient complexity in task management and recovery, and application environments, to justify a
separate resource manager just for these functions.

Connection Manager understands the adapter tasking scheme with reference to thread management.

However, MQCONN is not necessarily passed to Connection Manager

In environments with relatively simple tasking schemes, an application issuing an MQCONN verb causes
its adapter to identify with Connection Manager.

In more complex environments where the adapters are separate units of execution (TCBs), the adapters
identify with Connection Manager at application environment initialisation. An application performing an
MQCONN in these environments does not cause interaction with Connection Manager. This is why an
application doesn't need to issue MQCONN in these environments, most notably CICS.

MQCMIT and MQBACK requests are passed to Recovery Manager

When a transaction is using the queue manager to request WebSphere MQ resource co-ordination, these
requests are passed to Recovery Manager.

Such recovery requests are treated differently to the rest of the MQI since they do not relate explicitly to
WebSphere MQ resources, but rather to the Unit of Work (UOW) state.

In two phase commit scenarios (e.g. co-ordinating message input/output with database INSERTs in CICS,
IMS, RRS), Connection Manager is not called from the application, but from the syncpoint co-ordinator.

Handling applications – Connection Manager

N

O

T

E

S

All other MQI verbs are passed to Message Manager

It is Message Manager that processes all requests relating to messages and queues.

Connection Manager handles task termination

Normally and abnormally ending applications have transactional implications. The former have their work
committed; the converse is true for the latter.

As the queue manager uses the subsystem interface (SSI) it is notified upon task termination, and can thus
implement the appropriate transactional semantics. Note that this can be extremely complex for
environments in which the unit of execution moves (e.g. RRS with DB2 stored procedures) and is usually
discussed under the subject "Context Management". This is beyond the scope of this presentation.

MESSAGE MANAGER

APPLICATIONCOMMAND, RUNTIME & GROUP
SERVERS

MQSC
CONSOLE

QSG

MQOPEN

MQCLOSE

MQGET

MQPUT

MQSET

MQINQ

MQSUB

OBJECTS

SYSTEM.CLUSTER.*

MQOPEN

BASE

VALIDATION, CONSISTENCY CHECKING, TRIGGERING, GET-WAIT PROCESSING

MQ Internals – Message Manager

N

O

T

E

S

Message Manager manages all the WebSphere MQ resource related MQI

It is the component that is most oriented towards applications. Other components deal with more abstract
concepts (from the application's perspective), such as disk pagesets, buffers and logging.

It controls MQOPEN, MQCLOSE, MQGET, MQPUT, MQPUT1, MQINQ, MQSET, etc. and many other
non-externalised application environment APIs.

Message manager manages all MQSC requests

It processes all MQSC requests related to queues, processes, namelists and storage classes. These
originate from the Command, Runtime and Group servers.

If a command or resource modification relates to clustering, Message manager notifies the Repository
Manager through using the SYSTEM.CLUSTER.COMMAND.QUEUE.

Validation of MQI requests and MQSC commands

It checks validity and consistency of MQI requests (e.g. MQOO_ value, can't open for shared and exclusive
input).

Similar validity and consistency checking is performed for MQSC.

Name resolution for remote, alias and cluster queues

Open processing resolves the requested queue name to a base queue name.

At put time, any appropriate headers are added.

MQ Internals – Message Manager

N

O

T

E

S

Manages security processing

Using user ID information extracted from the QRPL, MQMD, and application environment control blocks,
calls Security Manager (not further discussed) to verify access to opened queue.

Implements shared/exclusive access to queues

At MQOPEN it creates locks that allows single or multi user input access to a queue. Uses Lock Manager
services for these locks. These locks are released when the queue is closed, so called “allocation duration
locks".

Performs processing to enable triggering and get-wait processing

After a successful MQPUT to a queue, it

Checks triggering rules to see if a trigger message is needed.

Checks for any MQGET waiters that could be satisfied.

In some shared queue environments, there is Coupling Facility assistance for trigger and get-wait
processing.

Uses Data Manager access method to process messages and objects

MQ Internals – Message Manager

112

2
3
4

567
8
9

1
0

11

SCAVENGER

LOG

REDO

UNDO

MESSAGES

OBJECTS

QUEUE
ATTRIBUTES

SUB-QUEUE
MESSAGE
POINTERS

SPACE
GROUP

SPACE
GROUP

SPACE
GROUP

PAGESET 0

PAGESETS
1--99

MQ Internals – Data Manager

N

O

T

E

S

Data manager relates WebSphere MQ messages and objects to buffers in pagesets

Data Manager maps every object (queue, namelist...) and message to a buffer on a page in a pageset.

Pagesets are defined using DEFINE PSID(pageset id) BUFFPOOL(buffer pool id). Uses DD
CSQP00xx.

There are several types of buffer corresponding to message or object size (see later).

All WebSphere MQ object definitions are held on pageset 0.

For messages held in shared message queues, the Coupling Facility is used rather than pagesets (see
later).

Data Manager manages space in pagesets

The usage of pages in a page set is recorded in the "space map" within each pageset.

The space map is used to allocate new pages for new and updated objects or MQPUT operations.

MQGET operations result in the deallocation of pages.

Page deallocation can also be performed asynchronously by the scavenger process.

Data Manager begins the transaction and logs all transactional operations

A transaction is implicitly started when the first MQPUT or MQGET is performed within syncpoint.

It writes REDO and UNDO operations to the log that can be used to complete or rollback the transaction in
the event of failure.

Pageset recovery can be performed at restart to bring pagesets to a consistent point. Data Manager uses
"before" and "after" images (position, length and content) of a pageset change recorded on the log to do
this.

MQ Internals – Data Manager

N

O

T

E

S

Data Manager acquires locks on pages, messages and queues

It acquires exclusive locks on messages, which are not released until commit time to ensure message
isolation. This is necessary for both MQPUT and MQGET, since changes are not visible until commit
(unless same UOW).

It acquires shared locks on pages to ensure that pages are not deallocated when it is using them.

It acquires shared locks on queues to prevent deletion for in-doubt transactions.

Data Manager uses Buffer Manager to optimally access pages

Performance can be greatly enhanced by buffering input and output to pagesets. Data Manager relies on
Buffer Manager to read and write virtual storage representations of the pagesets.

A queue is implemented as 20 sub-queues

These sub-queues correspond to the persistence and priority of messages. This improves performance of
messages of a given priority at put time, though typically all messages on a queue have the same priority.

Having separate persistent and non-persistent message pages improves restart time, since non-persistent
message pages can be marked as deallocated in the space map at restart.

MQ Internals – Data Manager

HEAD

START
SCAN

TAIL

SUB-QUEUE
(x 20)

PAGESET 0

MSG 1
(DELETED)

MSG 2
(≤ 4 KB) MQMD + DATA

MSG 3
(≤ 4 MB)

MQMD + DATA NEXT DATA

MSG 4
(≤ 100 MB)

MQMD + DATA NEXT DATA NEXT DATA NEXT DATA

PAGESET n

MQ Internals – Local Message Queue
Storage

N

O

T

E

S

Queues store messages on pages

Each page is 4 KB in size.

Each of the 20 sub-queues has a different anchor point identifying the first and last message pages.

A start position is held to enable more efficient MQGET processing.

According to their size, messages are defined as being short, long or very long.

Different sized messages have different page representations.

Short messages are contained completely within a page

When a getter is traversing a queue and locates an eligible short message, it can directly copy all the data
from the page. The message is then marked as deleted.

Long and very long messages have a hierarchical structure

A message greater than 4 KB has a reference in the traversal chain. These references point to message
text, or lower level references, and so on. Reference structure means no architected maximum to very long
message size.

Pages are deallocated as messages are removed

Messages that reside completely within a page, or the high level reference to long or very long messages
do not cause synchronous page deallocation at MQGET time. This would cause too much contention.

Asynchronous deallocation is performed by the scavenger process, who acquires exclusive page locks for
pages with all messages deleted.

Text pages do not suffer contention and are deallocated synchronously during MQGET processing.

MQ Internals – Local Message Queue
Storage

N

O

T

E

S

Large messages *may* have performance impacts

Merely enabling large message support does not impact performance.

The structure of very large messages does not degrade the traversal characteristics of the queue. Notice
how long and very long messages are no more difficult to traverse at the high level.

The getter of a 100 MB message has to traverse an increased number of pages.

Putting a very large message can cause a large amount of logging.

Objects are stored in a similar way to messages

All WebSphere MQ objects are held on pageset 0 and are anchored from page 0.

Page 0 contains an array of object types, and objects are chained in a similar way to messages.

Short and long objects (namelists are an example of the latter) have a similar structure to short and long
messages.

MQ Internals – Local Message Queue
Storage

• Log read and write functions

• Log shunting

• Multiple active log data sets and archive

• Archive inventory management

• Duplexed for reliability

• “Bootstrap” file
– End of log location
– Archive inventory

• Various Utilities

MQ Internals – Log Manager

N

O

T

E

S

Log Manager provides log read and write functions

The log is a VSAM linear dataset.

Log Manager keeps old, “active” log records near the end of the log (since V6)

The “log shunt” task spots long running units of work

A condensed form of their log records is periodically rewritten

“Immunizes” the queue manager from delayed restart times due to long running units of work. The original
log records are required in the unlikely event that media recovery is required.

Log Manager provides active log management

Log Manager writes to the currently active log. Multiple active logs can be configured.

Log Manager configures its active log characteristics using CSQ6LOGP. This includes software duplexed
logging for reliability. CSQJU003 is used to configure the bootstrap dataset (BSDS) that holds active log
dataset information.

Active logs are “offloaded” to archives on tape or disk as they become full.

Log Manager provides archive log management

Log Manager configures its archiving using CSQ6ARVP, e.g. archive naming schemes, volume units etc.

The queue manager adds archive log names to the bootstrap datasets as logs are archived.

The BSDS is used at queue manager start-up to identify the active and archived logs necessary to perform
recovery.

MQ Internals – Log Manager

N

O

T

E

S

Bootstrap contents can be examined

Use the print log map utility, CSQJU004, to examine the active and archive log names in the BSDS.

For each log, active and archived, the BSDS contains their RBA ranges. For information, the dates and
time associates with these logs is also available.

The log contents can be examined

Use the log print utility, CSQ1LOGP, to view the transaction records in the log.

More detailed analysis and replay (CSQ4LOGS sample) may be performed.

MQ Internals – Log Manager

 00000000D569 URID(00000000D569) RM(RECOVERY) TYPE(START UR)
 **** 00640024 00200001 03000000 0000D569 00000000 D545
 0000 00240000 0000D000 00000000 00000700 00000000 00000000 00000000 0000D6C4
 0020 D6E6C4C1 4040B5B4 8FA08793 02864040 40404040 4040C2C1 E3C3C840 4040D6C4
 0040 D6E6C4C1 40400000 00000000 0000

 00000000D5CD URID(00000000D569) RM(DATA) LRID(00000000.00000E01) TYPE(UNDO REDO)
 SUBTYPE(DECREMENT BY)
 **** 002A0064 0600000F C9000000 0000D569 00000000 D569
 0000 00000000 00000E01 00040326 00000001 00000001

 00000000D5F7 URID(00000000D569) RM(DATA) LRID(00000001.00000201) TYPE(UNDO REDO)
 SUBTYPE(DELETE)
 **** 0026002A 06000008 C9000000 0000D569 00000000 D5CD
 0000 00000001 00000201 00000000 00000E01

 00000000D61D URID(00000000D569) RM(RECOVERY) TYPE(START COMMIT1)
 **** 007C0026 00200002 03000000 0000D569 00000000 D5F7
 0000 00240000 0000D000 00000000 00000700 00000000 00000000 00000000 00004040
 0020 40404040 40400000 00000000 00000000 00000000 00000000 00000000 00000000
 0040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 0060 00000000 0000

 00000000D699 URID(00000000D569) RM(RECOVERY) TYPE(PHASE 1 TO 2)
 **** 0024007C 0020000C 03000000 0000D569 00000000 D61D
 0000 00240000 0000D000 00000000 0000

 00000000D6BD URID(00000000D569) RM(RECOVERY) TYPE(END COMMIT2)
 **** 00240024 00200010 03000000 0000D569 00000000 D699
 0000 00240000 0000D000 00000000 0000

00000000D569 URID(00000000D569)

TYPE(END COMMIT2)

RM(RECOVERY)

RM(DATA)

SUBTYPE(DECREMENT BY)

SUBTYPE(DELETE)

LRID(00000000.00000E01)

LRID(00000001.00000201)

TYPE(START UR)

TYPE(UNDO REDO)

 00000000D699 URID(00000000D569) RM(RECOVERY) TYPE(PHASE 1 TO 2)
**** 0024007C 0020000C 03000000 0000D569 00000000 D61D
0000 00240000 0000D000 00000000 0000

MQ Internals – Log Print Example

N

O

T

E

S

The log print utility, CSQ1LOGP, has been used to print a simple transaction. The transaction consists of a single
MQGET within syncpoint, followed by a commit. The transaction completed successfully.

The transaction begins when the first recoverable action is performed, i.e. MQGET under syncpoint is issued.

The TYPE(START UR) action represents the start of the transaction (formally called a "Unit of Recovery").
This occurs at RBA position D569 on the log.

The identifier for this UR is also D569. This links together all the log records for this transaction.

Notice that it was Recovery Manager who wrote this log record, RM(RECOVERY).

Processing explicitly related MQGET

Firstly, the queue depth is decremented by 1. This is represented by the SUBTYPE(DECREMENT BY)
action.

This action is performed by Data Manager, represented by the RM(DATA) tag.

The queue information that is changed resides at Logical Record IDentifier LRID(00000000.00000E01).
Read this as pageset 0, page E, record 01. Remember all objects live on pageset 0. Also note that this is
the first record on this page.

This record has a TYPE(UNDO REDO). This describes what happens when the transaction is rolled back
or committed, respectively. If the transaction commits, then we can reapply (REDO) this change to the
page at LRID. If the transaction is backed out then we need to perform the compensating action. Can you
guess what this might be?

The second record relating to the MQGET operation has SUBTYPE(DELETE). This corresponds to the
removal of LRID(00000001.00000201), i.e. pageset 1, page 2, record 1. The compensating action
would have SUBTYPE(UNDELETE). Can you say why?

MQ Internals – Log Print Example

N

O

T

E

S

MQCMIT is issued and the transaction completes successfully

Three log records are written for the single phase MQCMIT.

The most important in this scenario is the second log record, which is forced. This is the first time the
transaction must wait for disk I/O as this operation must reach the log before control returns to the
application.

The transaction end is marked by the TYPE(END COMMIT2) record.

MQ Internals – Log Print Example

PAGESET

BUFFER

PAGES

READ
PAGESET

DEFINE BUFFPOOL(bpid) BUFFERS(nnnn)

DEFINE PSID(psid) BUFFPOOL(bpid)

STEAL
LRU

DIRTY

DIRTY

DIRTY

NO FORCE
CHECKPOINT,

STEAL,
WRITE AHEAD

OLDESTWRITE
PAGESET

FORCE DIRTY PAGES > 3 CHECKPOINTSCHECKPOINT

MQ Internals – Buffer Manager

N

O

T

E

S

Buffer Manager performs I/O operations to pagesets

The access methods provided for manipulation of logical pagesets result in I/O operations being performed
to pagesets.

Buffer Manager caches I/O in virtual storage pages to improve performance.

Buffers are defined for a pageset using the DEFINE BUFFPOOL MQSC command. Buffer pools are
mapped to pagesets using DEFINE PSID.

Buffer Manager caches pageset read operations

It caches the most recently referenced pages, including some read-ahead processing for pages.
Applications performing unspecified MQGETs (just get the next message) benefit most from this.

When buffer pools become full Buffer Manager may use a "steal" policy to write out least recently used
(LRU) pages to disk. These stolen pages are now available for the new data.

Buffer Manager caches pageset write operations

As all recoverable MQI operations are written to the log, Buffer Manager can defer writing pageset
changes. This “no-force” policy greatly improves throughput.

Deferred writes for committed transactions will require REDOing at restart after an abnormal termination,
since the change never made it to the pageset.

MQ Internals – Buffer Manager

N

O

T

E

S

Buffer Manager enforces “log write-ahead rule”

Buffer Manager ensures that any pages written out to pagesets have their corresponding log records
forced out to the log. This means the log must always be ahead of the oldest deferred page.

Ensures that any written buffers (including stolen) are consistently recovered with the log.

Recovery Manager broadcasts checkpoint requests to Buffer Manager

Checkpoint processing is driven by Recovery Manager according to the number of log operations. The
LOGLOAD parameter defaults to checkpointing every 10K log operations.

Whenever a buffer page becomes more than three checkpoints old, it is forced out to disk.

Long checkpoint intervals increase queue manager restart time after an abnormal termination, since more
of the log needs to be analysed to bring the pagesets up to date.

MQ Internals – Buffer Manager

MQ Buffers

 Keeping messages in MQ buffers is equivalent to
keeping data in storage/RAM

 When your queue(s) are too large to be wholly
contained within the available buffers, we have
to start paging to DASD

– This can hurt performance

– With non-persistent messages especially, if you
have not tested the effects of filling your buffers
you may get an unpleasant performance
surprise in production!

– If messages continue to arrive at a high rate,
recovering can be an uphill struggle

MQ Buffers

 With MQ V8 on z/OS we offer additional help for
problems with buffers

– Improved read-ahead and write algorithms

– 64 Bit Buffer Pools allow us to move from ~1.6GB
of buffers to (theoretically) 16 EB

• Architecturally: 10 BILLION times larger!

• Reality: No practical limit.

 More information:

– “MQ for z/OS New Features Deep Dive”

– Tuesday, 4:15pm here at SHARE Pittsburgh

 Any questions?

Monday Tuesday Wednesday Thursday Friday

08:30 Application
programming with MQ
verbs

The Dark Side of
Monitoring MQ - SMF 115
and 116 Record Reading
and Interpretation

CICS and MQ - Workloads
Unbalanced!

10:00

11:15 Introduction to MQ What's New in IBM
Integration Bus &
WebSphere Message
Broker

MQ – Take Your Pick
Lab

Using IBM WebSphere
Application Server and
IBM WebSphere MQ
Together

12:15

01:30 All about the new MQ v8 MQ Security: New v8
features deep dive

New MQ Chinit
monitoring via SMF

03:00 MQ Beyond the Basics MQ & DB2 – MQ Verbs in
DB2 & InfoSphere Data
Replication (Q Replication)
Performance

What's wrong with MQ? IIIB - Internals of IBM
Integration Bus

04:15 First Steps with IBM
Integration Bus:
Application Integration
in the new world

MQ for z/OS v8 new
features deep dive

MQ Clustering - The
Basics, Advances and
What's New in v8

This was session 16205 - The rest of the week ……

Please Fill in Your Evaluations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	MQGMO differences
	MQGMO differences - Notes
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	MQGMO options with Read-ahead
	MQGMO options with Read-ahead - Notes
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

