New MQ CHINIT Monitoring via SMF (z/OS)

Mayur Raja (mayur_raja@uk.ibm.com)
IBM Hursley Park

August 7th, 2014 (1:30 - 2:30pm)
Session Number: 16201

Legal Disclaimer

- © IBM Corporation 2014. All Rights Reserved.
- The information contained in this publication is provided for informational purposes only. While efforts were made to verify the completeness and accuracy of the information contained in this publication, it is provided AS IS without warranty of any kind, express or implied. In addition, this information is based on IBM’s current product plans and strategy, which are subject to change by IBM without notice. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this publication or any other materials. Nothing contained in this publication is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software.
- References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales, revenue growth or other results.
- If the text contains performance statistics or references to benchmarks, insert the following language; otherwise delete: Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.
- If the text includes any customer examples, please confirm we have prior written approval from such customer and insert the following language; otherwise delete: All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics may vary by customer.
- Please review text for proper trademark attribution of IBM products. At first use, each product name must be the full name and include appropriate trademark symbols (e.g., IBM Lotus® SameTime® Unee™). Subsequent references can drop “IBM” but should include the proper branding (e.g., Lotus SameTime Gateway, or WebSphere Application Server). Please refer to http://www.ibm.com/legal/copytrade.shtml for guidance on which trademarks require the ® or ™ symbol. Do not use abbreviations for IBM product names in your presentation. All product names must be used as adjectives rather than nouns. Please list all of the trademarks that you use in your presentation as follows; delete any not included in your presentation. IBM, the IBM logo, Lotus, Lotus Notes, Notes, Domino, Quickr, SameTime, WebSphere, UC2, PartnerWorld and Lotusphere are trademarks of International Business Machines Corporation in the United States, other countries, or both. Unee is a trademark of WebDialogs, Inc., in the United States, other countries, or both.
- If you reference Adobe® in the text, please mark the first use and include the following; otherwise delete: Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
- If you reference Java™ in the text, please mark the first use and include the following; otherwise delete: Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
- If you reference Microsoft® and/or Windows® in the text, please mark the first use and include the following, as applicable; otherwise delete: Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
- If you reference Intel® and/or any of the following Intel products in the text, please mark the first use and include those that you use as follows; otherwise delete: Intel, Intel Centrino, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
- If you reference UNIX® in the text, please mark the first use and include the following; otherwise delete: UNIX is a registered trademark of The Open Group in the United States and other countries.
- If you reference Linux® in your presentation, please mark the first use and include the following; otherwise delete: Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of others.
- If the text/graphics include screenshots, no actual IBM employee names may be used (even your own), if your screenshots include fictitious company names (e.g., Renovations, Zeta Bank, Acme) please update and insert the following; otherwise delete: All references to [insert fictitious company name] refer to a fictitious company and are used for illustration purposes only.

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.
Agenda

• CHINIT SMF
 • Channel Initiator Statistics
• Channel Accounting Data
CHINIT SMF: The Problem

- Prior to MQ v8.0, there was limited SMF data for channels
- With CLASS(3) ACCOUNTING trace:

```
START TRACE(ACCTG) DEST(SMF) CLASS(3)
```

You get the Task/Thread Identification (WTID) SMF 116 Subtype 1 record which gives you data about the Sender or Receiver Message Channel Agent thread:

```
        ===> New task record found  <==========
        == Thread type............... > MOVER
        == Connection name........... > QML4CHIN
        == Operator ID............... > MQUSER
        == User ID................... > MQUSER
        == Channel name............... > QSGM.OUT
        == Chl connection............ > 1.2.3.43
        == Correlator ID............. >
        == Correlator ID......(HEX)> 243DD000E7E75C5C243DD2C0
        == Context token.............>
        == Context token.......(HEX)> 00000000000000000000000000000000
        == NID....................... > QML4CHING  W ëå
        == NID.................(HEX)> D4D8D7C5C3C8C9D5C71A1DE63B749E08
        == Accounting token....... >
```

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
CHINIT SMF: The Problem

• So, prior to MQ v8.0, there was no detailed, useful data for:
 – CHINIT address space
 – Channel activity

• Many customers have had to create their own ‘monitoring’ jobs
 – They issues periodic DISPLAY CHSTATUS commands
 – Or use the MQCMD program from Supportpac MP1B to do this

• Difficult to:
 – Monitor activity in the CHINIT address space
 – Investigate performance issues and tune for better performance
 – Perform capacity planning
 – Manage historical data
CHINIT SMF: The Problem

- The category 2 SupportPac MP1B provides a program called **MQCMD** which can be used to automate issuing DISPLAY commands on a regular basis, which facilitates monitoring of channels. The output is formatted using Comma Separated Values (CSVs) for ease of importing into a spreadsheet for analysis.
CHINIT SMF: The Solution

• Additional SMF data for the CHINIT address space
 - Channel Initiator Statistics
 • High level view of activity in the CHINIT address space
 » Data about Dispatcher tasks
 » Number of channels running, TCB usage
 » Data about Adapter, DNS and SSL tasks
 • Useful to determine:
 » Do tasks have any spare capacity?
 » Do you need more or less dispatcher or adapter tasks?
 - Channel Accounting Data
 • Detailed view of individual channels
 » What work are the channels doing?
 » Which channels are heavily utilised?
Channel Initiator Statistics

• Channel initiator
 – QSG name
 – Number of current channels
 – Maximum current channels
 – Number of active channels
 – Maximum active channels
 – Maximum TCP/IP channels
 – Maximum LU 6.2 channels
 – Storage usage in MB

• Dispatcher task
 – Task number (TCB address)
 – Number of requests for task
 – Busy CPU time of task
 – Sum of elapsed time of requests
 – Wait elapsed time of task

• Adapter task
 – Task number (TCB address)
 – Number of requests for task
 – Busy CPU time of task
 – Sum of elapsed time of requests
 – Wait elapsed time of task

• DNS task
 – Task number (TCB address)
 – Number of requests for task
 – Busy CPU time of task
 – Sum of elapsed time of requests
 – Wait elapsed time of task
 – Time of day of max DNS request
 – Duration time of max DNS request

• SSL task
 – Task number (TCB address)
 – Number of requests for task
 – Busy CPU time of task
 – Sum of elapsed time of requests
 – Wait elapsed time of task
 – Time of day of max SSL request
 – Duration of max SSL request
Channel Accounting Data

- For each channel instance
 - Channel name
 - Channel disposition
 - Channel type
 - Channel state
 - STATCHL setting
 - Connection name
 - Channel stopped date&time
 - Last msg date&time
 - Channel batch size
 - Num of messages
 - Num of persistent messages
 - Num of batches
 - Num of full batches
 - Num of transmission buffers sent
 - Num of transmission buffers received
 - Current shared conversations
 - Num of bytes
 - Num of persistent bytes

- Num of bytes sent (both ctrl data & msg data)
- Num of bytes received (both ctrl data & msg data)
- Compression rate
- Exit time average
- Exit time min
- Exit time max
- Exit time max date&time
- Net time average
- Net time min
- Net time max
- Net time max date&time
- Remote qmgr/app name
- Put retry count
- Transmission queue empty count
New SMF record subtypes and DSECTs

New subtypes

- **SMF 115 subtype 231** (0xE7='X') for Channel Initiator Statistics
- **SMF 116 subtype 10** for Channel Accounting Data

New DSECTs shipped

- **CSQDQWH S (QWHS)**: Standard header
- **CSQDQWSX (QWSX)**: Self defining section for **subtype 231**
- **CSQDQCCT (QCCT)**: Definition for CHINIT statistics data
 - **CSQDQCT (QCT_DSP/QCT_AD P/QCT_SSL/QCT_DNS)**: Definition for CHINIT tasks
- **CSQDQHS (QWHS)**: Standard header
- **CSQDQWS5 (QWS5)**: Self defining section for **subtype 10**
- **CSQDQCST (QCST)**: Definition for channel accounting data
New SMF record subtypes and DSECTs

Two new SMF records have been added:

SMF 115 sub type 231 has the CHINIT control information like adapter and dispatcher task CPU times, DNS resolution times. This helps with tuning the number of tasks configured.

SMF 116 sub type 10 has the per channel accounting data like bytes sent, achieved batch size, etc.

The DSECTs that are shipped for each type of record are listed.

Note: The standard layout for SMF records involves three parts:

- **SMF header** - Provides format, identification, and time and date information about the record itself.
- **Self-defining section** - Defines the location and size of the individual data records within the SMF record.
- **Data records** - The actual data from MQ that you want to analyze.
Starting CHINIT SMF via CSQZPARM

- Separate controls from Queue Manager SMF - _allows 'opt in'
- Existing system (CSQ6SYSP) parameters have been reused
 - **SMFSTAT**
 - **Class 4** added for CHINIT Statistics
 - **SMFACCT**
 - **Class 4** added for Channel Accounting data
- If SMFSTAT/SMFACCT is set to 4 (or list of values including 4)
 - Corresponding trace is started when the queue manager is started
- CHINIT SMF collection starts when CHINIT is started
 - Reads trace settings and enables CHINIT STAT and/or Channel ACCTG
- Can be disabled/re-enabled by **STOP/START TRACE** while CHINIT started
CHINIT SMF: Controls

- STAT trace allows a high level view of activity in the CHINIT address space.
- ACCTG trace allows a detailed view at the channel level.
Starting CHINIT SMF via MQSC commands

• You can also start Channel Initiator Statistics (STAT) trace by:

```
!MQ08 START TRACE(STAT) CLASS(4)
CSQW130I !MQ08 'STAT' TRACE STARTED, ASSIGNED TRACE NUMBER 05
CSQ9022I !MQ08 CSQWVCM1 ' START TRACE' NORMAL COMPLETION
```

• And you can start Channel Accounting data (ACCTG) trace by:

```
!MQ08 START TRACE(ACCTG) CLASS(4)
CSQW130I !MQ08 'ACCTG' TRACE STARTED, ASSIGNED TRACE NUMBER 06
CSQ9022I !MQ08 CSQWVCM1 ' START TRACE' NORMAL COMPLETION
```

• You can DISPLAY TRACE by:

```
!MQ08 DISPLAY TRACE(*)
CSQW127I !MQ08 CURRENT TRACE ACTIVITY IS -
TNO   TYPE   CLASS   DEST   USERID   RMID
  02   STAT   01   SMF    *       *
  05   STAT   04   SMF    *       *
  06   ACCTG  04   SMF    *       *
END OF TRACE REPORT
```

• ALTER and STOP TRACE commands have also been updated
Starting CHINIT SMF via MQSC commands

- **START TRACE command extended to enable CHINIT SMF**
 - `START TRACE(STAT) CLASS(4)`
 - New class 4 trace represents CHINIT SMF data
 - `DEST(SMF)` is default
 - Starts CHINIT SMF data collection
 - SMF records written at next SMF broadcast or interval

- **STOP TRACE command extended to disable CHINIT SMF**
 - `STOP TRACE(STAT) CLASS(4), STOP TRACE(STAT), STOP TRACE(*)`
 - Stops CHINIT SMF data collection
 - Writes outstanding data to SMF

- **DISPLAY TRACE command modified to list CHINIT SMF trace info**
 - `DISPLAY TRACE(STAT) CLASS(4), DISPLAY TRACE(STAT), DISPLAY TRACE(*)`

- **ALTER TRACE command modified to alter CHINIT SMF trace**
 - `ALTER TRACE(STAT) TNO(tno_number) CLASS(4)`
Starting CHINIT SMF via MQSC commands

- Similarly, for Channel Accounting trace we have:
 - START TRACE(ACCTG) **CLASS(4)**
 - STOP TRACE(ACCTG) CLASS(4), STOP TRACE(ACCTG), STOP TRACE(*)
 - DISPLAY TRACE(ACCTG) CLASS(4), DISPLAY TRACE(ACCTG), DISPLAY TRACE(*)
 - ALTER TRACE(ACCTG) TNO(tno_number) CLASS(4)
New console messages for CHINIT SMF

- For **START/STOP TRACE(STAT)**

<table>
<thead>
<tr>
<th>Message Code</th>
<th>Message Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSQX128I</td>
<td>csect-name Channel initiator statistics collection started</td>
</tr>
<tr>
<td>CSQX129I</td>
<td>csect-name Channel initiator statistics collection stopped</td>
</tr>
</tbody>
</table>

- For **START/STOP TRACE(ACCTG)**

<table>
<thead>
<tr>
<th>Message Code</th>
<th>Message Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSQX126I</td>
<td>csect-name Channel accounting collection started</td>
</tr>
<tr>
<td>CSQX127I</td>
<td>csect-name Channel accounting collection stopped</td>
</tr>
</tbody>
</table>
Controlling the CHINIT SMF interval

- Use the **STATIME** parameter
 - Controls the SMF interval for both Queue Manager and CHINIT
 - Keeps both Queue Manager and CHINIT statistics synchronized in time

- Values for **STATIME**
 - **30 (minutes)**: Default value
 - **Non-zero**: SMF data will be collected when the specified interval expires
 - **Zero**: SMF data is collected at SMF broadcast of z/OS (using global SMF interval)

- How to set
 - Modify STATIME parameter in **CSQ6SYSP** and rebuild the **CSQZPARM** module
 - Takes effect at next startup of Queue Manager
 - Use **SET SYSTEM** command
 - Takes effect immediately

 e.g. To set the SMF interval to 10 minutes, issue:

  ```
  /IMQ07 SET SYSTEM STATIME(10)
  ```
Controlling Channel Accounting

- **Queue Manager attribute: STATCHL**
 - **OFF** (default value)
 - Disables channel accounting for channels with STATCHL(QMGR)
 - **LOW/MEDIUM/HIGH**
 - Have the same effect
 - Enables channel accounting for channels with STATCHL(QMGR)
 - **NONE**
 - Disables channel accounting for all channels

- **Channel attribute: STATCHL**
 - **QMGR** (default value)
 - Channel accounting is controlled by the setting of the Queue Manager STATCHL attribute
 - **LOW/MEDIUM/HIGH**
 - Have the same effect
 - Enables channel accounting for this channel
 - **OFF**
 - Disables channel accounting for this channel
A new attribute called STATCHL which allows statistics collection granularity at the channel level has been added to the channel definition.

It can be specified on Sender, Receiver, Server, Requester, Cluster Sender and Cluster Receiver channels.

- STATCHL can also be specified at the Queue Manager level to allow channels to inherit a system wide setting.

- The amount of data collected is a superset of that collected on the distributed platforms with the STATCHL event message.

- The queue manager object also has a STATACLS which sets the STATCHL value for automatically defined cluster sender channels.
Channel Accounting for auto-defined cluster channels

- Queue Manager attribute: **STATACLs**
 - **QMGR** (default)
 - Channel accounting for auto-defined cluster sender channels is controlled by the setting of the Queue Manager **STATCHL** attribute
 - **LOW/MEDIUM/HIGH**
 - Have the same effect
 - Enables channel accounting for auto-defined cluster sender channels
 - **OFF**
 - Disables channel accounting for auto-defined cluster sender channels
The queue manager object also has a STATACLCS which sets the STATCHL value for automatically defined cluster sender channels.
Channel Accounting for SVRCONE channels

- For SVRCONE channels
 - Set **STATCHL** at the QMGR level
- Enables it for all client connections
- But, be careful as channel accounting data is captured at:
 - Each SMF statistics interval (STATIME), and
 - When a channel ends data is captured and held until next interval
 - Hence, frequent client connects/disconnects can result in a lot of data!
- We may provide more control for SVRCONE channels in a future release
MQ Explorer - Enabling Channel Statistics on QMGR

Queue Manager MQ07 on 'WINMVS41.HURSLEY.IBM.COM(1407)'

<table>
<thead>
<tr>
<th>Connection status</th>
<th>Connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection type</td>
<td>Client</td>
</tr>
<tr>
<td>Connection name</td>
<td>WINMVS41.HURSLEY.IBM.COM(1407)</td>
</tr>
<tr>
<td>Channel name</td>
<td>SYSTEM.ADMIN.SVRCONN</td>
</tr>
<tr>
<td>Channel definition table</td>
<td></td>
</tr>
<tr>
<td>Refresh interval</td>
<td>300</td>
</tr>
<tr>
<td>Autoreconnect</td>
<td>No</td>
</tr>
</tbody>
</table>

MQ07 - Properties

Statistics monitoring

<table>
<thead>
<tr>
<th>Channel statistics</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto CLUSSDR statistics</td>
<td>Queue Manager</td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
MQ Explorer - Enabling Channel Statistics on channel

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
New console messages for CHINIT SMF

• **CSQX076I**
 • Issued during CHINIT startup
 • Reports values of Queue Manager attributes STATCHL and STATACLS

```
22.59.05 STC13103  +CSQX074I !MQ07 CSQXGIP MONCHL=OFF, MONACLS=QMGR
22.59.05 STC13103  +CSQX075I !MQ07 CSQXGIP ADOPTMCA=ALL, ADOPTCHK=ALL
22.59.05 STC13103  +CSQX076I !MQ07 CSQXGIP STATCHL=OFF, STATACLS=QMGR
22.59.05 STC13103  +CSQX078I !MQ07 CSQXGIP IGQ=DISABLED, CHADEXIT=
22.59.05 STC13103  +CSQX079I !MQ07 CSQXGIP TRAXSTR=YES, TRAXTBL=2
...```

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
New console messages for CHINIT SMF

- A new task, CSQXSMFT, is attached for CHINIT SMF
- If this task encounters an error, the following message is issued:

  **CSQX124E** csect-name SMF task ended abnormally, RC=retcode, reason=reason
  
  • An abend (with a dump) is issued

- If other errors are encountered while processing CHINIT SMF:

  **CSQX122E** csect-name Failed to process channel accounting, RC=retcode
  **CSQX123E** csect-name Failed to process channel initiator statistics, RC=retcode
  **CSQX125I** csect-name SMF data incomplete
New console messages for CHINIT SMF

If the MEMLIMIT parameter is not set in the channel initiator JCL, the amount of virtual storage above the bar may be set from by the MEMLIMIT parameter in the SMFPRMxx member of SYS1.PARMLIB or from the IEFUSI exit.

If the MEMLIMIT is set to restrict the above bar storage below the required level, the channel initiator will issue the **CSQX124E “SMF task ended abnormally”** message and class 4 accounting and statistics trace will not be available.
Interpreting SMF data

• Details of new SMF records are documented in the InfoCenter
  – Copybooks that map the records are shipped

• SupportPac MP1B has been updated to:
  – Format new SMF data
  – **MQSMF** displays formatted records
    • Outputs information to various files (DDs)
    • Highlights potential out-of-line conditions
    • Can output comma-separated values (CSV) to import in spreadsheets
      – Expected to be made available soon

• Sample program **CSQ4SMFD.C** (run by **CSQ4SMFJ.JCL**) has also been updated
  – Formats CHINIT SMF data in a dump like fashion
Interpreting SMF data

• WebSphere MQ provides detailed information describing the SMF records it produces. These can be used to understand the data that is generated and produce utilities to interpret this information.

• The category 2 SupportPac MP1B provides a program called MQSMF that can be used to format the SMF records instead. This program analyses SMF records and outputs information to various files (DDs) if they are specified. In addition to formatting the data into human-readable output, it also has support for highlighting various conditions that might warrant further attention by administrators.

• MQSMF can also output data as comma separated values (CSV) that can be readily imported into spreadsheets for further analysis.
MQSMF - Example JCL

//S1 EXEC PGM=MQSMF,REGION=0M
//STEPLIB DD DISP=SHR,DSN=user.MP1B.LOAD
//SMFIN DD DISP=SHR,DSN=user.SMF.OUT
//SYSIN DD *
* comments
SMF_Interval_time 30 * new value
Detail 20
QM MQ07
//MESSAGE DD SYSOUT=* 
//BUFF DD SYSOUT=* 
//BUFFCSV DD SYSOUT=* 
//CF DD SYSOUT=* 
//CFCSV DD SYSOUT=* 
//DATA DD SYSOUT=* 
//DB2 DD SYSOUT=* 
//EOJ DD SYSOUT=* 
//LOCK DD SYSOUT=* 
//LOG DD SYSOUT=* 
//LOGCSV DD SYSOUT=* 
//MSGM DD SYSOUT=* 
//MSGMSCV DD SYSOUT=* 
//QCPU DD SYSOUT=* 
//SMSDS DD SYSOUT=* 
//TASKSUM DD SYSOUT=* 
//TASK DD SYSOUT=* 
//TASKCSV DD SYSOUT=* 
//TOPIC DD SYSOUT=* 
//STG DD SYSOUT=* 
//QSUML DD SYSOUT=*,DCB=(LRECL=200) 
//QSUMS DD SYSOUT=*,DCB=(LRECL=200) 
//STGSUM DD SYSOUT=*,DCB=(LRECL=200) 
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=200,BLKSIZE=27998) 
//SYSOUT DD SYSOUT=* 
//SYSERR DD SYSOUT=* 

**NEW DD cards**

//CHINIT DD SYSOUT=* 
//CHINCSV DD SYSOUT=* 
//CMESSAGE DD SYSOUT=* 
//ADAP DD SYSOUT=* 
//ADAPCSV DD SYSOUT=* 
//DISP DD SYSOUT=* 
//DISPCSV DD SYSOUT=* 
//DNS DD SYSOUT=* 
//DNSCSV DD SYSOUT=* 
//SSL DD SYSOUT=* 
//SSLCSV DD SYSOUT=* 
//DCHS DD SYSOUT=* 
//DCHSCSV DD SYSOUT=* 
//DCHSSUM DD SYSOUT=*
CHINIT Statistics Summary (CHINIT)

MVCA,MQPV,2014/03/18,13:00:00,VRM:800,
From 2014/03/18,12:45:00.015222 to 2014/03/18,13:00:00.083630 duration
900.068408 seconds
Peak number used of current channels........... 4
Peak number used of active channels ............ 0
MAXCHL. Max allowed current channels............9999
ACTCHL. Max allowed active channels.............9999
TCPCHL. Max allowed TCP/IP channels.............9999
LU62CHL. Max allowed LU62 channels..............200
Storage used by Chinit............................436MB

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
CHINIT Statistics Summary (//CHINIT)

The next few slides show output of the CHINIT's SMF data, this has been formatted by supportpac MP1B - other formatters are available.

The output is taken from one of our test systems.

On this slide, the CHINIT summary data produced by the //CHINIT DD card is shown.

This CHINIT has peaked at 4 current and the address space is using 436MB of storage.

Notes:

1) A current channel is "active" unless it is in RETRYING, STOPPED, or STARTING state.

2) A channel is "current" if it is in any state other than inactive.
CHINIT Statistics Summary (//CHINITCSV)

- Number of current and active channels
  - How close are you getting to the maximums?
- Channel initiator storage usage
  - 31-bit usage – currently not much in 64-bit for the channel initiator
- Are these trending upwards?
  - Monitor over time

![Graph of Number of current channels](image)

![Graph of STG used in MB](image)
Dispatcher Task Statistics (//@DISP + //DISPCSV)

<table>
<thead>
<tr>
<th>Task, Type, Requests, Busy %,</th>
<th>CPU used, CPU %, &quot;avg CPU&quot;, &quot;avg ET&quot; Seconds, uSeconds, uSeconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, DISP, 26587, 0.4,</td>
<td>0.592463, 0.1, 22, 127</td>
</tr>
<tr>
<td>1, DISP, 26963, 0.3,</td>
<td>0.588092, 0.1, 22, 112</td>
</tr>
<tr>
<td>2, DISP, 864329, 2.7,</td>
<td>2.545668, 0.3, 3, 28</td>
</tr>
<tr>
<td>3, DISP, 26875, 0.4,</td>
<td>0.590825, 0.1, 22, 120</td>
</tr>
<tr>
<td>4, DISP, 26874, 0.4,</td>
<td>0.603285, 0.1, 22, 123</td>
</tr>
<tr>
<td>Summ, DISP, 971628, 0.8,</td>
<td>4.920332, 0.1, 5, 38</td>
</tr>
</tbody>
</table>

**5 Dispatcher tasks**

Dispatcher 2 is busy, other tasks are less busy as some channels against them have stopped

Dispatchers have ample capacity

4.9 secs of CPU time used by Dispatcher tasks

Average CPU and Elapsed Times for Dispatcher requests

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
The example data shows that there are five dispatcher tasks (0 → 4) and that one dispatcher task is processing more requests than the others. This is normal, as some channels might stop so the dispatcher is processing fewer channels. Also, some channels can be busier than others.

• 4.9 seconds of CPU were used by the dispatchers.

• Dispatcher requests are generally TCP send and receive requests and channel exit requests. The average request used 5 microseconds of CPU and took 38 microseconds elapsed time.

• This report also shows the average time per request. The average CPU used per request depends on the message traffic, for example, bigger messages use more CPU than smaller messages.

• The %Busy indicates if a dispatcher has spare capacity so this report would help an MQ administrator work out if there are enough dispatchers.
Dispatcher Task Statistics (//DISP + //DISPCSV)

- Shows distribution of channels across dispatchers

<table>
<thead>
<tr>
<th>Disp</th>
<th>Number of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Summ</td>
<td>20</td>
</tr>
</tbody>
</table>
### Adapter Task Statistics (//ADAP + //ADAPCSV)

MV45, MQ20, 2014/04/08, 20:43:57, VRM: 800, duration 122.253258 seconds

<table>
<thead>
<tr>
<th>Task, Type, Requests</th>
<th>Busy %</th>
<th>CPU used</th>
<th>CPU %</th>
<th>avg CPU</th>
<th>avg ET</th>
<th>uSeconds, uSeconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, ADAP, 127599</td>
<td>16.5</td>
<td>0.953615</td>
<td>0.8</td>
<td></td>
<td></td>
<td>7, 158</td>
</tr>
<tr>
<td>1, ADAP, 46700</td>
<td>7.6</td>
<td>0.309678</td>
<td>0.3</td>
<td></td>
<td></td>
<td>7, 199</td>
</tr>
<tr>
<td>2, ADAP, 13702</td>
<td>3.2</td>
<td>0.065380</td>
<td>0.1</td>
<td></td>
<td></td>
<td>5, 284</td>
</tr>
<tr>
<td>3, ADAP, 2909</td>
<td>0.7</td>
<td>0.029541</td>
<td>0.0</td>
<td></td>
<td></td>
<td>10, 279</td>
</tr>
<tr>
<td>4, ADAP, 395</td>
<td>0.1</td>
<td>0.003179</td>
<td>0.0</td>
<td></td>
<td></td>
<td>8, 392</td>
</tr>
<tr>
<td>5, ADAP, 37</td>
<td>0.0</td>
<td>0.000241</td>
<td>0.0</td>
<td></td>
<td></td>
<td>7, 149</td>
</tr>
<tr>
<td>6, ADAP, 10</td>
<td>0.0</td>
<td>0.000175</td>
<td>0.0</td>
<td></td>
<td></td>
<td>17, 111</td>
</tr>
<tr>
<td>7, ADAP, 0</td>
<td>0.0</td>
<td>0.000000</td>
<td>0.0</td>
<td></td>
<td></td>
<td>0, 0</td>
</tr>
<tr>
<td>Summ, ADAP, 191442</td>
<td>3.5</td>
<td>1.361809</td>
<td>0.1</td>
<td></td>
<td></td>
<td>7, 179</td>
</tr>
</tbody>
</table>

MQI requests are processed by first free adapter so adapters lower in the list process less requests.

Difference could indicate wait for I/O due to commit or disk read.
This shows an example of the adapter task statistics report.

The adapters process MQI requests. Each MQI request uses the first free adapter so expect to see decreasing busyness.

Some of these requests might wait, for example, for log I/O during a commit, so the difference between the average CPU time and average Elapsed Time per request can be quite large.

This is the report that an MQ administrator would use to ensure that there are enough adapter tasks defined. A channel should not generally need to wait for an adapter.

In this example, we never used all the adapters. So, there is no need to add more adapters. If the last adapter is very busy, consider increasing the number of adapter tasks.
MV45,MQ20,2014/04/08,20:41:54,VRM:800,
From 2014/04/08,20:40:07.101220 to 2014/04/08,20:41:54.984681 duration
107.883460 seconds

<table>
<thead>
<tr>
<th>Task, Type, Requests, Busy %,</th>
<th>CPU used, CPU %,</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, DNS</td>
<td>24, 0.0, 0.007980, 0.0,</td>
</tr>
<tr>
<td>Summ, DNS</td>
<td>24, 0.0, 0.007980, 0.0,</td>
</tr>
</tbody>
</table>

"avg CPU", "avg ET", longest, date, time
uSeconds, uSeconds, uSeconds,
332, 1031, 24284, 2014/04/08,20:41:49.573730
Summ, 332, 1031, 24284, 2014/04/08,20:41:49.573730

Only 1 DNS task, not busy
Longest DNS resolution request
DNS Task Statistics (//DNS + //DNSCSV)

• There is only one DNS task
  – If this task is very busy, let IBM know!
• Longest request was 24284 microseconds
• Date and time fields show when this happened
• Message CSQX788I issued if DNS lookup takes >3 secs

CSQX788I csect-name DNS lookup for address address using function 'func' took n seconds
SSL Task Statistics (//'SSL + //SSLCSV')

MV45, SS09, 2014/04/10, 23:22:24, VRM: 800,
1737.320215 seconds

<table>
<thead>
<tr>
<th>Task, Type</th>
<th>Requests</th>
<th>Busy %</th>
<th>CPU used</th>
<th>CPU %</th>
<th>&quot;avg CPU&quot;</th>
<th>&quot;avg ET&quot;</th>
<th>Seconds</th>
<th>uSeconds</th>
<th>uSeconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, SSL</td>
<td>109843</td>
<td>0.3</td>
<td>0.594580</td>
<td>0.0</td>
<td>5</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, SSL</td>
<td>130180</td>
<td>0.3</td>
<td>0.713966</td>
<td>0.0</td>
<td>5</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, SSL</td>
<td>117544</td>
<td>0.3</td>
<td>0.703146</td>
<td>0.0</td>
<td>6</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, SSL</td>
<td>145944</td>
<td>0.4</td>
<td>0.830535</td>
<td>0.0</td>
<td>6</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, SSL</td>
<td>123825</td>
<td>0.3</td>
<td>0.679656</td>
<td>0.0</td>
<td>5</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Longest busy times due to lots of channels starting together

Low average CPU time and high elapsed time due to cryptographic off-load to card
SSL Task Statistics (//SSL + //SSLCSV)

- CPU time expected to be less than elapsed time because cryptographic operations are offloaded
- The long busy times seen in the example were due to lots of channels starting up at the same time
- Adding more SSL tasks might not improve performance if waiting for external hardware, such as a single cryptographic card
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Channel Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Connection name</td>
<td>127.0.0.1</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Remote qmgr/app</td>
<td>MQ89</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Channel disp</td>
<td>PRIVATE</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Channel type</td>
<td>SENDER</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Channel status</td>
<td>RUNNING</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Channel START/STOP Time</td>
<td>2014/04/08,19:41:48</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Channel status collect time</td>
<td>2014/04/08,19:43:57</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Last msg time</td>
<td>2014/04/08,19:43:52</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Active for</td>
<td>122 seconds</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Batch size</td>
<td>50</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Messages/batch</td>
<td>38.9</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Number of messages</td>
<td>2,998</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Number of persistent messages</td>
<td>1,506</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Number of batches</td>
<td>77</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Number of full batches</td>
<td>42</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Number of partial batches</td>
<td>35</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Buffers sent</td>
<td>3,319</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Buffers received</td>
<td>109</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Xmitq empty count</td>
<td>13</td>
</tr>
</tbody>
</table>
Channel Accounting Data (//DCHS + //DCHSCSV)

- Uniquely identifies each channel with its connection name, channel name and remote queue manager name
- Some of the batches were not full. Target batch size was 50 but average achieved batch size was 38.9. The number of full and partial batches are shown.
  - BATCHSZ, BATCHLIM and message arrival impacts this
- About half the messages sent were persistent
## Channel Accounting Data (://DCHS + //DCHSCSV)

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Channel</th>
<th>Description</th>
<th>Value</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Message data</td>
<td>17,198,653</td>
<td>16 MB</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Persistent message data</td>
<td>4,251,780</td>
<td>4 MB</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Non persistent message data</td>
<td>12,946,873</td>
<td>12 MB</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Total bytes sent</td>
<td>17,200,221</td>
<td>16 MB</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Total bytes received</td>
<td>3,052</td>
<td>2 KB</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Bytes received/Batch</td>
<td>39</td>
<td>39 B</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Bytes sent/Batch</td>
<td>223,379</td>
<td>218 KB</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Batches/Second</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Bytes received/message</td>
<td>1</td>
<td>1 B</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Bytes sent/message</td>
<td>5,737</td>
<td>5 KB</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Bytes received/second</td>
<td>25</td>
<td>25 B/sec</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Bytes sent/second</td>
<td>140,985</td>
<td>137 KB/sec</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Compression rate</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Exit time average</td>
<td>0 uSec</td>
<td></td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>DNS resolution time</td>
<td>0 uSec</td>
<td></td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Net time average</td>
<td>312 uSec</td>
<td></td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Net time min</td>
<td>43 uSec</td>
<td></td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Net time max</td>
<td>4,998 uSec</td>
<td></td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>MQ89_1</td>
<td>Net time max date&amp;time</td>
<td>2014/04/08,19:43:52</td>
<td></td>
</tr>
</tbody>
</table>
Channel Accounting Data (\texttt{//DCHS + //DCHSCSV})

- Total message data of about 16MB sent during the interval
- The average number of bytes sent per message was about 5KB
- Bytes sent/received per second is:
  - Average/interval
- As this is a sender type channel, as expected, the bytes sent is greater than the bytes received
- Monitor channel usage over time to look for trends
Channel Accounting Summary (DCHSSUM)

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Type</th>
<th>VRM</th>
<th>Message Count</th>
<th>Persistent</th>
<th>Non-Persistent</th>
<th>P/Sec</th>
<th>NP/Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/06/30</td>
<td>RECEIVER</td>
<td>800</td>
<td>2,75720</td>
<td>0</td>
<td>3786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014/06/30</td>
<td>SENDER</td>
<td>800</td>
<td>2,75720</td>
<td>0</td>
<td>2611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014/06/30</td>
<td>SENDER</td>
<td>800</td>
<td>23,86237508</td>
<td>0</td>
<td>559983</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sender channel activity
Shown over 2 intervals

Number of persistent and non-persistent messages processed during interval
CHINIT Messages (//CMESSAGE)

- Some Examples:

  MQCHIN001W The high water mark of the number of active channels >50 % of max channels

  MQCHIN007I Dispatcher task is nn% busy on average

  MQCHIN008I Adapter task is nn% busy on average

  MQCHIN009I SSL task is nn% busy on average

- There are more examples in the documentation for Supportpac MP1B
Performance overhead for statistics and accounting

- An MQ V8 Channel Initiator allocates approximately **190MB of above the bar** virtual storage for Channel Initiator Statistics and Channel Accounting Data, regardless of whether CLASS(4) trace is enabled.

- Recommend Channel Initiator is allowed access to a minimum of 256MB of virtual storage i.e. set **MEMLIMIT=256M** if CLASS(4) trace is enabled.

- Release specific Performance Support Pack MP1J (due out soon)
  - Indicates **1-2% CPU overhead** for collecting CHINIT statistics and Channel accounting data
If the MEMLIMIT parameter is not set in the channel initiator JCL, the amount of virtual storage above the bar may be set from by the MEMLIMIT parameter in the SMFPRMxx member of SYS1.PARMLIB or from the IEFUSI exit.

If the MEMLIMIT is set to restrict the above bar storage below the required level, the channel initiator will issue the CSQX124E “SMF task ended abnormally” message and class 4 accounting and statistics trace will not be available.
If your CHINIT is experiencing high CPU usage

- Check the CURDEPTH of your SYSTEM.CHANNEL.SYNCQ
  - If >1000, check that the Queue has INDEXTYPE(MSGID) set

- See presentation from L2 at:
  http://www-01.ibm.com/support/docview.wss?uid=swg27010914&aid=1

  It lists some things to try for high CPU usage in the CHINIT

- Check that you have enough Adapter tasks
  - See performance tuning recommendations for the CHINIT in Performance Supportpac MP16

- Check your MAXCHL parameter as this can influence the distribution of channels to dispatchers
  - See MP16

- Check the number of dispatchers you have defined
  - The first ( MIN( (MAXCHL / CHIDISPS ) , 10 ) channels to start are associated with the first dispatcher TCB and so on until all dispatcher TCBs are in use. The effect of this for small numbers of channels and a large MAXCHL is that channels are NOT evenly distributed across dispatchers.

    We suggest setting MAXCHL to the number of channels actually to be used where this is a small fixed number.

    We suggest CHDISPS(20) for systems with more than 100 channels. We have seen no significant disadvantage in having CHDISPS(20) where this is more dispatcher TCBs than necessary.

- See MP16
New Redbook covers MQ V8

IBM MQ V8 Features and Enhancements

Maximize your investment in IBM MQ
Discover new features that bring value to your business
Learn from scenarios with sample configurations

Rufus Credle
Carolyn Elkins
Peter Hayward
Valerie Lampkin
Matthew Leming
Jonatan Maya Sanchez
Mark Taylor
Mark Wilson

ibm.com/redbooks

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
New Redbook covers MQ V8

This redbook covers the new features introduced in V8 that we have just discussed. The book is currently available in draft form. The final version is expected to be made available soon.
Questions?

Remember to submit your evaluation

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday Aug 4th</th>
<th>Tuesday Aug 5th</th>
<th>Wednesday Aug 6th</th>
<th>Thursday Aug 7th</th>
<th>Friday Aug 8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td></td>
<td></td>
<td>16203 Application programming with MQ verbs (Chris Leonard)</td>
<td>16202 The Dark Side of Monitoring MQ - SMF 115 and 116 Record Reading and Interpretation (Lyn Elkins)</td>
<td>15998 CICS and MQ - Workloads Unbalanced! (Lyn Elkins)</td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15</td>
<td>16194 Introduction to MQ (Chris Leonard)</td>
<td>16199 What's New in IBM Integration Bus &amp; WebSphere Message Broker (David Coles)</td>
<td>15844 MQ – Take Your Pick Lab (Ralph Bateman, Lyn Elkins)</td>
<td>16197 Using IBM WebSphere Application Server and IBM WebSphere MQ Together (Chris Leonard)</td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:30</td>
<td></td>
<td>16195 All about the new MQ v8 (Mark Taylor)</td>
<td>16192 MQ Security: New v8 features deep dive (Neil Johnston)</td>
<td>16201 New MQ Chinit monitoring via SMF (Mayur Raja)</td>
<td></td>
</tr>
<tr>
<td>03:00</td>
<td>16205 MQ Beyond the Basics (Neil Johnston)</td>
<td>16204 MQ &amp; DB2 – MQ Verbs in DB2 &amp; InfoSphere Data Replication (Q Replication) Performance (Lyn Elkins)</td>
<td>15503 What's wrong with MQ? (Lee E. Wheaton)</td>
<td>16200 IIIB - Internals of IBM Integration Bus (David Coles)</td>
<td></td>
</tr>
<tr>
<td>04:15</td>
<td>16198 First Steps with IBM Integration Bus: Application Integration in the new world (David Coles)</td>
<td>16193 MQ for z/OS v8 new features deep dive (Mayur Raja)</td>
<td>16196 MQ Clustering - The Basics, Advances and What's New in v8 (Neil Johnston)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete your session evaluations online at [www.SHARE.org/Pittsburgh-Eval](http://www.SHARE.org/Pittsburgh-Eval)