Internals of IBM Integration Bus

#SHAREorg

000©

David Coles
IBM Integration Bus Level 3 Technical Lead,
IBM Hursley — dcoles@uk.ibm.com

7th August 2014
16200

SHARE is an independent volunteer-run information technology association
that provides education, professional networking and industry influence.
Copynght (C) 2014 by SHARE Inc. @ ® @ @ ﬁ:tc:;}l’ eeeee otherwise note :l ',':rl\ls wwwwww JE;?:ﬁi:?ge(;/

.00
e SHARE

.. in Pittsburgh 2 ()14
L]

Agenda i

Educato + Natwork + Influgnce

Introduction
Runtime Processes
Threads
Memory
Diagnostic Information
External Internals
Execution Engine / Stack Size

Node lifecycle
Parsers and the Logical Tree

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Introducing IBM Integration Bus s

IBM’s Strategic Integration Technology
Single engineered product for .NET, Java and fully heterogeneous integration scenarios
DataPower continues to evolve as IBM’s integration gateway

Integration

Gateway Integration Bus

i

ERP/EIS/
CRM

m

o
«Q

()

= A Natural Evolution for WebSphere Message Broker us ers
» Significant innovation and evolution of WMB technology base
* New features for Policy-based WLM, BPM integration, Business rules and .NET

» Designed to incorporate WebSphere Enterprise Servic e Bus use cases
» Capabilities for WESB are folded in to IBM Integration Bus over time
» Conversion tools for initial use cases built in to IIB from day one
« WESB technology remains in market, supported. Migrate to Integration Bus when ready @@

o SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

—

| 3
Integration Bus Components

| &Sl T wWebSphere Message Broker W... |
Q’J" http://broker.hursley.ibm.ce 050/
2 Most

isited || Getting Started & G

// characteristics fo the brgkez. o o ot Gﬂhteggiatkthgggw
EIDkEICDnnECtiDnPEJm&gEra&m Bus Java API From .

chi npe@bm com
new MOBrokerConnectionParameters (brokerHostlName, brokerPort, broker{Qmo User - EST Rl 1.0

BrokerProxv b = null:; l

Integration Bus Node

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educato + Network » Influsnce

Runtime Processes

0®
¢ SHARE

in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Processes -

bipimain
z/OS only. The first process in any IIB address space. APF
authorised to set up authorised routines.

bipservice

Lightweight and resilient process that starts and monitors the
bipbroker process (a.k.a AdminAgent).

If the bipbroker process fails, bipservice will restart it.
bipbroker

A more substantial process. Contains the deployment
manager, for CMP and REST connections, as well as the
WebUI server. All commands, toolkit connections and WebUI
go through this process.

Responsible for starting and monitoring the biphttplistener
and DataFlowEngine processes.

If either process fails, bipbroker will restart them.
biphttplistener

Runs the brokerwide HTTP connector for HTTP and SOAP
nodes.

DataFlowEngine (a.k.a Integration Server) o®
Runtime engine for all deployed resources. ¢ SHARE

.. in Pittsburgh 2014
L]

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Processes by platform smane

Linux and Unix systems

)0:00 bipservic

26 bip

Windows
= hipsewice.e:-;e

~| [z cmd exe

= hiphru:ul-:er.e:t.e

hiphttplistener.e:ue

~| [z cmd exe
= mqsistartF'n:u:.e:-;e
DiataFlowEngine exe
...
e SHARE

...m Pittsburgh 2

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Processes grouped by Address Space on z/OS -+

SHARE

/s nnBRK Message Broker Address Spaces

D . [>

Control Execution | Execution §WebSphere| User IMS OMVS CICs DB2 RRS
Process | group 1 group n MQ Process Region
Infra- Infra- Infra- USS
structure structure structure

— main main main
bipservice DataFlow DataFlow wmgi

@ Engine Engine command
bipbroker

O

 — Threads Threads
biphttp
listener

2/0S . e

LE

Input Filter Neon . rocess
Node Node Rules p
Filter Node éutput
‘ Node

Warehousing Node

0®
¢ SHARE

...m Pittsburgh

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Displaying broker at the process level on z/OS &

SDSF PROCESS DISPLAY MVD1 ALL
COMMAND INPUT ===>
PREFIX=MQO5BRK DEST=(ALL) OWNER=#
NP JOBNAME JobID Status
sTC22808 FILE SYS KERNEL WHIT

LINE 1-11 (11)
SCROLL ===>
SORT=ASID/A SYSNAME==
Owner
MQUSBRK

Command
BPXBATAS

MOQUDBRK

MQOS5BRK
MQOS5BRK

MQOS5BRK
MQO5BRK
MUUSBREK

STC52908 RUNNING

STC52908
STC52908
STC52908
=1 L924910

RUNNING

WAITING FOR CHILD

RUNNING
RUNNLNG

MQOS5BRK
MQO5BRK
MQO5BRK
MQO5BRK
MUUSBREK

biphttplistener MQO5BRK
bipservice MQO3BRK AUTO
/argoinst/DAVE/usr/1lpp/mgsi/
bipbroker MQO3BRK

DataF lowkngine MUUSBRK 4taaf

MQOS5BRK
MQOSBRK
MQO5BRK
MQO5BRK
MQO5BRK

STC52910 WAITING FOR CHILD
STC52910 FILE SYS KERNEL WAIT
STC52909 RUNNING

STC52909 FILE SYS KERNEL WAIT
STC52909 WAITING FOR CHILD

MQOS5BRK
MQO5BRK
MQO5BRK
MQOS5BRK
MQOS5BRK

fargoinst/DAVE/usr/1pp/mgsi/
BPXBATAS
DataFlowEngine MQO5BRK cc32d
BPXBATAS
fargoinst/DAVE/usr/1lpp/mgsi/

/u/gormand: >ps -ef | grep M005

HQO5BRK

HQO3BRK
HQO3BRK

HQO5BRK
HQO5BRK

DFS
HQO5BRK

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

84017209

84017284
67240352

67240502
84017835

131792
84017924

50463369

84017835
84017924

84017209
84017546

131828
67240502

/argoinst/DAVE/usr/1pp/mgsi/bin/bipimain bipservice MQOSBRK AUTO
DataFlowEngine MQB5BRK cc32dfb6-3001-0000-0080-2253e63dfe32 DAVE
biphttplistener MQO5SBRK

bipservice MQO5BRK AUTO

/argoinst/DAVE/usr/1pp/mgsi/bin/bipimain DataFlowEngine 00071016
grep MQO5

bipbroker MQO5BRK

0®
e SHARE

® ipi
..m Pittsburgh

Horizontal Scaling with additional processes

Educato + Natwork + Influgnce

IBM Integration Bus supports horizontal scaling. This is achieved by
Increasing the number of integration servers the service is running in.

Reasons to add additional integration servers:

Increased throughput
Operational simplicity

Physical Server

Workload isolation /
Better H/W utilisation 4

Higher Availability

Integration Node

2 3 4
Servers

MQ Queue]

Manager

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

—

3

SHARE.

Educato + Network » Influsnce

Threads

0®
e SHARE

@, inPittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Integration Flow threads (instances)

Every flow will have at least 1 thread per input node.
On z/OS, these threads are TCBs.

Held within a pool for each input node.
Increase threads by adding “additional instances”.

The integration server will start additional instances on
demand, as the amount of incoming work increases, up
to the limit specified.

If they are idle then additional instances are stopped.

Additional instances can be started immediately when
the integration server starts.

Be aware of adding additional instance at the flow level
when there are multiple input nodes in the same flow!

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educato + Natwork + Influgnce

PO} Inputl

0®
e SHARE

.. in Pittsburgh 2014
L]

Setting additional instances i

In 11IB V9, additional instances can be set by creating a
workload management policy in the WebUI

-| & IBANODE
+| (= Senvers
+| g28 Patterns
-1 f5 Policy
+ (% Configurable Senvices

= WaorkloadManagement

i+| £ Data

+| &% Security
= Maonitorin

: i g Additional Instances

e Dj My Workspace >
Start additional instances when flow starts

* Additional Instances

Additional instances can also be defined on the input node, as a
BAR file override and from 1IB Explorer.

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Vertical Scaling with additional threads s 5

IBM Integration Bus supports vertical scaling. This is achieved by
increasing additional instances (threads) of the service running within

the integration server.
Reasons to add additional instances:

Increased throughput / _ \
Lower memory requirement Physical Server
Better H/W utilisation rlntegration Node \

Policy management

\ | -~/
[MQ Queue |

Additional Instances \ Manager y
®D

@
¢ SHARE
L J
Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

in Pittsburgh 2014

Other thread pools rs

There are other thread pools for the HTTP connectors.
[Integration Node \
WA |
[MQ Queue]
HTTP Connector for embedded listener Manager
mgsireportproperties IBONODE -e default -o HTTPConnector -a
HTTP Connector for broker wide listener
mgsireportproperties IBONODE -b httplistener -o HTTPConnector -a
...
e SHARE
®_inPittshurgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

"

HTTP Connector parameters

SHARE

TTPConnector
uwuid="HTTPConnector’ Check the |IB
address=""* i
pm~1f;_=* ?gaa* Infocenter for a list of
maxPostSize=""
acceptCount=""* all the HTTP
compressableMimeT ypes=""*
Compression="’ Connector |
connectionlinger=’ parameters, and their
connectionT imeout=
maxHttpHeaderSize="" default values.
maxKeepAliveRegquests=""
ireads=""'
noCompressionlszserAgents=""*
restrictedlserAgents=""
zsocketBuffer="'"*
tcpMoDelay=*"*
enableLookups="false’
-n maxThreads
Set the value to the maximum number of threads that can be created by the HTTPConnector.
¢ Value type - integer
e Initial value - 200 ...
e SHARE

...m Pittsburgh 2

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

—

3

SHARE.

Educato + Network » Influsnce

Memory

0®
e SHARE

@, inPittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

ucato + Netwark « Influgnce

means there is a multi faceted approach to checking memory.

/ Integration Server\

/ Native Memory \

The Integration Server is a
process (DataFlowEngine).
Its size is limited by available
memory and configuration on
the operating system.

There is 1 JVM within each
Integration Server. The JVM
has preconfigured minimum
and maximum HEAP
settings.

...
¢ SHARE

.. in Pittsburgh 2014
.I

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

What are the main consumers of memory?

Normal (low) consumers of memory include:
Deployment artefacts
Configuration, such as increasing the min JVvM HEAP
Message flows

Additional instance
See Parser

" |
What to watch for: Stats later!

Size of input messages (1K or 1GB)

How messages are parsed (whole file or records)
Message Tree copying (transformation nodes)
Custom code (ESQL, Java etc)

Caching (Shared Variable, GlobalCache etc)
JVM settings

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educato + Natwork + Influgnce

0®
¢ SHARE

gt 2014
..m Pittsburgh 2 ()1 4

How to check process memory usage

[1”/

Y

SHARE

—_—

Use operating system tools to view the DataFlowEngine process size

Windows. Process Explorer
Process

FID C..
DataFIu:qungine.e:-;E | 13196 0.02

e CSIM bba82c62-7344-44b3-9568-1790fda

NP JOBNAKE
HUH.EFF
HOUBRK
HOUSBRK

Step JobID Quner
STCHINGA HUUFHFF

SruClass RptClass
COLIN HDI I
MO D1 I
DOBSBASE HYD1 I

HUHEEFF
DAVE

vsz = The size in kilobytes of the core image of the process

OF| Real
F4 55,031

Sysane C Pos

Private Bytes

269,524 K

Pﬂgiﬂg
[0
.1
[0

30,901
56, 046

rss = Indicates the real memory (resident set) size of the process (in 1 KB units)

Real = 4k pages

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

1790fdab483b default

510
1.b2
.08
1.b2

CPU% ASID ASIDE EX
0,03 205 @6ch
0.5 285 [a0n
003 240 060

0®
e !illiﬁ\lili

n Pittsburgh 2
I

,-’—-ﬂ

rx
How to check JVM memory usage suame

Check defaults:
mgsireportproperties IBOINODE -e default -o ComlbmJVMManager —a

JymMinHeapSize="—-1"

JvmMaxHeapSize="—-1"

jvmMinHeapSize

Initial value: -1, which represents 33554432 bytes (32MB) with the global
cache disabled, or 100663296 (96MB) with the global cache enabled

jvmMaxHeapSize
Initial value: -1, which represents 268435456 bytes (256 MB)

Check usage with Resource Statistics

P default Resources Statistics (Sna pshot time 121947 - 12:20:07) &%

M | ODBC | Parsersl SOAPInput | Sec

 Dothet App Domains | CICS | Dotet GC | CORBA | ConnectDirect | DecisionServices | FTEAgent | FTP | File | GlobalCache | JDBCConnectionPools | IMS

name InitialMemorylnMB UsedMemorylnMB CommittedMemorylnMB MaxMemoryInMB CumulativeGCTimelnSeconds CumulativeNumberOfGCCollections
 summary 32 89 17 -1 4 102

Heap Memaory 3l 12 El] 256

Non-Heap Memeory 0 Tl | -1

Garbage Collection - Copy 0 4

(Garbage Collection - MarkSweepCompact 4 58

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educatn « Network + influgnce

Diagnostic Information

0®
¢ SHARE

in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Diagnostic Information in WMB s o

Educato + Natwork + Influgnce

Diagnostic Information
Resource Statistics
Flow Statistics
Activity Log
Administration Log
System Log
Trace
Stdout/Stderr

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Resource Statistics Y

Graphical Performance Monitor
Reports comprehensive usage according of well known resources
Message Flows, Nodes, JVM, HTTP, SOAP/HTTP sockets etc
Optionally partitioned by Broker, Execution Group and Message Flow

Reporting Mechanisms
Graphically reported through 1I1B Explorer
Sort, filter and chart performance characteristics
View CPU, 10 and other metrics
Log data to file in CSV/Excel readable format for post processing
User Configurable Reporting Interval
XML report messages consumed by any end user application

Examples of Available Resource Report Metrics
JVM: Memory used, thread count, heap statistics...
Sockets: Socket host/port open; bytes sent, bytes received

DotNet App Domains | CICS | Dothet GC | CORBA | ConnectDirect | DecisionServices | FTEAgent | FTP | File | GlobalCache | JDBCConnectionPools [IMS | VM| ODBC | Parsers | SOAPInput | Sec
name InitizlMemorylnMB ~ UsedMemorylnMB ~ CommittedMemorylnMB MaxMemorylnMB CumulativeGCTimeln5econds CumulativeNumberOfGCCollections

' summary 2 0] 117 1 4 102

' Heap Memory 2 12 El] 256

| Non-Heap Memory 0 T 3l 1

Garbage Collection - Copy 0 4

Garbage Collection - MarkSweepCompact 4 58

Flow Statistics s 3 _

Using the WebUI in
Integration Bus vO:

Control statistics at all

)
2
30
1 Lowest 100
0
12:18 PM 1219 P 1220 PM 1221PM 12:22 PM
Average Elapsed Time/ Invocation (ms)
3
levels N e
25
2 Latest 18
. . - Average 02
aslly view and compare S e o
05 Lowest 18
0

flows, helping to
understand which are T

processing the most W =
messages or have the 4 | =
hlghes elapsed tlme e S I 1221PM 12:22PM

Easily view and compare

nggfs’tgﬁlcﬁ)l\?l IE:% have & coordinated Request Reply MQ Application

the highest CPU or Start

LLLLLL

elapsed times. Stop
View all statistics metrics Statisticson iy
available for each flow Statistics off

View historical flow data

‘ ¥ Throughput per message flow for last 15 seconds. Last updated at 09:50:29 GMT Daylight Time.

Message Rate ¥ Average Elapsed Average CPU
Flow name 9 Time/ Invocation Time/ Invocation
(messages/s) (ms) (ms)
ﬂg Request fﬂ& 1.00 4.4 0.8
28 Reply A\ _ 1.00 3.9 0.5
23 BackendReplyApp T\ 1.00 1,001.7 11 °®
@
e SHARE
.. in Pittsburgh 2014
...-

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Integration Bus Explorer & Activity Log

.
Start [
P View activity as it happens using explorer
X Delete Filter by resource managers
¥ Open Activity Log

B g Explorer - Content | ¥ IBONODE Administration Log |. F IBINODE\avaComputeModeExecutionGroup\JavaComputeTransformMoXPathFlow - Activity Log 23 =8
Statistics = : ; = :]
L. Apply filter Clear | |All Threads = | | B Select columns... | | Previous | | Mext |

Uszer Trace 1000 entries
Trace Nodes Message ... Tirmestamp - RM MSGFLOW Message Summary o
Service Trace i BIP115061 15-Jul-2013 12:50:07.000... JavaComputeTransform... Committed a local transaction, E'

i BIP115011 15-Jul-2013 12:50:07.000... JavaComputeTransform... Received data from input node JCTransformMoXPathInput',
perEI’tiES... i PBIPLI506I 15-Jul-2013 12:50:08.000... JavaComputeTransform... Committed a local transaction,

I BIP115011 15-Jul-2013 12:50:08.000... JavaComputeTransform... Received data from input nede JCTransformMoXPathInput',

i BIP115061 15-Jul-2013 12:50:09.000... JavaComputeTransform.., Committed a local transaction.

I BIP115011 15-Jul-2013 12:50:09.000... JavaComputeTransform... Received data frem input node 'ICTransformMeXPathInput'.

i BIP115061 15-Jul-2013 12:50:10.000... JavaComputeTransform.. Committed a local transaction,

i BIP115011 15-Jul-2013 12:50:10.000.., JavaComputeTransform.., Received data from input node 'JCTransformMoXPathInput',

I BIPL15061 15-Jul-2013 12:50:11.000... JavaComputeTransform... Committed a local transaction,

i BIP115011 15-Jul-2013 12:50:11.000... JavaComputeTransform... Received data from input node JCTransformMoXPathInput',

i BIP115061 15-Jul-2013 12:50:13.000... JavaComputeTransform... Committed a local transaction.

I BIP115011 15-Jul-2013 12:50:13.000... JavaComputeTransform... Received data from input node JCTransformMoXPathInput’,

i BIP115061 15-Jul-2013 12:50:14,000... JavaComputeTransform.., Committed a local transaction.

I BIP115011 15-Jul-2013 12:50:14.000.., JavaComputeTransform... Received data from input node 'JCTransformMeXPathInput',

i BIP115061 15-Jul-2013 12:50:15.000... JavaComputeTransform... Committed a local transaction,

i BIP115011 15-Jul-2013 12:50:15.000.., JavaComputeTransform.., Received data from input node 'JCTransformMoXPathInput',

I BIP115061 15-Jul-2013 12:50:16.000... JavaComputeTransform... Committed a local transaction.

i BIP115011 15-Jul-2013 12:50:16.000... JavaComputeTransform... Received data from input node JCTransformMoXPathInput',

i BIP115061 15-Jul-2013 12:50:17.000... JavaComputeTransform... Committed a local transaction.

I BIPL1S011 15-Jul-2013 12:50:17.000... JavaComputeTransform... Received data from input node JCTransformMoXPathInput’,

i BIP115061 15-Jul-2013 12:50:19.000... JavaComputeTransform.., Committed a local transaction.

i BIP115011 15-Jul-2013 12:50:19.000... JavaComputeTransform... Received data from input node 'JCTransformMeXPathInput',

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Administration Queue / Log

The tools include a lot of information that is useful
to the administrator, for example:

Administration queue : What operational
changes are currently pending

Administration log

recently applied to the broker’s configuration,
and by whom?

What changes have been

Bl mg Explorer - Content 32

Administration Queue

Administration Queue QuickYiew:

| &b ¥

Order Status Uzername

1 submitt.. gormand

L

Operation ... Object Name Object Type Creation Time Elapsed Tim...

start default

114

Execution Group 09-Mar-2014... 0

Last Updated: 12:34:56

=

¥ IBINODE Administration Log 1

Message Source

Timestamp

Message Detail it

..........

09-Mar-2014 12:16:55 GMT

The resource 'ResourceStatistics' of type 'Application’ was created on object 'default’ of type ‘ExecutionGroug

I BIP2882 Change Notification

i

09-Mar-2014 12:16:55 GMT

(1]

The resource 'ResourceStatistics' of type 'Application’ was deleted from object 'default’ of type 'ExecutionGro =
}

-p’"""
g =

SHARE,
Educato « Network « Influgnce

0®
e SHARE

...m Pittsburgh 20014

-

Types of trace In Integration Bus s |

Trace is available for separate components which can be formatted to a file .

using:
emgsichangetrace to enable trace
smgsireadlog (BIPRELG) to read trace
emgsiformatlog (BIPFMLG) to format
Types of trace available:
*User Trace — for you.
*Service Trace — for IBM Support
Command Trace — for IBM Support
*CVP (Component Verification) Trace — for all

.,c91e9b41-3101 0000 - 0080 —cOFfddHhaf3dial. trace.bin.
., c91e9b41-3101 0000 - 0080 -—cO0fddS5aoo3dal. trace.bin.
. c91e9b41-3101 0000 - 0080 —c@ fddHSaedial. trace.bin.
., c91e9b41-3101 0000 0080 —cOfddS5ao3dal. trace.bin.
. c91e9b4 1 -3101 0000 - 0080 —cOfddSaeedal .. userTrace.
., c91e9b4 1 -3101 - 0000 - 0080 —cOFfddSHaooldal userlTrace .
. httpl 1stener‘. trace.bin.

.mq51changeflow5tat5.trace.bin.
.magsichangeflowstats. userTrace.
.mq51changetrace.trace.bln.

. mgsicvp. trace.bln.

. mgsicwvp. trace.bin.

.magsicwvp . . userTrace.bin.

. mgsirea . .
.mq51readlog userTrace.bin. O
.magsireportflowstats. trace.bin.
.masireportflowstats. userTrace.
.masistop. trace.bin. 0
.masistop.userTrace.bin.
.service. trace.bin. 0
service.uuserlTrace.bin. @

=
a
9
a
9
=
9
=
a
=
a
9
a
9
=
aQ
=
a
=
a
9
a
9

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

User Trace Example -

UserTrace tells you exactly what is happening as a message passes
through an integration data flow.

See which nodes are being called, which parsers are being used, and
what ESQL is executed.

T — —

MG Input Com éute MO Cutput

CREATE FUNCTICH Main () RETURMNS BOCOLEAN

BEGIN
——CALL CopvEntireMessagel() s
SET OmtputRoot .XMLNSC.ID = InputRoot.XMLNSC.Customer.ID;
RETURN TRUE:

END;

BIP26321: Meazage recejved and propagated to "out' terminal of M) input node 'ParserStata.M) Input'.
BIP&0&0I:| Node 'ParserStata.M(Input| used parser type ''Properties'' to proce3s a portion of the incomin :
BIP&0&1I:| Node 'ParserStata.M{ Input]| used parser type '"'MQMD'' to proce3s & portiocn of the incoming message of-length '364" bytea beginning at offzet '0'. The parser type wa3 Zelec
BIP&0&1I:| Node 'ParserStata.M) Input]| used parser type ''"XMLNSC'' to proce3s a portion of the incoming message of length '158" bytes beginning at offzet '364'. The parser type was 3
BIF2537I:|Node 'Parser3tata.Compute'] Executing statement | "'BEGIN ... END;'' at ('.ParserStats Compute.Main', '2.2'). :
BIF2537I:|Node 'Parser3tats.Compute'] Executing statement | ''3ET QutputRoot.XMIN3C.ID = InputRoot.XMINSC.Customer.ID;'' at ('.ParserStats Compute.Main', '4.37). :
BIF2539I:|Node 'ImbESQIManager': Evaluating expression ''InputRoot.XMINSC.Customer.ID'' at ('.ParserStats Compute.Main', '4.30'). This resolved to ''InputRoot.XMINSC.Customer.ID''.|:
BIP25681:| Node 'ParserStata.Compute'] Copying sub-tree from ''InputRoot.XMINSC.Customer.ID'' to ''OutputRoot.XMINSC.ID''. :
BIP2537I:|Node 'Parser3tata.Compute'] Executing statement | ''RETURN TRUE;'' at ('.Parser3tats Compute.Main', '3.3").

BIP4015I: Measage propagated to the "out' terminal of node TParsersStats.Compute™ with the following message treea: ''.

BIP2638I: The M) cutput node 'PargerStats.M() Output' attempted to write a me3gage to queue "'OUT'' conmected to queue manager ''''. The MQCC was '0" and the MORC was '0'.
BIP26221: Me3sage successfully output by cutput node 'ParserStats.M) Output' to queue "'0UT'' on queue manager ''''.

asage of length '0' bytes beginning at offset '0°.

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

SYSLOG / JOBLOG / STDOUT / STDERR 8 =

SHARE

The Integration Bus runtime writes important operational messages to the system log:

« On z/OS, each JOBLOG includes all messages written by processes within the
address space. The SYSLOG includes messages from all IIB JOBLOGs.

 On Windows, these messages are written to the event log.

 On Unix and Linux, these messages are written to the syslog.

STDOUT/STDERR may also be written to:

e On z/0OS, each JOBLOG includes any STDOUT/STDERR
written by processes within the address space.

« On Windows, the console.txt file in
%MQSI_REGISTRY%\components\<node>\<EG UUID>

 On Unix/Linux, the stdout and stderr files in
$MQSI_REGISTRY/components/<node>/<EG UUID>

Display Eilter Miew Print Options Help

SOSF JOB DATA SET DISPLAY - JOB MOBSEBRKE [STCSZ29@G)
COMMAMD IMPUT ===3
PREFIX=MOASBRE DEST=CALL] OWMER=+ SYSMAME=:
MFP DOMAME StepMame ProcStep DSI0D Owner C Dest
JESMSGELG JESZ 2 MOESBRE C
:) 3 MOESERK |
MOES C
104 MOES C
105 MOES | o®
106 HOBS | SSHARE
|

10E MOUSBREE
109 MOUSBREE

...m Pittsburgh 2

—

3

SHARE.

Educato + Network » Influsnce

External Internals

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Stack based execution engine Y

Educato + Network + influsnce

Useful to understand how flows execute when designing them

Start ‘MQ Input’
Start ‘Compute’
Start ‘Mapping’
Start ‘MQ Output’
o F.I nish MQ output Stack:
Finish ‘Mapping
Start ‘Java Compute’ MQ Input
Finish ‘Java Compute’ Compute

Finish ‘Compute’ Meapp@ompute
Finish ‘MQ Input’ MQ Output

Looping node connections can lead to large stack requirements
With looping and large flows may need to increase the threadstack size
MQSI_THREAD_STACK_ SlZE=<sizelnBytes> (Unix/Windows) (default is 1Mb)

On z/OS the thread stack size is dynamic
Default size is 1Mb with 1Mb extents
Using the extents can impact performance if you regularly use them
Increase the default or extent size o®
s SHARE
_CEE_RUNOPTS=THREADSTACK64(ON,4M,1M) ©, Phtabursh 2014
Use RPTSTG(ON) option to get a report of stack sizes which were used

\

-

Transaction Model on z/OS

S H RE
*Message flow
The 7 / O S scoordinatedTransaction=Yes or No -global uow
broker has a Transaction
global "'" D Dafﬁgfg atep o .M,Qnggépm *Native Context
transaction stransactionMode= |— stransactionMode «transactionMode=
mo del exac tIy *Yes (or Automatic) . Automatic \ v *Yes (or Automatic)
as you’d \aonon-transactiona/
. Datalnsert
expect. It is !w «Private Context
pOSSible for «transactionMode
+« =Commit
nodes to el.ect “local UOW
to commit
outside this begin global eprivate ecommit node scommit global
transaction. transaction scontext transaction transaction
RRS is used *ATRBEG *SqglExecute *SqglTransact T *MQCMIT
for context Y
éna”ag?tme”tt *Resource Manager | *Resource Manager *Transaction Manager
commitmen
control "WMQ -DB2 *WMQ
between the T T i-commit global
stransaction
flows resource Y | *COMMIT SRRCMIT
managers, but . !
only when *Resource Recovery Services

required. ‘RRS

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

SHARE

Notes : Transaction Model

Transactional message flows are important
A message flow which transforms and routes data often has a need to be transactional. That is, the message flow must complete either
all or none of its processing. Remember, from an end-to-end application perspective, the message flow is *part* of the application.
Transactional data flows and data nodes.
A message flow can be identified as transactional using the Coordinated Transaction checkbox on a broker assigned message flow. The

intention behind this attribute is that all node operations within the message flow can be coordinated under the same, global, transaction.
On z/OS, this option is always used for message flows, whether selected or not.

A node performs its operations within the envelope of this message flow global transaction, and can elect to be within the global

transaction or not. A Transaction Mode checkbox enables this for WMQ and database nodes. Note the visibility (ACID) implications!
Resource Recovery Services (RRS) is *NOT* always th e transaction coordinator.

As message flows run in essentially a batch type address spaces, RRS is the global transaction coordinator, if required.

Execution groups are linked with an MQ RRS stub, so WMQ registers an interest with RRS for commitment control.

Specifying the keywords CONNECTTYPE=2, AUTOCOMMIT=0, MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF in the
initialization file BIPDSNAO enables global transaction processing.
RRS Context
RRS Context is a concept that enables a program to have different roles. It's like one person having many ways of behaving which don't
interact with each other. It means that applications can simultaneously be different things to different systems.
Broker flows have two contexts. A *native* context is used whenever it wants to perform the role of including node operations under the
global transaction. A *private* one has the effect of excluding database node operations from a global transaction.
Plug-in nodes are always within the global transaction. A message flow is always in *native* context for these nodes.
WebSphere MQ
Transaction Mode within a message queuing node governs whether MQPUT and MQGET operations are explicitly performed either
inside or outside syncpoint on a per call basis. These nodes therefore always use the native, and never the private, RRS context.
Database
For database nodes, *Transaction Mode* determines under which RRS context the transaction will be performed. If the node is within the
global transaction, then the native context is used. For a Transaction Mode of *commit*, the private context, so that DB2 and RRS see
the operation from a logically different party. These nodes commit (using SQLTransact) their operations as the node is exited.
Commitment Control
The global transaction is begun implicitly when a resource manager communicates with RRS. The overall message transaction is
committed (or backed out!) control returns to the input node. At COMMIT time, WMQ will pass control to RRS only if required.

RRS will call all registered resource managers (WMQ, DB2) in a two phase commit protocol to ensure a global transaction. Recall that
nodes which elected for a Transaction Mode of commit had resources updated (and externally visible!) close to their point of issuing. If
RRS is not required WMQ will perform the commitment control and delete any RRS interests.

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Node Lifecycle (Mid -flow)

«

£ \
=y

)
ip
= ®
:m

All mid-flow nodes follow this life cycle
IBM written and plugin/compute nodes
Constructor
Called when the node is created as the flow is initialized
Properties are then set on the node
onlinitialize()
Validate configured properties
Called either during deployment or on broker startup.
If it throws an exception, deployment or startup is rolled back/stopped
The broker does not try to start the flow again until the broker is restarted
Complete tasks that will always work or always fail

If you need to initialize an external connection that might need to be retried, consider

doing so on the first message through the flow so that the flow can retry the connection
as necessary

Evaluate

Called when execution of a message is required

Perform required node processing

Exceptions which are thrown and thrown back down the flow to be handled
OnDelete

Called before a node is deleted

Use if you want the node to perform cleanup operations, for example closing sockets, ...
Should not throw exceptions e SHARE

.. in Pittsburgh 2014
Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval B

Node Lifecycle (Input) e

SHARE
All non-connector input nodes follow this basic lifecycle
Constructor
Called when the node is created as the flow is initialized
Properties are then set on the node
onlinitialize()
run
Called by broker when we want the node to try and read data
Node reads data and then propagates the resulting message
Additional instances
If you want your input node to support additional instances then before propagating the
message the node needs to call dispatchThread to try and dispatch another thread to
read more data
Returns success/failure/timeout depending on result
onDelete
.o.
e SHARE
...In Pittsburgh 20014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parsers > At

Input Message Bit-stream
Parser converts
' , |Gr [alp|h]|i |c[s| |Calr (d|...

logical structure
to bit-stream

(s

Parser converts

bit-stream to
logical structure v @]
< <order ><name>Mr . Smith</n..

N~~~

Output Message Bit-stream @

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Message Modeling suane.

A

<or der >
<nane>
<first>John</first>
<l ast >Sm t h</| ast >
</ name>
<i tenpG aphics Card</itenp

<gquantity>32</quantity>

<price>200</price>

<dat e>07/ 11/ 09</ dat e> Qty
</ or der > Integer
John, Sm t h, Graphi cs Card,

Price Date

Integer Date

32, 200, 07/ 11/ 09

John Smth............
Graphics Card.........
3220020071109.
¢ SHARE

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Here is an example of how a physical data structure could be mapped to a logical tree. SHARE

Notice how multiple physical formats can correspond to the same logical tree. The

first physical format is an XML structure that shows our Order message. The second

IS @ comma separated value (CSV) structure of the same. The third comprises a set of fixed
length fields in a custom wire format.

By manipulating the logical tree inside the Message Broker rather than the physical bit-stream,
the nodes can be completely unaware of the physical format of the data being manipulated. It
also makes it easy to introduce new message formats into the broker.

Applications have and require diverse data formats.

We all know that XML is the data format that's going to solve every data processing problem
that exists! We also know that "XML++", the follow-on compatible meta format that someone in
a research laboratory is working on will solve all the problems we don't even know we have
today! The fact is that, without wanting to appear cynical, every generation goes through this
process. Surely it was the same when COBOL superseded assembler.

The fact is, that for historic, technical, whimsical, political, geographical, industrial and a whole
host of other reasons you probably never even thought of, a hugely diverse range of data
formats exist and are used successfully by a myriad of applications every second of every day.
It's something that we have to live with and embrace because it isn't going to get any better any
time soon.

The advantage WebSphere Message Broker brings by modelling all these messages is that we
can rise above the message format detail; so that whether it's a tag delimited SWIFT or
EDIFACT message, a custom record format closely mapping a C or COBOL data structure, or
good old XML, we can talk about messages in a consistent, format independent way. Messwe

Broker can manage this diversity. .;HARE
®

.. in Pittsburgh 2014
L]

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

The Logical Message Model.

Reconsider messages and their structure. When we architect messages (no matter what the
underlying transport technology), we concern ourselves firstly with the logical structure. For
example, a funds transfer message might contain an amount in a particular currency, a
transaction date and the relevant account details of the parties involved. These are the
important business elements of the message; when discussing the message, we refer to these
elements.

However, when we come to realize the message, we have to choose a specific data format.
This may be driven by many factors, but we have to choose one. You may be aware of the
advantages of various message formats or have your own personal favourite, or may fancy
inventing a new one, but the fact remains that you have to choose a physical *wire format*. So
for our transfer message, we might decide to use XML, with its elements, attributes and
PCDATA (and a DTD, if we're being really exact), or we might map more closely to a C data
structure modelling our message with ints, shorts, chars etc. and worry about *their* various
representations(!)

The Logical message model provided by IBM Integration Bus allows one to describe a
message in terms of a tree of elements, each of which has a (possibly user defined) type. At
the message tree leaf nodes, the elements have simple types such as strings, integers,
decimals, booleans etc. Moreover, elements can have various constraints and qualifiers applied
to them that more fully describe them; e.g. elements might be optional, appear in a certain
order or only contain certain values. o®

o SHARE

.. in Pittsburgh 2014
L]

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Message Tree Structure

CodedCharSetld g CreationTime

Transactional

® inPittsburgh 2014
Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parser Domains n
SHARE
Educaty + Netwark + Influgnce
!
Input Message Parsing Message domain
p Opti
arser wpnions Message model

Advanced

Validation Message

Security Physical format

e

The message domain identifies the parser that is used to parse and write instances of
the message.

Eg: BLOB, XMLNSC, DFDL
The remaining parts of the message template, message model, message (type), and

physical format, are optional, and are used by model-driven parsers such as the DFDL
parser.

4 Main parser types
Root
Properties
Header
Body

Neither the Root or Properties parsers claim any of the incoming bitstream -
@
¢ SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

The logical tree suAmE

Tree is made up of SyntaxElement objects which are logically linked

MbElement / NbElement / CciElement
Each element contains the Name, Namespace and Value which describe that element
Each element knows what type of element it is (Folder, Name, Value, NameValue, etc)
Each element knows its family relationship
Each element knows its parse state (leftComplete/rightComplete)

This supports partial/onDemand parsing

SyntaxElement:
Name (String)
Namespace (String)
Type (Integer)
Value (Value Type)
leftSibling (Pointer to SyntaxElement)
firstChild (Pointer to SyntaxElement)
parent (Pointer to SyntaxElement)
lastChild (Pointer to SyntaxElement)
rightSibling (Pointer to SyntaxElement) .. .
S SHARE

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

The logical tree - linkage suARE

The logical tree is made up of ImbSyntaxElement objects which are logically linked

Parent
leftSibling / rightSibling

Whild / IastGhild\

pM >< Péent >< \PH‘IOHI
leftSibling / right% mling / right% leftSibling / rightSibling
firstChild / lastChild firs@hild / Iast?hild firstChild / lastChild
Pafent

leftSibling / rightSibling
firstChild / lastChild

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

’ﬁi’

The logical tree - navigation suARE

Navigation of the tree is done using a set of similar methods across all languages

Nt
let::Nult:=g / rig "Null 'ng
firstChild / lastChild

getLastChild()

getParent() getParent()

GetFirstChild() getParent()

Parent) getNextSiinng()‘ Parent getNextSibling() Parent

let:Nullg / rightSibling | ™ _ e leftSibling / rightSibling » | leftSibling / riciNuil:ing
getPreviousSibling()

fooeNH: o d / lesnied feNulb«ld / la= Nl getPreV|ousS|bI|ng(fireNilid / e sNdit d

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Trace node output - 2?7

Educato + Natwork + Influgnce

([MQROOT' : Oxed8efe0]
(0x01000000:Name):Properties = ([MQPROPERTYPARSER' : Oxed2b2c0]
(0x03000000:NameValue):MessageSet =" (CHARACTER)

(0x03000000:NameValue):ldentityMappedlssuedBy =" (CHARACTER)
)
(0x01000000:Name):MQMD = (['MQHMD' : Oxed2bcb0]
(Ox03000000:NameValue):SourceQueue ='VFE.IN1' (CHARACTER)

(0x03000000:NameValue):OriginalLength =-1 (INTEGER)
)
(0x01000000:Folder):XMLNSC = (['xminsc' : 0x1d24b30]
(0x01000000:Folder):order = (

)...

)) 2@
¢ SHARE

.. in Pittsburgh 2014
L]

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

|
Trace node output — Root element/Parser = |

Educatn « Network + influgnce

[[MQROOT' : Oxed8efeO]

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

3
Trace node output - Parsers S |

Educato + Network » Influsnce

[[MQROOT' : Oxed8efeO]
[[MQPROPERTYPARSER' : Oxed2b2c0]

['MQHMD' : Oxed2bch0]

['Xminsc' : 0x1d24b30]

0®
¢ SHARE

in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Trace node output — Element Type

Educatn « Network + influgnce

(0x01000000:Name)
(0x03000000:NameValue)

(0x03000000:NameValue)

(0x01000000:Name)
(0x03000000:NameValue)

(Ox03000000:NameValue)

(0x01000000:Folder)
(0x01000000:Folder)

0®
¢ SHARE

in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

|
Trace node output — Element Name = |

Educatn « Network + influgnce

Properties
MessageSet

IdentityMappedIssuedBy

MQMD
SourceQueue

OriginalLength

XMLNSC
order

0®
¢ SHARE

in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

|
Trace node output — Element Value = |

Educato + Network » Influsnce

'VFE.INT1'

-1

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

—

-

—

Trace node output — Element Value Type cwane

uuuuuuu + Natwark + Influgnce

(CHARACTER)

(CHARACTER)

(CHARACTER)

(INTEGER)

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

—

s

Building the logical tree — aka parsing! suARE
For XML it is easy to visually see how we get from the input message to the logical
model
But how?

The parser fires events back to a handler and the handler then creates the tree
Java SAX like parsing
DFDL parser follows same model
This model allows of OnDemand/partial parsing
Reduced memory as you do not always require all of the logical tree in memory

<Order>
<Name>
<First>John</First>
<Last>Smith</Last>

</Name> ??77? >

<ltem>Graphics Card</ltem>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order> o® ®

e SHARE
...In Pittsburgh 20014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Building the logical tree — aka parsing! I

SHARE.
Events: e s
st ar t Docunment
start El enent (Order)
<Order>
| Order
o0

in Pittsburgh 2014

¢ SHARE

Building the logical tree — aka parsing! s 3

SHARE.
Events: e il

st art Docunent

start El enent (Order)
start El enent (Nane)
<Order>
<Name>
o®

in Pittsburgh 2014

¢ SHARE

Building the logical tree — aka parsing! s 3

SHARE.
Events: e e
st art Docunent
start El enent (Order)
start El enent (Nane)
startEl enent (First)
<Order>
<Name>
<First>
(] J

®
.. in Pittsburgh 2014

Building the logical tree — aka parsing! s 3

SHARE.
Events: i it
st art Docunent
start El enent (Order)
start El enent (Nane)
startEl ement (First)
el enent Val ue(John)
endEl enent
<Order>
<Name>
<First>John</First> m
...
e SHARE

.. in Pittsburgh 2014

Building the logical tree — aka parsing!

SHARE.
Events: i it
st art Docunent
start El enent (Order)
start El enent (Nane)
startEl enent (First)
el ement Val ue(John)
endEl enent
start El enent (Last)
<Order>
<Name>
<First>John</First>
<Last> m
.0.
e SHARE

.. in Pittsburgh 2014

Building the logical tree — aka parsing!
SHARE.
Events: e
st art Docunent
start El enent (Order)
start El enent (Nane)
startEl ement (First)
el enment Val ue(John) (String)
endEl enent
start El enent (Last)
el ement Val ue(Smth) (String)
endEl enent

<Order>
<Name>
<First>John</First>
<Last>Smith</Last>

0®
e SHARE

.. in Pittsburgh 2014

Building the logical tree — aka parsing!
SHARE.
Events: e s
st art Docunent
start El enent (Order)
start El enent (Nane)
startEl enent (First)
el enment Val ue(John) (String)
endEl enent
start El enent (Last)
el ement Val ue(Smth) (String)
endEl enent
endEl enent

<Order>
<Name>
<First>John</First>
<Last>Smith</Last>
</Name>

0®
e SHARE

.. in Pittsburgh 2014

Building the logical tree — aka parsing!

SHARE.
Events: e
st art Docunent
start El enent (Order)
start El enent (Nane)
startEl enent (First)
el enment Val ue(John) (String)
endEl enent
start El enent (Last)
el ement Val ue(Smth) (String)
endEl enent
endEl enent
startElenent (ltem
<Order>
<Name>
<First>John</First>
<Last>Smith</Last>
</Name>
<ltem>
.0.
e SHARE

.. in Pittsburgh 2014

Building the logical tree — aka parsing!

SHARE.
Events: i it
start El enent (Nane)
startEl enent (First)
el ement Val ue(John) (String)
endEl enent
start El enent (Last)
el ement Val ue(Smth) (String)
endEl enent
endEl enent
startElenent (ltem
el enment Val ue(G aphics Card) (String)
endEl enent
<Order>
<Name>
<First>John</First>
<Last>Smith</Last>
</Name>
<ltem>Graphics Card</ltem>
.0.
e SHARE

.. in Pittsburgh 2014

Building the logical tree — aka parsing!

Events: e
Repeat 3 nore tines for Qy, Price and Date ...
startElenment (Qvy)
el enent Val ue(32) (I nteger)
endEl enent
startEl enent (Price)
el enent Val ue(Sm th) (Decinal)
endEl enent
start El enent (Date)
el enent Val ue (07/11/09) (Date)
endEl enent
<Order>
<Name>

<First>John</First>
<Last>Smith</Last>
</Name>

<ltem>Graphics Card</ltem>
<Qty>32</Qty>
<Price>200</Price>
<Date>07/11/09</Date>

.. in Pittsburgh 2014

Building the logical tree — aka parsing! s 3
SHARE.
Events: ot vt e
start El enent (Date)
el enent Val ue (07/11/09) (Date)
endEl enent
endEl enent
endDocunent

<Order>
<Name>
<First>John</First>
<Last>Smith</Last>
</Name>

<ltem>Graphics Card</ltem>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>
</Order>

0®
e SHARE

.. in Pittsburgh 2014

Parsers — Key Methods a» | At

‘] Input Message Bit-stream ’68/7@, ~r (
. 78 ser converts

, |Gr [alp|h]|i |c[s| |Calr (d|... io”@a,>ructure
Ies e,
e,
s
Cf@ /.@};.
U, SS,
G@/@’b /76\/@’77 arts
Q I
/75484 6%“)0
ogie. =
logic. ’C/;,bp@/@f A =
O romgec% <order ><name>Mr . Smit h</n..
> ’fs;,@a Output Message Bit-stream \l
n N
¢ SHARE

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parsers — Key Methods snARE

Applies to all parsers, IBM written and plugin parsers

refreshElementsFromBitstream

Turns the bitstream into the logical tree

Takes various options
Encoding and ccsid to use for the parse
Message Set, Type & Format to use for the parse
Parser options to apply to the parse, such as validation
The parser remembers the options it was initiated with

Can be driven from createElementAsLastChildFromBitstream calls in transformation

refreshBitstreamFromElements
Turns the logical tree into a bitstream
Takes various options that match those on the refreshElementsFromBitstream call
Can be driven from toBitstream calls in transformation

There is an optimization present in the parsers so that if a parser is called with exactly
the same options on the refreshBitstreamFromElements call as it initialized with on the
refreshElementsFromBitstream call, and the logical tree hasn’t been modified then the
input bitstream is returned

This helps support simple pass-through and routing scenarios

0®
e SHARE

.. in Pittsburgh 2014
L]

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parser Internals — reuse example r"-_j""

HARE.
7. MQInput Node . . . O Educato + Netwark + Influsnce
Compute Node

8. MQInput Node))

Compute Node
JavaCompute Node
1. MQinputNode (0@ @O O @O P

MQInput Node [. [XOX©)]
Compute Node

2. MQInputNode (O @ © O O o
Compute Node

3. MQInput Node [© @ @] 10. MQInputNode (O @ OO O @® O

Compute Node
Mapping Node () Flow pool
() Node pool

4. MQInput Node ([© @) O Parser

Compute Node
Mapping Node Notes:

MQOutput Node @ = 1:7 Parsers are available in the flow pool
= 2: The Compute node creates a message using 2 parsers
5. MQInput Node [ﬁ. ®0 = 3: The Mapping node creates a message using 2 parsers
Compute Node = 4: The MQOutput node creates a message using 1 parser
Mapping Node = 5-6: As the stack unwinds parsers are returned for reuse
= 7: The Compute node creates a new message using 1 of the previously used parsers
6. MQInput Node C@00O0 = 8:Java Compute node creates a new message using 2 previously used parsers

Compute Node = 9-10: As the stack unwinds parsers are returned for reuse

Parser Internals - reuse SHARE

Each Message Flow Instance has its own pool of parsers
Nodes in a flow ‘borrow’ parsers from the flow pool
Message’s created in nodes use the node ‘borrowed’ parsers

If a Message requires a new parser it asks the Node for one who in
turn ask the flow pool to borrow one

If the flow pool does not have a free parser it creates a new one

When a node goes off of the stack the parsers are returned to the flow
pool for reuse.

Only in this instance are parsers returned to the pool for reuse mid flow
— example next slide

At the end of processing a message the flow pool is reset meaning all
parsers are reset and NOT DELETED

This means their memory is still in use
The parsers are only deleted when the flow is stopped or undeployed

0®
e SHARE

.. in Pittsburgh 2014
L]

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parser Internals - MQSI FREE MASTER PARSERS s»are

Each Message Flow Instance has its own pool of parsers
Nodes in a flow ‘borrow’ parsers from the flow pool
Message’s created in nodes use the node ‘borrowed’ parsers

If a Message requires a new parser it asks the Node for one who in

turn ask the flow pool to borrow one

If the flow pool does not have a free parser it creates a new one

When a node goes off of the stack the parsers are returned to the flow

pool for reuse.

Only in this instance are parsers returned to the pool for reuse mid flow
— example next slide

At the end of processing a message the Master ImbMessageGroup is

reset and ALL PARSERS are DELETED and not reset

This means their memory is returned to the OS

0®
e SHARE

.. in Pittsburgh 2014
.,

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parser Internals - Element Pools SHARE

Each Parser has a pool of elements

As a parser is reused the elements in the pool are reused

The elements owned by a parser are kept until the parser is deleted

When a parser is reused it may not be used for the same purpose as last time
ie, one use maybe on the input message and another time for the output
message

Each reuse may require a different number of elements

Over time the element pool for each parser of the same domain will grow until it

Is the maximum size required
This is the plateau’ing effect we sometimes describe in PMRs

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parser resource statistics

Use the Parsers statistics to see how much resource is being used by the message trees and bit

streams that these parsers own.

Measurements Description

Threads The number of message flow threads that contributed to
the statistics for a message flows parser type
accumulation.

ApproxMemKB The approximate amount of user data-related memory
used for the named message flow parser type. It is
not possible to calculate the exact amount of
memory used by a parser.

MaxReadKB Shows the largest bit stream parsed by the parser type
for the named message flow.

MaxWrittenKB Shows the largest bit stream written by the parser type
for the named message flow.

Fields Shows the number of message fields associated with the
named message flow parser type. These fields are
retained by the parser and are used for constructing
the message trees.

Reads The number of successful parses that were completed by
the named message flow parser type.

FailedReads The number of failed parses that occurred for the named
message flow parser type.

Writes The number of successful writes that were completed by
the named message flow parser type.

FailedWrites The number of failed writes that occurred for the named

message flow parser type.

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parser Resource Statistics - Interpretation

¥ MBEBROKER Adrministration Log | B default Resources Statistics (Snapshot time 18:23:08 - 18:23:28) 3 @ Progress = 0O

r,qi_«

.

| DotNet GC | CORBA | ConnectDirect | FTEAgent | FTP | File | GlobalCache | JDBCConnectionPools | JMs | JvM | ODBC | Parsers | SOAPInput | Security | Sockets | TCPIPClien ¢ | *

narme Threads ApproxMem... MaxReadkB MaxWrittenkB Fields Reads FailedReads Writes FailedWrites
summary 1 119.77 0.53 0.53 159 6 0 4 0
VFE_1_Flow.MQMD 1 1597 0.36 0.43 62 2 0 1 0
VFE_1 FlowMQROOT 1 55.80 0.53 0.00 7 1 0 1 0
VFE_1_Flo Brepesties 1 31.94 0.53 0.00 P AN 0 1 0
' VFE 1 FldwXMLNSC) 1 15.97 0.18 0.53 (18) (2) 0 1 0
[Deleted] 0 0.00 0.00 0.00 ~ ~ 0 0 0
[Administration] 3 22356 3.97 0.00 201 24 0 0 0

(OxOlOOOOOO'FoIder)'X!@ = (['xminsc' : Ox1cd2360] (OxOlOOOOOO:FMLNSC = (['xminsc' : 0x342ba2f8]

(Ox01000000: @ order = (0x010 older):order = (

(0x02000000: Fol@ name =((0x01000000®)name =
(0x03000000:PCDataFie ='John' (CHARACTER) (0x03000OOO:PieId):first ='John' (CHARACTER)
(Ox03000000:PCDa®):Iast ='Smith' (CHARACTER) (OxOBOOOOOO:PC d):last ='Smith' (CHARACTER)

))

(Ox03000000:PCDataF m ='Graphics Card' (OxO3000OOO:PCDa®):item = 'Graphics Card'

(CHARACTER) (CHARACTER)

(OxOSOOOOOO:PCDat@:quantity ='32' (CHARACTER) (OxO3000OOO:Pield):quantity ='32' (CHARACTER)

(Ox03000000:PCDataFielq p ='200' (CHARACTER) (Ox03000000:PCDa):price ='200"' (CHARACTER)

(0x03000000:PCDatayf date ='07/11/09' (OxOBOOOOOO:PCId):date ='07/11/09'

(CHARACTER) (CHARACTER)

)) ..
@ SHARE

)) . in Pittsburgh 2

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parser Resource Statistics - Interpretation

- .

. . SHARE.
Using our earlier example flow
ESQL changed from this:

SET Qut put Root = | nput Root ;
To:

CALL CopyMessageHeaders();
SET Qut put Root . XMLNSC. order = | nput Root . XMLNSC. or der ;

Previously a parser-to-parser copy took place and because no modifications
have taken place a new set of parsers were initialised with the original
bitstream hence a read of 2 as a new parse takes place

With the new code a tree copy is taking place having navigated both sides to
the order element — now only 1 read taking place

Parser stats can be very powerful when analysing changes to message flows
with high parser memory usage

T MBBEROKER Administration Log [E default Resources Statistics (Snapshot time 00:48:28 - 00:48:48) 25 € Progress}
| ConnectDirect | FTEAgent | FTP | File | GlobalCache | JDBCConnectionPeols | IMS | JyM | ODBC | Parsers | SOAPInput | Security | Sockets | TCPIPClientNodes | TCPIPServerNodes
narme Threads ApproxMem... MaxReadKB MaxWrittenKB Fields Reads FailedReads Writes FailedWrites

summary 1 103.80 0.54 051 158 5 0 4 0
VFE_1_Flow.MQMD 1 1597 036 043 62 2 0 1 0
VFE_1_Flow.MQROQT 1 55.89 0.54 0.00 7 1 0 1 0

VFE_L_Flov Proparties 1 1597 0.54 0.00 70 Pl 0 1 0

EVFE 1_FlGw.XMLNSC) 1 15.07 018 0.51 19 (1) 0 1 0 |
[Deleted] 3 0.00 0.54 0.53 525 ~ 1 12 0
[Administration] 3 223.56 731 0.00 217 28 0 0 0

— .
Partial parsing suARE
Partial parsing is where only part of the message is parsed at a time, and only if
required
Utilised correctly this can reduce memory usage and increase performance
Default parse mode is “on Demand” which means only parse as far as you need
to, to satisfy the current request.
In our example message if we only needed to read the ‘name’ element to route
the message and didn’t need to make a modification then as long as we only
referenced as far as the name element then we wouldn’t need to parse all of the
message
: d
With our example flow sorder>
))) <name>
If we disable the trace nodes then we will see the field count : :
<first>John</first>

in the parser stats reduce as we haven’'t needed to parse <last>Smith</last>

all of the message </name>

Thus partial parsing has been utilised

a‘9.
e SHARE

.. in Pittsburgh 2014
.l

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Parser Resource Statistics - Interpretation Y

Educato + Network + influsnce

Use Parser statistics to understand memory costs associated with
processing messages.

This is a simple XML file, parsed and serialised using XMLNSC.
The actual size of the file is 118 bytes (matches 0.12KB reported).
Not all fields have been parsed, as the flow has parse on demand.

cCustomer>
{FiISt-:'IEH.E}QEE{fFiISEHEIEE} CEEATE FUMCTION Main () RETURNS BOCLERN
<LastName>Bloggs</LastName> BEGIN |
CALL CopyvEntireMessage () :
<ID=1234567290123458 7809,/ 10> RETURN TRUE:
«/Customer:> : END:

DotNet App Domains | CICS | DotNet GC | CORBA | ConnectDirect | DecisionServices | FTEAgent | FTP | File | GlobalCache | JDBCConnectionPools ||

ExecutionGroup name Threads ApproxMemKE MaxReadKE MaxWrittenKE Fields Reads FailedReads Writes FailedWrites
default surmmary 1 111.78 0.47 0.47 17 7 0 4 0
default ParserStats, MOQMD 1 1587 0.36 0.43 2 2 0 1 0
default ParserStats. MQROOT 1 55.89 0.47 0.00 7 1 0 1 0
default ParserStatsﬂu.pe:E:s 1 23.95 Py 0.00 Py] 1]
 default ParserStafe XMLNSC) 1 15.97 (012) 0.47 (2)(Cz2) o 1 0
default [Deleted] 0 0.00 om0 0.00 e g 0 0
default [Administration] 2 6388 0.52 0.00 i3 4 0 0 0

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

More Parser Resource Statistics - Interpretation g =

The same input message as before, but different ESQL. This time
the ESQL statement refers to the last element (Customer.ID).

The parser statistics show how many more fields are read.

@(XMLNSC)
. - CREATE FUNCTION Main() RETURNS BOOLELN

<Fipm Joe</FiratHame> BEGIN _(:g:)(:;:)
<L =*Bloggs</Lastlams> ——CALL CopyEnti ’
90123456789</ID> SET OumtputRoot .XMLNSC.ID = InputRoot.XMLNSC.Customer.ID;

EETURN TRUE;
END;

</ Custome

DotNet App Domains | CICS | DotNet GC | CORBA | ConnectDirect | DecisionServices | FTEAgent | FTP | File | GlobalCache | JDBCConnectionPools | JMS | VM | ODBC | Parsers|

name Threads ApproxMemKE MaxReadKB MaxWrittenKB Fields Reads FailedReads Writes FailedWrites
summary 1 95.81 0.47 0.03 24 4 a0 3 0
ParserStats. MOMD 1 7.98 0.36 0.00 1 1 0 0 0
ParserStats. MQROOT 1 55.89 0.47 0.00 7 1 0 1 0
ParserStats Propedies 1 15497 0.00 0.00 P 1 0 1 0
 ParserSthis XMLINSC) 1 15.97 012 0.03 { 7) 1 0 1 0 { |
[Deleted] be=—— 0 0.00 0.00 0.00 i 0 0 0 0
[Administration] 2 71.86 4,58 0.00 144 8 0 0 0
0®
e SHARE
...In Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

and finally ... Typed trees £

Educato + Network + influsnce

When parsing is performed using a schema or message set the element
types can be set to be appropriate types as defined in the model

MRM / DFDL - automatically typed based on the model

XMLNSC - requires content + validation enabled and “Build tree using
XMLNSC schema data types” selected

Build tree using XML scherna data types

Before: After:
(0x01000000:Folder):XMLNSC = (['xminsc' : 0x1cd2360] (0x01000000:Folder):XMLNSC = ([xminsc' : 0x3441b838]
(0x01000000:Folder):order = ((0x01000000:Folder):order = (

(0x01000000:Folder):name =((0x01000000:Folder):name = (
(0x03000000:PCDataField):first = 'John' (CHARACTER) (0x03000000:PCDataField):first = "John' (CHARACTER)
(0x03000000:PCDataField):last = 'Smith' (CHARACTER) (0x03000000:PCDataField):last ='Smith’ (CHARACTER)

))

(0x03000000:PCDataField):item = 'Graphics Card' (0x03000000:PCDataField):item = 'Graphics Card'

(CHARACTER) (CHARACTER)

(0x03000000:PCDataField):quantity = '32' (CHARACTER) (0x03000000:PCDataField):quantity = 32 (DECIMAL)

(0x03000000:PCDataField):price = '200' (CHARACTER) (0x03000000:PCDataField):price =200 (DECIMAL)

(0x03000000:PCDataField):date '07/11/09' (Ox03000000:PCDataField).date = DATE '2007-11-09'
(CHARACTER) (DATE)

))
))

This was session 16200 - The rest of the week i,

Monday Tuesday Wednesday Thursday Friday
08:30 Application The Dark Side of CICS and MQ - Workloads
programming with MQ Monitoring MQ - SMF 115 | Unbalanced!
verbs and 116 Record Reading
and Interpretation
10:00
11:15 | Introduction to MQ What's New in IBM MQ — Take Your Pick Using IBM WebSphere
Integration Bus & Lab Application Server and
WebSphere Message IBM WebSphere MQ
Broker Together
12:15
01:30 All about the new MQ v8 MQ Security: New v8 New MQ Chinit
features deep dive monitoring via SMF
03:00 MQ Beyond the MQ & DB2 — MQ Verbs in What's wrong with MQ?
Basics DB2 & InfoSphere Data
Replication (Q Replication)
Performance
04:15 First Steps with IBM MQ for z/OS v8 new MQ Clustering - The

Integration Bus:
Application Integration
for a new world

features deep dive

Basics, Advances and
What's New in v8

0®
e SHARE

.. in Pittsburgh 2014

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Questions?

Complete your session eva

lua

tions online at www.SHARE.org/Pittsburgh-Eval

