
Insert
Custom
Session
QR if
Desired.

Internals of IBM Integration Bus

David Coles
IBM Integration Bus Level 3 Technical Lead,
IBM Hursley – dcoles@uk.ibm.com

7th August 2014
16200

Agenda

• Introduction
• Runtime Processes
• Threads
• Memory
• Diagnostic Information
• External Internals

– Execution Engine / Stack Size
– Node lifecycle
– Parsers and the Logical Tree

Introducing IBM Integration Bus

� IBM’s Strategic Integration Technology
– Single engineered product for .NET, Java and fully heterogeneous integration scenarios

– DataPower continues to evolve as IBM’s integration gateway

� A Natural Evolution for WebSphere Message Broker us ers
• Significant innovation and evolution of WMB technology base
• New features for Policy-based WLM, BPM integration, Business rules and .NET

� Designed to incorporate WebSphere Enterprise Servic e Bus use cases
• Capabilities for WESB are folded in to IBM Integration Bus over time
• Conversion tools for initial use cases built in to IIB from day one
• WESB technology remains in market, supported. Migrate to Integration Bus when ready

Edge

Integration
Gateway Integration Bus

ERP/EIS/
CRM

Files Devices Retail MQ, JMS,
MSMQ

Applications
Mainframe
CICS/IMS

Web 2.0 Web Services Microsoft Healthcare Databases Mobile

Integration Bus Components

Integration Bus Node

Integration Bus Java API

Integration
Bus Toolkit Command lineCommand line Third Party Third Party

ToolsTools

Integration
Bus Explorer Web UIWeb UI

GET /admin/eg/MYEGNAME
From: machine@ibm.com
User-Agent: MyApp/1.0

Integration Bus
REST API

Runtime Processes

Processes

• bipimain
– z/OS only. The first process in any IIB address space. APF

authorised to set up authorised routines.
• bipservice

– Lightweight and resilient process that starts and monitors the
bipbroker process (a.k.a AdminAgent).

– If the bipbroker process fails, bipservice will restart it.
• bipbroker

– A more substantial process. Contains the deployment
manager, for CMP and REST connections, as well as the
WebUI server. All commands, toolkit connections and WebUI
go through this process.

– Responsible for starting and monitoring the biphttplistener
and DataFlowEngine processes.

– If either process fails, bipbroker will restart them.
• biphttplistener

– Runs the brokerwide HTTP connector for HTTP and SOAP
nodes.

• DataFlowEngine (a.k.a Integration Server)
– Runtime engine for all deployed resources.

Processes by platform

• Linux and Unix systems

• Windows

PID ParentPID

LE
process

Broker

Message Flow Engine(s)

Controller Administrative
Agent

Filter Node

Input
Node

Output
Node

Filter
Node

Neon
Rules

Warehousing Node

z/OS

Control
Process

WebSphere
MQ

IMSUser
Process

USSInfra-
structure
main

bipservice

bipbroker

wmqi
command

Execution
group n

Infra-
structure
main

DataFlow
Engine

Threads

CICS
Region

DB2 RRSOMVS

/s nnBRK

biphttp
 listener

Execution
group 1

Infra-
structure
main

DataFlow
Engine

Threads

Message Broker Address Spaces

Processes grouped by Address Space on z/OS

Displaying broker at the process level on z/OS

1 2 3 4

Servers

MsgRate

CPU

• IBM Integration Bus supports horizontal scaling. This is achieved by
increasing the number of integration servers the service is running in.

• Reasons to add additional integration servers:
– Increased throughput
– Operational simplicity
– Workload isolation
– Better H/W utilisation
– Higher Availability

Horizontal Scaling with additional processes

Physical Server

Integration Node

MQ Queue
Manager

Integration
Server

Integration
Server

Integration
Server

Integration
Server

Horizontally Scale

Threads

Integration Flow threads (instances)

• Every flow will have at least 1 thread per input node.
– On z/OS, these threads are TCBs.

• Held within a pool for each input node.
• Increase threads by adding “additional instances”.
• The integration server will start additional instances on

demand, as the amount of incoming work increases, up
to the limit specified.

• If they are idle then additional instances are stopped.
• Additional instances can be started immediately when

the integration server starts.

• Be aware of adding additional instance at the flow level
when there are multiple input nodes in the same flow!

Setting additional instances

• In IIB V9, additional instances can be set by creating a
workload management policy in the WebUI

• Additional instances can also be defined on the input node, as a
BAR file override and from IIB Explorer.

• IBM Integration Bus supports vertical scaling. This is achieved by
increasing additional instances (threads) of the service running within
the integration server.

• Reasons to add additional instances:
– Increased throughput
– Lower memory requirement
– Better H/W utilisation
– Policy management

Vertical Scaling with additional threads

1 2 3 4

Additional Instances

MsgRate

CPU

Physical Server

Integration Node

MQ Queue
Manager

Vertically Scale

Integration
Server

Integration Node

Integration
Server

Other thread pools

• There are other thread pools for the HTTP connectors.

• HTTP Connector for embedded listener

– mqsireportproperties IB9NODE -e default -o HTTPConnector -a
• HTTP Connector for broker wide listener

– mqsireportproperties IB9NODE -b httplistener -o HTTPConnector -a

MQ Queue
Manager

Integration
Server

biphttplistener

HTTP Listener HTTP Listener

HTTP Connector parameters

• Check the IIB
Infocenter for a list of
all the HTTP
Connector
parameters, and their
default values.

Memory

• The Integration Server runtime comprises both C++ and Java. This
means there is a multi faceted approach to checking memory.

Memory use within an Integration Server

Integration Server

Native Memory

JVM Memory

• The Integration Server is a
process (DataFlowEngine).
Its size is limited by available
memory and configuration on
the operating system.

• There is 1 JVM within each
Integration Server. The JVM
has preconfigured minimum
and maximum HEAP
settings.

What are the main consumers of memory?

• Normal (low) consumers of memory include:
– Deployment artefacts
– Configuration, such as increasing the min JVM HEAP
– Message flows
– Additional instance
– …

• What to watch for:
– Size of input messages (1K or 1GB)
– How messages are parsed (whole file or records)
– Message Tree copying (transformation nodes)
– Custom code (ESQL, Java etc)
– Caching (Shared Variable, GlobalCache etc)
– JVM settings

See Parser
Stats later!

How to check process memory usage

• Use operating system tools to view the DataFlowEngine process size
– Windows, Process Explorer

– AIX

– Unix/Linux

– z/OS

– vsz = The size in kilobytes of the core image of the process
– rss = Indicates the real memory (resident set) size of the process (in 1 KB units)
– Real = 4k pages

How to check JVM memory usage

1. Check defaults:
– mqsireportproperties IB9NODE -e default -o ComIbmJVMManager –a

• jvmMinHeapSize
–Initial value: -1, which represents 33554432 bytes (32MB) with the global
cache disabled, or 100663296 (96MB) with the global cache enabled

• jvmMaxHeapSize
–Initial value: -1, which represents 268435456 bytes (256 MB)

2. Check usage with Resource Statistics

Diagnostic Information

Diagnostic Information in WMB

• Diagnostic Information
– Resource Statistics
– Flow Statistics
– Activity Log
– Administration Log
– System Log
– Trace
– Stdout/Stderr

Resource Statistics
• Graphical Performance Monitor

– Reports comprehensive usage according of well known resources
• Message Flows, Nodes, JVM, HTTP, SOAP/HTTP sockets etc
• Optionally partitioned by Broker, Execution Group and Message Flow

• Reporting Mechanisms
– Graphically reported through IIB Explorer

• Sort, filter and chart performance characteristics
• View CPU, IO and other metrics
• Log data to file in CSV/Excel readable format for post processing

– User Configurable Reporting Interval
• XML report messages consumed by any end user application

• Examples of Available Resource Report Metrics
– JVM: Memory used, thread count, heap statistics…
– Sockets: Socket host/port open; bytes sent, bytes received

• Using the WebUI in
Integration Bus v9:
– Control statistics at all

levels
– Easily view and compare

flows, helping to
understand which are
processing the most
messages or have the
highest elapsed time

– Easily view and compare
nodes, helping to
understand which have
the highest CPU or
elapsed times.

– View all statistics metrics
available for each flow

– View historical flow data

Flow Statistics

Integration Bus Explorer & Activity Log

• View activity as it happens using explorer
• Filter by resource managers

Administration Queue / Log

• The tools include a lot of information that is useful
to the administrator, for example:

– Administration queue : What operational
changes are currently pending

– Administration log : What changes have been
recently applied to the broker’s configuration,
and by whom?

Types of trace in Integration Bus
Trace is available for separate components which can be formatted to a file
using:

•mqsichangetrace to enable trace
•mqsireadlog (BIPRELG) to read trace
•mqsiformatlog (BIPFMLG) to format

Types of trace available:
•User Trace – for you.
•Service Trace – for IBM Support
•Command Trace – for IBM Support
•CVP (Component Verification) Trace – for all

User Trace Example
UserTrace tells you exactly what is happening as a message passes
through an integration data flow.
See which nodes are being called, which parsers are being used, and
what ESQL is executed.

The Integration Bus runtime writes important operational messages to the system log:
• On z/OS, each JOBLOG includes all messages written by processes within the

address space. The SYSLOG includes messages from all IIB JOBLOGs.
• On Windows, these messages are written to the event log.
• On Unix and Linux, these messages are written to the syslog.

STDOUT/STDERR may also be written to:
• On z/OS, each JOBLOG includes any STDOUT/STDERR

written by processes within the address space.
• On Windows, the console.txt file in

%MQSI_REGISTRY%\components\<node>\<EG UUID>
• On Unix/Linux, the stdout and stderr files in

$MQSI_REGISTRY/components/<node>/<EG UUID>

SYSLOG / JOBLOG / STDOUT / STDERR

External Internals

Stack based execution engine

Start ‘MQ Input’
Start ‘Compute’

Start ‘Mapping’
Start ‘MQ Output’
Finish ‘MQ Output’

Finish ‘Mapping’
Start ‘Java Compute’
Finish ‘Java Compute’

Finish ‘Compute’
Finish ‘MQ Input’

• Useful to understand how flows execute when designing them

• Looping node connections can lead to large stack requirements

• With looping and large flows may need to increase the threadstack size

– MQSI_THREAD_STACK_SIZE=<sizeInBytes> (Unix/Windows) (default is 1Mb)

• On z/OS the thread stack size is dynamic
– Default size is 1Mb with 1Mb extents

– Using the extents can impact performance if you regularly use them

– Increase the default or extent size
• _CEE_RUNOPTS=THREADSTACK64(ON,4M,1M)

– Use RPTSTG(ON) option to get a report of stack sizes which were used

Stack:
MQ Input
Compute

Mapping
MQ Output
Java Compute

Transaction Model on z/OS

The z/OS
broker has a

global
transaction

model exactly
as you’d

expect. It is
possible for

nodes to elect
to commit

outside this
transaction.
RRS is used
for context

management
& commitment

control
between the

flows resource
managers, but

only when
required.

•Message flow

•coordinatedTransaction=Yes or No

•Native Context

•Transaction
•DataUpdate

•node
•MQOutput

•node
•MQInput

•node

•transactionMode=
•Yes (or Automatic)

•transactionMode=
• Automatic

•transactionMode=
•Yes (or Automatic)

•DataInsert
•node

•transactionMode
• =Commit

•non-transactional

•Private Context

•Resource Recovery Services
•RRS

•Resource Manager
•WMQ

•Resource Manager
•DB2

•begin global
•transaction
•ATRBEG

•commit global
•transaction
•SRRCMIT

•*

•commit node
•transaction
•SqlTransact

•private
•context
•SqlExecute

•* •*

•*

•COMMIT

•global UOW

•local UOW

•Transaction Manager
•WMQ

•commit global
•transaction
•MQCMIT

• Transactional message flows are important
– A message flow which transforms and routes data often has a need to be transactional. That is, the message flow must complete either

all or none of its processing. Remember, from an end-to-end application perspective, the message flow is *part* of the application.
• Transactional data flows and data nodes.

– A message flow can be identified as transactional using the Coordinated Transaction checkbox on a broker assigned message flow. The
intention behind this attribute is that all node operations within the message flow can be coordinated under the same, global, transaction.
On z/OS, this option is always used for message flows, whether selected or not.

– A node performs its operations within the envelope of this message flow global transaction, and can elect to be within the global
transaction or not. A Transaction Mode checkbox enables this for WMQ and database nodes. Note the visibility (ACID) implications!

• Resource Recovery Services (RRS) is *NOT* always th e transaction coordinator.
– As message flows run in essentially a batch type address spaces, RRS is the global transaction coordinator, if required.
– Execution groups are linked with an MQ RRS stub, so WMQ registers an interest with RRS for commitment control.
– Specifying the keywords CONNECTTYPE=2, AUTOCOMMIT=0, MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF in the

initialization file BIPDSNAO enables global transaction processing.
• RRS Context

– RRS Context is a concept that enables a program to have different roles. It's like one person having many ways of behaving which don't
interact with each other. It means that applications can simultaneously be different things to different systems.

– Broker flows have two contexts. A *native* context is used whenever it wants to perform the role of including node operations under the
global transaction. A *private* one has the effect of excluding database node operations from a global transaction.

– Plug-in nodes are always within the global transaction. A message flow is always in *native* context for these nodes.
• WebSphere MQ

– *Transaction Mode* within a message queuing node governs whether MQPUT and MQGET operations are explicitly performed either
inside or outside syncpoint on a per call basis. These nodes therefore always use the native, and never the private, RRS context.

• Database
– For database nodes, *Transaction Mode* determines under which RRS context the transaction will be performed. If the node is within the

global transaction, then the native context is used. For a Transaction Mode of *commit*, the private context, so that DB2 and RRS see
the operation from a logically different party. These nodes commit (using SQLTransact) their operations as the node is exited.

• Commitment Control
– The global transaction is begun implicitly when a resource manager communicates with RRS. The overall message transaction is

committed (or backed out!) control returns to the input node. At COMMIT time, WMQ will pass control to RRS only if required.
– RRS will call all registered resource managers (WMQ, DB2) in a two phase commit protocol to ensure a global transaction. Recall that

nodes which elected for a Transaction Mode of commit had resources updated (and externally visible!) close to their point of issuing. If
RRS is not required WMQ will perform the commitment control and delete any RRS interests.

Notes : Transaction Model

Node Lifecycle (Mid -flow)

• All mid-flow nodes follow this life cycle
– IBM written and plugin/compute nodes

• Constructor
– Called when the node is created as the flow is initialized

• Properties are then set on the node
• onInitialize()

– Validate configured properties

– Called either during deployment or on broker startup.
– If it throws an exception, deployment or startup is rolled back/stopped

• The broker does not try to start the flow again until the broker is restarted
– Complete tasks that will always work or always fail

• If you need to initialize an external connection that might need to be retried, consider
doing so on the first message through the flow so that the flow can retry the connection
as necessary

• Evaluate
– Called when execution of a message is required

– Perform required node processing
– Exceptions which are thrown and thrown back down the flow to be handled

• OnDelete
– Called before a node is deleted

– Use if you want the node to perform cleanup operations, for example closing sockets,
– Should not throw exceptions

Node Lifecycle (Input)

• All non-connector input nodes follow this basic lifecycle

• Constructor
– Called when the node is created as the flow is initialized

• Properties are then set on the node
• onInitialize()

• run
– Called by broker when we want the node to try and read data

– Node reads data and then propagates the resulting message
– Additional instances

• If you want your input node to support additional instances then before propagating the
message the node needs to call dispatchThread to try and dispatch another thread to
read more data

– Returns success/failure/timeout depending on result

• onDelete

…draCscihparG,htimSderF

Input Message Bit-stream

…n/<htimS.rM>eman<>redro<

Output Message Bit-stream

Parser converts
bit-stream to
logical structure

Model

Parser converts
logical structure
to bit-stream

Model

Parsers

<order>
<name>

<first>John</first>
<last>Smith</last>

</name>
<item>Graphics Card</item>
<quantity>32</quantity>
<price>200</price>
<date>07/11/09</date>

</order>

John,Smith,Graphics Card,
32,200,07/11/09

John Smith............
Graphics Card.........
3220020071109.........

Order

Name Item Qty Price Date

First Last
String String

String Integer Integer Date

Physical Logical

Message Modeling

• Here is an example of how a physical data structure could be mapped to a logical tree.
– Notice how multiple physical formats can correspond to the same logical tree. The

first physical format is an XML structure that shows our Order message. The second
is a comma separated value (CSV) structure of the same. The third comprises a set of fixed
length fields in a custom wire format.

– By manipulating the logical tree inside the Message Broker rather than the physical bit-stream,
the nodes can be completely unaware of the physical format of the data being manipulated. It
also makes it easy to introduce new message formats into the broker.

• Applications have and require diverse data formats.
– We all know that XML is the data format that's going to solve every data processing problem

that exists! We also know that "XML++", the follow-on compatible meta format that someone in
a research laboratory is working on will solve all the problems we don't even know we have
today! The fact is that, without wanting to appear cynical, every generation goes through this
process. Surely it was the same when COBOL superseded assembler.

– The fact is, that for historic, technical, whimsical, political, geographical, industrial and a whole
host of other reasons you probably never even thought of, a hugely diverse range of data
formats exist and are used successfully by a myriad of applications every second of every day.
It's something that we have to live with and embrace because it isn't going to get any better any
time soon.

– The advantage WebSphere Message Broker brings by modelling all these messages is that we
can rise above the message format detail; so that whether it's a tag delimited SWIFT or
EDIFACT message, a custom record format closely mapping a C or COBOL data structure, or
good old XML, we can talk about messages in a consistent, format independent way. Message
Broker can manage this diversity.

• The Logical Message Model.

– Reconsider messages and their structure. When we architect messages (no matter what the
underlying transport technology), we concern ourselves firstly with the logical structure. For
example, a funds transfer message might contain an amount in a particular currency, a
transaction date and the relevant account details of the parties involved. These are the
important business elements of the message; when discussing the message, we refer to these
elements.

– However, when we come to realize the message, we have to choose a specific data format.
This may be driven by many factors, but we have to choose one. You may be aware of the
advantages of various message formats or have your own personal favourite, or may fancy
inventing a new one, but the fact remains that you have to choose a physical *wire format*. So
for our transfer message, we might decide to use XML, with its elements, attributes and
PCDATA (and a DTD, if we're being really exact), or we might map more closely to a C data
structure modelling our message with ints, shorts, chars etc. and worry about *their* various
representations(!)

– The Logical message model provided by IBM Integration Bus allows one to describe a
message in terms of a tree of elements, each of which has a (possibly user defined) type. At
the message tree leaf nodes, the elements have simple types such as strings, integers,
decimals, booleans etc. Moreover, elements can have various constraints and qualifiers applied
to them that more fully describe them; e.g. elements might be optional, appear in a certain
order or only contain certain values.

Message Tree Structure

Root

Properties Headers Body

Order

Name Item Qty Price Date

First Last

…

CodedCharSetId CreationTime Encoding Transactional
…

Parser Domains

• The message domain identifies the parser that is used to parse and write instances of
the message.

– Eg: BLOB, XMLNSC, DFDL

• The remaining parts of the message template, message model, message (type), and
physical format, are optional, and are used by model-driven parsers such as the DFDL
parser.

• 4 Main parser types

– Root
– Properties

– Header

– Body
• Neither the Root or Properties parsers claim any of the incoming bitstream

The logical tree

• Tree is made up of SyntaxElement objects which are logically linked
– MbElement / NbElement / CciElement

• Each element contains the Name, Namespace and Value which describe that element
• Each element knows what type of element it is (Folder, Name, Value, NameValue, etc)

• Each element knows its family relationship

• Each element knows its parse state (leftComplete/rightComplete)
– This supports partial/onDemand parsing

SyntaxElement:

Name (String)

Namespace (String)

Type (Integer)

Value (Value Type)

leftSibling (Pointer to SyntaxElement)

firstChild (Pointer to SyntaxElement)

parent (Pointer to SyntaxElement)

lastChild (Pointer to SyntaxElement)

rightSibling (Pointer to SyntaxElement)

The logical tree - linkage

• The logical tree is made up of ImbSyntaxElement objects which are logically linked

Parent

leftSibling / rightSibling

firstChild / lastChild

Parent

leftSibling / rightSibling

firstChild / lastChild

Parent

leftSibling / rightSibling

firstChild / lastChild

Parent

leftSibling / rightSibling

firstChild / lastChild

Parent

leftSibling / rightSibling

firstChild / lastChild

The logical tree - navigation

• Navigation of the tree is done using a set of similar methods across all languages

Parent

leftSibling / rightSibling

firstChild / lastChild

Null

Parent

leftSibling / rightSibling

firstChild / lastChild

Parent

leftSibling / rightSibling

firstChild / lastChild

Null

Null Null

Parent

leftSibling / rightSibling

firstChild / lastChildNull Null

Null

Null Null

getParent()
getParent()

getParent()

getFirstChild()

getLastChild()

getNextSibling() getNextSibling()

getPreviousSibling()getPreviousSibling()
Null Null

Trace node output - ???

(['MQROOT' : 0xed8efe0]
(0x01000000:Name):Properties = (['MQPROPERTYPARSER' : 0xed2b2c0]

(0x03000000:NameValue):MessageSet = '' (CHARACTER)
...

(0x03000000:NameValue):IdentityMappedIssuedBy = '' (CHARACTER)
)
(0x01000000:Name):MQMD = (['MQHMD' : 0xed2bcb0]

(0x03000000:NameValue):SourceQueue = 'VFE.IN1' (CHARACTER)
...

(0x03000000:NameValue):OriginalLength = -1 (INTEGER)
)
(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1d24b30]

(0x01000000:Folder):order = (
...

)
)

)

Trace node output – Root element/Parser

(['MQROOT' : 0xed8efe0]
(0x01000000:Name):Properties = (['MQPROPERTYPARSER' : 0xed2b2c0]

(0x03000000:NameValue):MessageSet = '' (CHARACTER)
...

(0x03000000:NameValue):IdentityMappedIssuedBy = '' (CHARACTER)
)
(0x01000000:Name):MQMD = (['MQHMD' : 0xed2bcb0]

(0x03000000:NameValue):SourceQueue = 'VFE.IN1' (CHARACTER)
...

(0x03000000:NameValue):OriginalLength = -1 (INTEGER)
)
(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1d24b30]

(0x01000000:Folder):order = (
...

)
)

)

Trace node output - Parsers

(['MQROOT' : 0xed8efe0]
(0x01000000:Name):Properties = (['MQPROPERTYPARSER' : 0xed2b2c0]

(0x03000000:NameValue):MessageSet = '' (CHARACTER)
...

(0x03000000:NameValue):IdentityMappedIssuedBy = '' (CHARACTER)
)
(0x01000000:Name):MQMD = (['MQHMD' : 0xed2bcb0]

(0x03000000:NameValue):SourceQueue = 'VFE.IN1' (CHARACTER)
...

(0x03000000:NameValue):OriginalLength = -1 (INTEGER)
)
(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1d24b30]

(0x01000000:Folder):order = (
...

)
)

)

Trace node output – Element Type

(['MQROOT' : 0xed8efe0]
(0x01000000:Name):Properties = (['MQPROPERTYPARSER' : 0xed2b2c0]

(0x03000000:NameValue):MessageSet = '' (CHARACTER)
...

(0x03000000:NameValue):IdentityMappedIssuedBy = '' (CHARACTER)
)
(0x01000000:Name):MQMD = (['MQHMD' : 0xed2bcb0]

(0x03000000:NameValue):SourceQueue = 'VFE.IN1' (CHARACTER)
...

(0x03000000:NameValue):OriginalLength = -1 (INTEGER)
)
(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1d24b30]

(0x01000000:Folder):order = (
...

)
)

)

Trace node output – Element Name

(['MQROOT' : 0xed8efe0]
(0x01000000:Name):Properties = (['MQPROPERTYPARSER' : 0xed2b2c0]

(0x03000000:NameValue):MessageSet = '' (CHARACTER)
...

(0x03000000:NameValue):IdentityMappedIssuedBy = '' (CHARACTER)
)
(0x01000000:Name):MQMD = (['MQHMD' : 0xed2bcb0]

(0x03000000:NameValue):SourceQueue = 'VFE.IN1' (CHARACTER)
...

(0x03000000:NameValue):OriginalLength = -1 (INTEGER)
)
(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1d24b30]

(0x01000000:Folder):order = (
...

)
)

)

Trace node output – Element Value

(['MQROOT' : 0xed8efe0]
(0x01000000:Name):Properties = (['MQPROPERTYPARSER' : 0xed2b2c0]

(0x03000000:NameValue):MessageSet = '' (CHARACTER)
...

(0x03000000:NameValue):IdentityMappedIssuedBy = '' (CHARACTER)
)
(0x01000000:Name):MQMD = (['MQHMD' : 0xed2bcb0]

(0x03000000:NameValue):SourceQueue = 'VFE.IN1' (CHARACTER)
...

(0x03000000:NameValue):OriginalLength = -1 (INTEGER)
)
(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1d24b30]

(0x01000000:Folder):order = (
...

)
)

)

Trace node output – Element Value Type

(['MQROOT' : 0xed8efe0]
(0x01000000:Name):Properties = (['MQPROPERTYPARSER' : 0xed2b2c0]

(0x03000000:NameValue):MessageSet = '' (CHARACTER)
...

(0x03000000:NameValue):IdentityMappedIssuedBy = '' (CHARACTER)
)
(0x01000000:Name):MQMD = (['MQHMD' : 0xed2bcb0]

(0x03000000:NameValue):SourceQueue = 'VFE.IN1' (CHARACTER)
...

(0x03000000:NameValue):OriginalLength = -1 (INTEGER)
)
(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1d24b30]

(0x01000000:Folder):order = (
...

)
)

)

Building the logical tree – aka parsing!

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

• For XML it is easy to visually see how we get from the input message to the logical
model

• But how?

• The parser fires events back to a handler and the handler then creates the tree
– Java SAX like parsing
– DFDL parser follows same model
– This model allows of OnDemand/partial parsing

• Reduced memory as you do not always require all of the logical tree in memory

Order

Name Item Qty Price Date

First Last
String String

String String String String

???

Building the logical tree – aka parsing!

Order

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Events:
• startDocument

– startElement (Order)

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name

Building the logical tree – aka parsing!

Events:
• startDocument

– startElement (Order)

• startElement (Name)

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name

First

Building the logical tree – aka parsing!

Events:
• startDocument

– startElement (Order)

• startElement (Name)

– startElement (First)

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name

First
String

Building the logical tree – aka parsing!

Events:
• startDocument

– startElement (Order)

• startElement (Name)

– startElement (First)

» elementValue(John)

– endElement

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name

First Last
String

Building the logical tree – aka parsing!

Events:
• startDocument

– startElement (Order)

• startElement (Name)

– startElement (First)

» elementValue(John)

– endElement

– startElement (Last)

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name

First Last
String String

Building the logical tree – aka parsing!

Events:
• startDocument

– startElement (Order)

• startElement (Name)

– startElement (First)

» elementValue(John) (String)

– endElement

– startElement (Last)

» elementValue(Smith) (String)

– endElement

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name

First Last
String String

Building the logical tree – aka parsing!

Events:
• startDocument

– startElement (Order)

• startElement (Name)

– startElement (First)

» elementValue(John) (String)

– endElement

– startElement (Last)

» elementValue(Smith) (String)

– endElement

• endElement

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name Item

First Last
String String

Building the logical tree – aka parsing!

Events:
• startDocument

– startElement (Order)

• startElement (Name)

– startElement (First)

» elementValue(John) (String)

– endElement

– startElement (Last)

» elementValue(Smith) (String)

– endElement

• endElement

• startElement (Item)

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name Item

First Last
String String

String

Building the logical tree – aka parsing!

Events:
• startElement (Name)

– startElement (First)

» elementValue(John) (String)

– endElement

– startElement (Last)

» elementValue(Smith) (String)

– endElement

• endElement

• startElement (Item)

– elementValue(Graphics Card) (String)

• endElement

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Order

Name Item Qty Price Date

First Last
String String

String Integer Decimal Date

Building the logical tree – aka parsing!

Events:
... Repeat 3 more times for Qty, Price and Date ...

• startElement (Qty)

– elementValue(32) (Integer)

• endElement

• startElement (Price)

– elementValue(Smith) (Decimal)

• endElement

• startElement (Date)

– elementValue (07/11/09) (Date)

• endElement

<Order>

<Name>

<First>John</First>

<Last>Smith</Last>

</Name>

<Item>Graphics Card</Item>

<Qty>32</Qty>

<Price>200</Price>

<Date>07/11/09</Date>

</Order>

Building the logical tree – aka parsing!

Events:
• startElement (Date)

– elementValue (07/11/09) (Date)

• endElement

– endElement

• endDocument

Order

Name Item Qty Price Date

First Last
String String

String Integer Decimal Date

…draCscihparG,htimSderF

Input Message Bit-stream

…n/<htimS.rM>eman<>redro<

Output Message Bit-stream

Parser converts
bit-stream to
logical structure

Model

Parser converts
logical structure
to bit-stream

Model

Parsers – Key Methods

refreshElementsFromBitstream

createElementAsLastChildFromBitstream

refreshBitstreamFromElements

toBitstream

Parsers – Key Methods

• Applies to all parsers, IBM written and plugin parsers
• refreshElementsFromBitstream

– Turns the bitstream into the logical tree
– Takes various options

• Encoding and ccsid to use for the parse
• Message Set, Type & Format to use for the parse
• Parser options to apply to the parse, such as validation
• The parser remembers the options it was initiated with

– Can be driven from createElementAsLastChildFromBitstream calls in transformation

• refreshBitstreamFromElements
– Turns the logical tree into a bitstream
– Takes various options that match those on the refreshElementsFromBitstream call
– Can be driven from toBitstream calls in transformation

• There is an optimization present in the parsers so that if a parser is called with exactly
the same options on the refreshBitstreamFromElements call as it initialized with on the
refreshElementsFromBitstream call, and the logical tree hasn’t been modified then the
input bitstream is returned

– This helps support simple pass-through and routing scenarios

Parser Internals – reuse example

1. MQInput Node

2. MQInput Node

Compute Node

Flow pool

Node pool

Parser

3. MQInput Node

Compute Node

Mapping Node

4. MQInput Node

Compute Node

Mapping Node

MQOutput Node

8. MQInput Node

Compute Node

JavaCompute Node

10. MQInput Node

7. MQInput Node

Compute Node

9. MQInput Node

Compute Node

Notes:

� 1: 7 Parsers are available in the flow pool

� 2: The Compute node creates a message using 2 parsers

� 3: The Mapping node creates a message using 2 parsers

� 4: The MQOutput node creates a message using 1 parser

� 5-6: As the stack unwinds parsers are returned for reuse

� 7: The Compute node creates a new message using 1 of the previously used parsers

� 8: Java Compute node creates a new message using 2 previously used parsers

� 9-10: As the stack unwinds parsers are returned for reuse

6. MQInput Node

Compute Node

5. MQInput Node

Compute Node

Mapping Node

Parser Internals - reuse

• Each Message Flow Instance has its own pool of parsers

• Nodes in a flow ‘borrow’ parsers from the flow pool
• Message’s created in nodes use the node ‘borrowed’ parsers

• If a Message requires a new parser it asks the Node for one who in
turn ask the flow pool to borrow one

• If the flow pool does not have a free parser it creates a new one
• When a node goes off of the stack the parsers are returned to the flow

pool for reuse.
• Only in this instance are parsers returned to the pool for reuse mid flow

– example next slide

• At the end of processing a message the flow pool is reset meaning all
parsers are reset and NOT DELETED

• This means their memory is still in use

• The parsers are only deleted when the flow is stopped or undeployed

Parser Internals - MQSI_FREE_MASTER_PARSERS

• Each Message Flow Instance has its own pool of parsers

• Nodes in a flow ‘borrow’ parsers from the flow pool
• Message’s created in nodes use the node ‘borrowed’ parsers

• If a Message requires a new parser it asks the Node for one who in
turn ask the flow pool to borrow one

• If the flow pool does not have a free parser it creates a new one
• When a node goes off of the stack the parsers are returned to the flow

pool for reuse.
• Only in this instance are parsers returned to the pool for reuse mid flow

– example next slide

• At the end of processing a message the Master ImbMessageGroup is
reset and ALL PARSERS are DELETED and not reset

• This means their memory is returned to the OS

Parser Internals - Element Pools

• Each Parser has a pool of elements

• As a parser is reused the elements in the pool are reused

• The elements owned by a parser are kept until the parser is deleted
• When a parser is reused it may not be used for the same purpose as last time

– ie, one use maybe on the input message and another time for the output
message

• Each reuse may require a different number of elements

• Over time the element pool for each parser of the same domain will grow until it
is the maximum size required

– This is the plateau’ing effect we sometimes describe in PMRs

Parser resource statistics

• Use the Parsers statistics to see how much resource is being used by the message trees and bit
streams that these parsers own.

The number of failed writes that occurred for the named
message flow parser type.

FailedWrites

The number of successful writes that were completed by
the named message flow parser type.

Writes

The number of failed parses that occurred for the named
message flow parser type.

FailedReads

The number of successful parses that were completed by
the named message flow parser type.

Reads

Shows the number of message fields associated with the
named message flow parser type. These fields are
retained by the parser and are used for constructing
the message trees.

Fields

Shows the largest bit stream written by the parser type
for the named message flow.

MaxWrittenKB

Shows the largest bit stream parsed by the parser type
for the named message flow.

MaxReadKB

The approximate amount of user data-related memory
used for the named message flow parser type. It is
not possible to calculate the exact amount of
memory used by a parser.

ApproxMemKB

The number of message flow threads that contributed to
the statistics for a message flows parser type
accumulation.

Threads

DescriptionMeasurements

Parser Resource Statistics - Interpretation

(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x342ba2f8]

(0x01000000:Folder):order = (

(0x01000000:Folder):name = (

(0x03000000:PCDataField):first = 'John' (CHARACTER)

(0x03000000:PCDataField):last = 'Smith' (CHARACTER)

)

(0x03000000:PCDataField):item = 'Graphics Card'
(CHARACTER)

(0x03000000:PCDataField):quantity = '32' (CHARACTER)

(0x03000000:PCDataField):price = '200' (CHARACTER)

(0x03000000:PCDataField):date = '07/11/09'
(CHARACTER)

)

)

(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1cd2360]

(0x01000000:Folder):order = (

(0x01000000:Folder):name = (

(0x03000000:PCDataField):first = 'John' (CHARACTER)

(0x03000000:PCDataField):last = 'Smith' (CHARACTER)

)

(0x03000000:PCDataField):item = 'Graphics Card'
(CHARACTER)

(0x03000000:PCDataField):quantity = '32' (CHARACTER)

(0x03000000:PCDataField):price = '200' (CHARACTER)

(0x03000000:PCDataField):date = '07/11/09'
(CHARACTER)

)

)

18

17

16

15

14

13
12

11
10

9

8

7

6

5

4
3

2

1

Parser Resource Statistics - Interpretation

• Using our earlier example flow
• ESQL changed from this:

SET OutputRoot = InputRoot;

• To:
CALL CopyMessageHeaders();

SET OutputRoot.XMLNSC.order = InputRoot.XMLNSC.order;

• Previously a parser-to-parser copy took place and because no modifications
have taken place a new set of parsers were initialised with the original
bitstream hence a read of 2 as a new parse takes place

• With the new code a tree copy is taking place having navigated both sides to
the order element – now only 1 read taking place

• Parser stats can be very powerful when analysing changes to message flows
with high parser memory usage

Partial parsing

• Partial parsing is where only part of the message is parsed at a time, and only if
required

• Utilised correctly this can reduce memory usage and increase performance

• Default parse mode is “on Demand” which means only parse as far as you need
to, to satisfy the current request.

• In our example message if we only needed to read the ‘name’ element to route
the message and didn’t need to make a modification then as long as we only
referenced as far as the name element then we wouldn’t need to parse all of the
message

• With our example flow
– If we disable the trace nodes then we will see the field count

in the parser stats reduce as we haven’t needed to parse
all of the message

– Thus partial parsing has been utilised

<order>

<name>

<first>John</first>

<last>Smith</last>

</name>

<item>Graphics Card</item>

<quantity>32</quantity>

<price>200</price>

<date>07/11/09</date>

</order>

Parser Resource Statistics - Interpretation

• Use Parser statistics to understand memory costs associated with
processing messages.
– This is a simple XML file, parsed and serialised using XMLNSC.
– The actual size of the file is 118 bytes (matches 0.12KB reported).
– Not all fields have been parsed, as the flow has parse on demand.

More Parser Resource Statistics - Interpretation

• The same input message as before, but different ESQL. This time
the ESQL statement refers to the last element (Customer.ID).

• The parser statistics show how many more fields are read.

1
2

3
4

5

6 7

(XMLNSC)

and finally … Typed trees

• When parsing is performed using a schema or message set the element
types can be set to be appropriate types as defined in the model

– MRM / DFDL - automatically typed based on the model
– XMLNSC – requires content + validation enabled and “Build tree using

XMLNSC schema data types” selected

After:

(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x3441b838]

(0x01000000:Folder):order = (

(0x01000000:Folder):name = (

(0x03000000:PCDataField):first = 'John' (CHARACTER)

(0x03000000:PCDataField):last = 'Smith' (CHARACTER)

)

(0x03000000:PCDataField):item = 'Graphics Card'
(CHARACTER)

(0x03000000:PCDataField):quantity = 32 (DECIMAL)

(0x03000000:PCDataField):price = 200 (DECIMAL)

(0x03000000:PCDataField):date = DATE '2007-11-09'
(DATE)

)

)

Before:

(0x01000000:Folder):XMLNSC = (['xmlnsc' : 0x1cd2360]

(0x01000000:Folder):order = (

(0x01000000:Folder):name = (

(0x03000000:PCDataField):first = 'John' (CHARACTER)

(0x03000000:PCDataField):last = 'Smith' (CHARACTER)

)

(0x03000000:PCDataField):item = 'Graphics Card'
(CHARACTER)

(0x03000000:PCDataField):quantity = '32' (CHARACTER)

(0x03000000:PCDataField):price = '200' (CHARACTER)

(0x03000000:PCDataField):date = '07/11/09'
(CHARACTER)

)

)

Introduction to MQ

MQ Clustering - The
Basics, Advances and
What's New in v8

MQ for z/OS v8 new
features deep dive

First Steps with IBM
Integration Bus:
Application Integration
for a new world

04:15

IIIB - Internals of IBM
Integration Bus

What's wrong with MQ?MQ & DB2 – MQ Verbs in
DB2 & InfoSphere Data
Replication (Q Replication)
Performance

MQ Beyond the
Basics

03:00

New MQ Chinit
monitoring via SMF

MQ Security: New v8
features deep dive

All about the new MQ v801:30

12:15

Using IBM WebSphere
Application Server and
IBM WebSphere MQ
Together

MQ – Take Your Pick
Lab

What's New in IBM
Integration Bus &
WebSphere Message
Broker

11:15

10:00

CICS and MQ - Workloads
Unbalanced!

The Dark Side of
Monitoring MQ - SMF 115
and 116 Record Reading
and Interpretation

Application
programming with MQ
verbs

08:30

FridayThursdayWednesdayTuesdayMonday

This was session 16200 - The rest of the week ……

Questions?

