

2

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.
• IBM®
• MVS™
• Redbooks®
• RETAIN®
• z/OS®
• zSeries®

The following are trademarks or registered trademarks of other companies.
• Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
• Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
• UNIX is a registered trademark of The Open Group in the United States and other countries.
• SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.
• All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance

characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM
Business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to
non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

3

Thanks to Richard Peurifoy (TAMU), David Jones (IBM

JES3), and Tom Wasik (IBM JES2) for their valuable

contributions to this revised and enhanced presentation.

Acknowledgements

• James Lund
– Texas A&M University ’87 - Computer Science

– 30 years working with MVS technology

– 20+ years at SHARE

– 15+ years DPM in the JES3/EPS Project

– JES3 Committee Lead under MVS Core Technologies Project

• Adam Nadel

– Binghamton University ’04 - Computer Science

– 10 years working with MVS technology

– IBM z/OS Level 2 Support

• JES2 (team lead), SDSF

• z/OSMF REST jobs API (team lead), z/OSMF SDSF UI

About the Speakers

5

• Texas A&M University formed in 1876 as Texas' first
public institution of higher learning

• 50,000 undergraduate and 8,500 graduate students

• 250 degree programs

• 10 colleges – 6th largest enrollment in nation.

• Two branch campuses (Galveston, Tx and Doha, Qatar)

and overseas centers (Mexico, Costa Rica, and Italy)

• George Bush (Sr.) Presidential Library/School of

Government

About the Company

IBM 704

6

IBM 7094 Data Processing System, IBM 726 Tape

7

8

• Four FTEs for system and subsystems support

• IBM z10 BC

• z/OS v1.13, JES3 v1.13

• Who are our customers?

– Budget/Payroll System (BPP)

– System-wide Financials (FAMIS) – 20+ universities and state
agencies
• 30,000 faculty and staff

Our Environment

9

A concurrent move to a new z/OS and JES is difficult!

•13 JES local usermods

•22 site-developed macros

•4 local DSP Dictionary modules

•1 local FCT module, driving 4 function modules
– MUSAS (Wylbur) JES Spool interface

•JES3 USERMOD required to implement - IATGRPT

•See SHARE 2011 Orlando Session 9716 Extended Status
Spool Browse

Current Conditions (Review)

What is the SSI?

• The SSI is an MVS interface to "Subsystems"

– Used as a hook to give info to subsystems
• WTO, CMDs, EOT, EOM, etc.

– Used as a way to request functions
• PSO, SAPI, Extended Status

– Each SSI has a number and an SSOB extension

– Subsystem identifies what functions it supports

– Caller can specify subsystem to process request
• Default, Specific, All

The SSI is an MVS interface to subsystems. A subsystem in this context is
defined as any program that responds to SSI requests. JES2 and JES3 are
two of the major users of the SSI interface. The SSI functions as both an
hook that provides information to the subsystems when certain events occur,
as well as a way to request information/services from a subsystems. WTO,
command, End of task, End of Memory are all examples of SSIs that are
invoked by MVS to tell a subsystem that something has happened. These
SSIs are intended to only be issued by MVS and listened to by subsystems.
PSO, SAPI, Extended Status are all examples of SSIs that are invoked by
applications that are requesting services from a subsystem.

Each SSI has associated with it a number and an SSOB extension. The
numbers (normally stated in decimal) ensures that the proper function is
requested. The SSOB extension is where the parameters for the specific SSI
are defined.

Each subsystem must identify to MVS what SSI numbers (function codes) it
supports. The next chart lists the function that JES supports (for use by
applications).

SSI calls can be directed to the default subsystem (the one the application
was started under), a specific subsystem, or all subsystems. Sending a
request to all subsystems is called a broadcast SSI. Only certain SSIs
support being broadcast. The only JES SSI available to applications that can
be broadcast is the extended status SSI.

What is the SSI? (cont...)
The SSI calls (that applications can use) which JES supports are:

Number Symbol Macro Auth Description

1 SSOBSOUT IEFSSSO Y Process SYSOUT

2 SSOBCANC IEFSSCS Y Job cancel

3 SSOBSTAT IEFSSCS Y Job status

11 SSOBUSER IEFSSUS N Destination validation/conversion

20 SSOBRQST IEFSSRR Y Request job ID

21 SSOBRTRN IEFSSRR Y Return job ID

54 SSOBSSVI IEFSSVI N Subsystem information

70 SSOBSFS IAZSSSF N SJF SPOOL services (modify/merge)

71 SSOBSSJI IAZSSJI Y/N Job/JES2 information (JES2 only)

75 SSOBSSNU IAZSSNU N User notification

79 SSOBSOU2 IAZSSS2 N SYSOUT API (SAPI)

80 SSOBESTA IAZSSST N Extended status information

82 SSOBSSJP IAZSSJP N JES property information

83 SSOBSSJD IAZSSJD N JES device information

85 SSOBSSJM IAZSSJM N Job modify

This table lists the SSI request that are available to applications that are
supported by JES2 and JES3. Newer SSIs have the higher numbers. Some
of these SSIs are documented in the z/OS V1R13.0 MVS Using the
Subsystem Interface book (SA22-7642-12). However, most of the newer
SSIs have fairly complete documentation in their SSOB extensions (Macro
column in the table). The Auth column indicates if the caller of the SSI needs
to be authorized. SSI 71 (job/JES2 information SSI) is only supported by
JES2. Most function of SSI 71 do not require the caller to be authorized but
one function does.

Invoking the SSI - Data areas

Register 1 '80'+SSOB@
'SSOB' (SSOBID)

Length (SSOBLEN)

Function ID (SSOBFUNC)

SSIB@ (SSOBSSIB) or zero

SSOB Extension@ (SSOBINDV)

Return code (SSOBRETN)

SSOB (IEFSSOBH)

'SSIB' (SSIBID)

Length (SSIBLEN)

Subsys name (SSIBSSNM)

SSIB (IEFJSSIB)

Length

Function dependent data

:

:

SSOB Extension

The major data areas that must be filled in to invoke the SSI are the SSOB
and the SSOB extension. If you want to direct the request to a specific
subsystem, then you can also pass an SSIB on the request. The SSOB
extension that is used will depend on the function ID (SSI number) being
used.

Invoking the SSI - Code

 USING SSOB,MYSSOB Establish SSOB addressability

 SPACE 1

 XC MYSSOB,MYSSOB Zero SSOB area

 LA R6,MYSSOB Get address of SSOB

 SPACE 1

 MVC SSOBID,=C'SSOB' Set SSOB eyecatcher

 MVC SSOBLEN,=Y(SSOBHSIZ) Set length of SSOB header

 MVC SSOBFUNC,=Y(SSOBSSxx) Set function code

 MVC SSOBSSIB,=F'0' Use LOJ SSIB

 LA R0,SSOB+SSOBHSIZ Point to SSOB extension

 ST R0,SSOBINDV Point base to extension

 SPACE 1

 USING SSxxxxx,SSOB+SSOBHSIZ SSOB extension addr'blty

 SPACE 1

* Code to set up SSOB extension goes here

 SPACE 1

 LA R6,MYSSOB Point to SSOB

 O R6,=X'80000000' Set HI BIT to indicate last

 ST R6,PARMPTR Save SSOB address in parm

 LA R1,PARMPTR Get pointer to SSOB

 SPACE 1

 IEFSSREQ Invoke the SSI

 SPACE 1

 LTR R15,R15 If this is nonzero

 JNZ SSREQERR we're in big trouble

 CLC SSOBRETN,=A(0) Is there an error?

 JH SSOBERR Yes, process error

This is the basic code needed to invoke any SSI request. This code sends the
request to the subsystem associated with the address space (uses the life of
job - LOJ SSIB). This SSIB points to the subsystem that started the address
space. If the address space was started under the master subsystem (does
not have a job structure in JES or used request job id), then the request will go
to the MSTR subsystem. If it was started under JES2/JES3 (has a job
structure that is not from request jobid) then the request will go to the JES
instance that started the address space.

Notice that after the call, there are 2 return codes being checked. The R15
value after the call to IEFSSREQ is a function independent return code
defined in IEFSSOBH. These return code are often not set by the subsystem
itself but rather by the IEFSSREQ logic. The SSOBRETN is a function

dependent return code that is defined in the individual SSOB extensions.
These are only set by the subsystems. Often there will be a third return code
(or a reason code) in the SSOB extension itself to further identify the cause of
an error.

Hints and Tips

• Use IEFSSI REQUEST=QUERY to get SSI info

– Request specific, all, or primary subsystem info

– Output mapped by IEFJSQRY

– Lists functions subsystems support

– Indicates if JES2 or JES3 subsystem

• Use authorized code only when needed

– Code errors can cause less errors

When coding general interfaces into JES, it is often interesting to know if you
are interfacing with JES2 or JES3. Or you may need to know what
subsystems exist on your system. The easiest way to do this is to use the
QUERY request on the IEFSSI macro. This can give you information on all
the subsystems that are defined on your system, or information on a particular
subsystem (including the primary subsystem). It returns information on which
SSI function numbers are supported and whether the subsystem is JES2 or
JES3.

Another helpful word of advice is to avoid running authorized as much as
possible. This is more for the sake of others rather than yourself. An
authorized program that has an error can cause damage to the system.
Unauthorized code is much less likely to mess things up outside your address

space.

Extended Status (SSI 80)

• Obtain JOB and SYSOUT information
– SSI function 80 (IAZSSST mapping macro)

– 6 call types
• Get job data (terse and verbose)
• Get SYSOUT and JOB data (terse and verbose)
• Data set list (verbose)
• Release memory

– Terse requests obtain easily accessed data

– Verbose requests return data from SPOOLed CBs

– Filters control data returned

– Supports directed SSIs and broadcast

The extended status SSI returns information about job and SYSOUT in the
JES queue. There are 6 functions supported, 5 to obtain information and one
to return the storage obtained. Two of the functions, referred to as terse
requests, obtain information from mostly instorage control blocks with minimal
SPOOL I/O (in JES2 there is no SPOOL I/O for terse requests). The other 3
obtain information from SPOOL data areas and are referred to as verbose
requests. There are terse and verbose requests for JOB data, and terse and
verbose requests to get SYSOUT (and job) data, and a verbose request to get
a list of all JES data sets (input and output) associated with a job. As is typical
of the newer SSIs, the storage for the return data is managed by the SSI. It is
obtained on functions that get data and then freed by a subsequent memory
management call. You will see this on many of the SSI calls.

The requester can filter the data returned based on a wide range of JOB as
well as SYSOUT filters.

The SSI supports both directed and broadcast requests. Directed request
implies that you do not have to be running under the target subsystem to
make this request. Since this SSI also supports a broadcast request, you can
ask all subsystems (all JES subsystems) on a system to return data in one

call.

Extended Status (SSI 80)

• JES2 requests use checkpoint version

– Two types of versions, live or copy
• Live only used for job request that filter on a single job

• Copy implies data could be seconds stale

– Versions allows all processing to occur in the requestors
address space

• JES3 requests are processed on the global

– Overhead in the JES3 address space

– Data is always current

JES2 obtains the data returned on these requests from a copy of the
checkpoint that lives in a data space. This can be a static point in time copy
or a live copy of the checkpoint data. If a static copy is used, the data can be
up to 5 seconds stale relative to what JES2 commands would indicate (this is
an extreme value for an idle system and in reality it is as stale as the HOLD=
value on MASDEF). Live copies have current information but are only used
when a job level information is requested for a single job (not SYSOUT
information). Using a version allows the request to be processed in the
requestor’s address space without getting the JES2 address space involved.

JES3 requests are processed on the JES3 global. This allows JES3 to
provide information that is current at the time it was retrieved. However
extended status request must compete with resources on the global.

Extended Status (SSI 80) – Request types

• Get job data (terse and verbose)
– Obtains job level information for jobs matching filters

• Can use SYSOUT filters too

• Get SYSOUT and JOB data (terse and verbose)
– Obtains SYSOUT and job information

• Terse gives output group level information
• Verbose gives data set level information

• Data set list (verbose)
– Gives data set information for all matching data sets

• Includes input data sets and active data sets

– Generally not grouped, returns all instances
– For JES2 information in STATSE may not reflect operator

command changes
– For JES3 active data sets may not reflect parameters set by

OUTPUT JCL statements

There are 3 major request types, job, SYSOUT and data set list. The job
requests return information on the jobs in the system. Terse returns
information that is readily available and the verbose returns more details.
SYSOUT requests return information on SYSOUT groups (terse request)
and include the information on the data sets in the group when a verbose
request is made. The data set list request returns all the JES data sets for
the job including input (instream) data sets and SYSOUT data sets that are
still active (have not been through output services). The data set list
function returns all instances of a data set so there may be duplicate
entries for one data set, each with different characteristics. Restriction on
the data set list function:

• the data returned may not reflect changes made by operator commands

(JES2)

• the data returned may not reflect options set in OUTPUT statements for
active data sets (JES3).

Extended Status (SSI 80) -
SSOB structure

• The IAZSSST (SSOB extension) is structured as follows:

Standard SSOB stuff (Length, eyecatcher, version)

Additional error reason codes (STATREAS, STATREA2)

Function requested (STATTYPE)

Input filter bit masks (STATSELx, STATSSLx)

Input JOB level filter fields

Output area pointers and counts

Input SYSOUT level filter fields

Additional filter values (including filter lists)

The SSOB extension is mapped by IAZSSST. The extension is made up of a
number of sections, each representing a different function. Filtering is
accomplished by setting a bit to activate the filter and then setting a
corresponding field to the value (or a pointer to a list of values) to filter on.
Lists are supported for job name, ID, class, phase, default destination and
SYSOUT class and destination. Many filters support generic characters (*
and ? or application specifiable). The results are returned in an output areas
are chained into the SSOB extension.

Extended Status (SSI 80) -
Output structure

:
STATJOBF
:

IAZSSST

STJQNEXT
STJQSE

STATJQ

STJQNEXT
STJQSE

STATJQ

STSEJNXT
STSEJOB

STATSE

STSEJNXT
STSEJOB

STATSE

STSEJNXT
STSEJOB

STATSE
STSEJNXT
STSEJOB

STATSE

The output areas returned by extended status are pointed to by STATJOBF in
the SSOB extension (IAZSSST). For terse requests, there are 2 types of
output areas. STATJQs represent a job (JQE). For every job which matched
the filter criteria, a STATJQ is built.

STATSE represent an output group (JOE). The STATSEs are chained out of
the STATJQ (so if you ask for SYSOUT information, you will always get
STATJQs too). The STATSEs point back to the STATJQs that own them.

Extended Status (SSI 80) -
Output structure

:
STATJOBF
:

IAZSSST

STJQNEXT
STJQSE
STJQVRBO
STJQSVRB

STATJQ

STSEJNXT
STSEJOB
STSEVRBO

STATSE

STVEJOB

STATVE

STVOJOB
STVOJNXT
STVOSOUT
STVOSNXT

STATVO

STVOJOB
STVOJNXT
STVOSOUT
STVOSNXT

STATVO

STVOJOB
STVOJNXT
STVOSOUT
STVOSNXT

STATVO

Verbose requests return additional data areas for the job and SYSOUT.
Verbose requests are limited to a single job at a time. For each STATJQ
returned, a STATVE contains information that is stored in the JCT. If SYSOUT
verbose data is requested, then each STATSE (JOE level data area) has 1 or
more STATVOs chained to it. Each STATVO represents a data set (PDDB)
that is associated with the JOE.

Verbose data can be requested as part of the original request or can be added
to the output of an existing request by passing a STATJQ or STATSE address
in STATTRSA on a subsequent request.

Extended Status (SSI 80) -
STATJQ

• Section in the STATJQ
– STATJQ - represents job
– STATJQHD - describes output areas
– STATJQTR - Job Queue Element terse section
– STATJ2TR - Job JES2 terse section
– STATJ3TR - Job JES3 terse section
– STATAFFS - Job member affinity section
– STATSCHD - Job scheduling section
– STATSCHS - Job SCHENV affinity section
– STATSCLF - Job SECLABEL affinity section

• Sections work like NJE header sections
– Each section has a length, ID, and modifier
– Use lengths to step through sections
– STATJQHD has overall length to end of area
– NEVER USE ASSEMBLER LENGTH EQUs
– STATJQHD is only exception
– Not all sections are always present

STATJQTR

STATJ2TR

STATAFFS

STATSCHD

STATSCHS

STATSCLF

STATJQ

STATJQHD

STATJ3TR

The STATJQ contains the terse job information and is composed of a number
of sections. Each section has identifying information and a section length (the
exception is the STATJQHD section). The high level DSECT (STATJQ) has
the pointers to the next STATJQ, a pointer to any STATSEs (SYSOUT terse
areas), a pointer to the STATVE (job verbose areas), and a pointer to any
STATVO sections (SYSOUT verbose areas).

The length of the STATJQ header is stored in STJQOHDR. Add this length
field to the STATJQ and you point to the STATJQHD. This is a header for the
remaining fields. STHDLEN (in STATJQHD) has the overall length of the
remaining areas. This length is used to determine when you have reached
the end of the variable sections. You add the STATJQHD length equate
(STHDSIZE) to the address of the STATJQHD to get the first variable section.

Each variable section starts with a 2 byte length (STxxLEN), a 1 byte ID fields
(STxxTYPE) and a 1 byte modifier (STxxMOD). When scanning for or
identifying a section, ensure you check both the type AND modifier to
determine what section this is. To get to the next section, add the STxxLEN
field to the current section pointer. Not all sections are present for all jobs. In
addition, maintenance or a new release can add new section types or

modifiers to existing types. Ensure your application can handle unknown
types.

Extended Status (SSI 80) -
STATVE

• Section in the STATVE

– STATVE - represents job’s JCT data

– STATJVHD – describes output areas

– STATJQVB – Job verbose section

– STATJQSE – Job security section

– STATJQAC – Job accounting section
STATJQVB

STATJQSE

STATJQAC

STATVE

STATJVHD

The STATVE contains job verbose information and is composed of a number
of sections. Each section has identifying information and a section length (the
exception is the STATJVHD section). The high level DSECT (STATVE) has a
pointer back to the owning STATJQ section.

The length of the STATVE header is stored in STVEOHDR. Add this length
field to the STATVE and you point to the STATJVHD. This is a header for the
remaining fields. STJVLEN (in STATJVHD) has the overall length of the
remaining areas. This length is used to determine when you have reached
the end of the variable sections. You add the STATJVHD length equate
(STJVSIZE) to the address of the STATJVHD to get the first variable section.
Each variable section starts with a 2 byte length (STxxLEN), a 1 byte ID fields
(STxxTYPE) and a 1 byte modifier (STxxMOD). When scanning for or

identifying a section, ensure you check both the type AND modifier to
determine what section this is. To get to the next section, add the STxxLEN
field to the current section pointer. Not all sections are present for all jobs. In
addition, maintenance or a new release can add new section types or
modifiers to existing types. Ensure your application can handle unknown
types.

Extended Status (SSI 80) -
STATSE

• Section in the STATSE

– STATSE - represents SYSOUT group

– STATSEHD - describes output areas

– STATSETR - SYSOUT element terse section

– STATSJ2T - SYSOUT JES2 terse section

– STATSJ3T - SYSOUT JES3 terse section

– STATSATR – Transaction information section

STATSETR

STATSJ2T

STATSJ3T

STATSE

STATSEHD

STATSATR

The STATSE contains SYSOUT information for a collection of data sets (JOE
in JES2, OSE variable section with up to 16 data sets in JES3) and is
composed of a number of sections. Each section has identifying information
and a section length (the exception is the STATSEHD section). The high level
DSECT (STATSE) has the pointers to the next STATSE, a pointer back to the
job level STATJQ, and pointers to any STATVO sections (SYSOUT verbose
areas).

The length of the STATSE header is stored in STSEOHDR. Add the length
field to the STATSE and you point to the STATSEHD. This is a header for the
remaining fields. STSHLEN (in STATSEHD) has the overall length of the
remaining areas. This length is used to determine when you have reached
the end of the variable sections. You add the STATSEHD length equate

(STSHSIZE) to the address of the STATSEHD to get the first variable section.
Each variable section starts with a 2 byte length (STxxLEN), a 1 byte ID fields
(STxxTYPE) and a 1 byte modifier (STxxMOD). When scanning for or
identifying a section, ensure you check both the type AND modifier to
determine what section this is. To get to the next section, add the STxxLEN
field to the current section pointer. Not all sections are present for all

SYSOUT areas. In addition, maintenance or a new release can add new
section types or modifiers to existing types. Ensure your application can
handle unknown types.

Extended Status (SSI 80) -
STATVO

• Section in the STATVO

– STATVO - represents SYSOUT data set (PDDB)

– STATSVHD - describes output areas

– STATSEVB - SYSOUT data set verbose section

– STATSEO2 - SYSOUT data set JES2 verbose section

– STATSEO3 - SYSOUT data set JES3 verbose section

– STATSESO - SYSOUT data set security section

– STATSEOT – Transaction (APPC) output section

STATSEVB

STATSEO2

STATSESO

STATVO

STATSVHD

STATSEOT

STATSEO3

The STATVO contains data set level SYSOUT information (JES2 PDDB) and
is composed of a number of sections. Each section has identifying
information and a section length (the exception is the STATSVHD section).
The high level DSECT (STATVO) has a pointer back to the job level STATJQ,
a pointer to the next STATVO off the STATJQ, a pointer back to the SYSOUT
level STATSE, and a pointer to the next STATVO off the STATSE.

The length of the STATVO header is stored in STVOOHDR. Add the length
field to the STATVO and you point to the STATSVHD. This is a header for the
remaining fields. STSVLEN (in STATSVHD) has the overall length of the
remaining areas. This length is used to determine when you have reached
the end of the variable sections. You add the STATSVHD length equate
(STSVSIZE) to the address of the STATSVHD to get the first variable section.

Each variable section starts with a 2 byte length (STxxLEN), a 1 byte ID fields
(STxxTYPE) and a 1 byte modifier (STxxMOD). When scanning for or
identifying a section, ensure you check both the type AND modifier to
determine what section this is. To get to the next section, add the STxxLEN
field to the current section pointer. Not all sections are present for all
SYSOUT areas. In addition, maintenance or a new release can add new

section types or modifiers to existing types. Ensure your application can
handle unknown types.

27

Environment for SSI 80 Call

JES Property (SSI 82)

• Obtain Various JES information (parameters and status)
– SSI function 82 (IAZSSJP mapping macro)
– Router type SSI with various subfunctions
– Subfunctions come in pairs (get information and return storage)
– Separate request block maps input and output
– Information form other JESPLEX available as applicable
– Support directed SSIs

Macro JESPLEX Function

IAZJPNJN Yes NJE node information

IAZJPSPL No JES SPOOL information

IAZJPITD Yes Initiator information (JES and WLM)

IAZJPLEX No JESPLEX member information

IAZJPCLS No Job class information

The JES property SSI is a router SSI that returns information on various JES
parameters. It is intended that this information be available in a JES
independent manner when possible. The SSOB extension for this SSI is
IAZSSJP. There are 5 types of information that can be obtained each having
a pair of function codes, one to get information and one to return the storage
from a prior request. There are different mapping macros for each type of
information that can be obtained. In the cases where it applies, it is possible
to obtain the information from the perspective of another member of the
JESPLEX.

JES Property (SSI 82) -
SSOB structure

• The IAZSSJP (SSOB extension) is structured as follows:

Standard SSOB stuff (Length, eyecatcher, version)

Function being requested

SSJPRETN – router and subfunction return code

Pointer to function dependent data area

The SSOB extension is mapped by IAZSSJP. The extension is essentially a
standard extension with a function request byte, data area pointer, and
extended return code. It is the function depended area that has most of the
interesting information

JES Property (SSI 82) – SPOOL Info Subfunction

• Returns information on SPOOL volumes

– Subfunction of JES property SSI 82 (IAZSSJP mapping
macro)

– Functions SSJPSPOD and SSJPSPRS (IAZJPSPL mapping
macro

– Directed SSI (Does not require job structure)

• Information includes

– Overall statistics (SPOOL space available and used)

– Partition information (JES3)

– Status and statistics of individual volumes/extents

The SPOOL subfunction of the JES property SSI returns information on
overall SPOOL space and individual volumes defined to JES. Information is
JESPLEX in nature since SPOOL space is defined to the JESPLEX.
Information is broken down at the JEXPLEX level, the SPOOL partition level
(JES3) and the individual extent/volume level. Even though JES2 does not
support SPOOL partitions, the output is presented as if all JES2 SPOOL
space was in a single partition. This simplifies processing the output of this
request.

JES Property (SSI 82) – Initiator Info Subfunction

• Returns initiator status information (JES and WLM)
– Subfunction of JES property SSI 82 (IAZSSJP mapping macro)
– Functions SSJPITOD and SSJPITRS (IAZJPITD mapping macro
– Directed SSI (Does not require job structure)
– Supports information from other JESPLEX members

• Information includes
– Initiator group settings (JES3, JES2 has 2 “groups” JES and

WLM)
– Parameter setting (selection parameters)
– Status including active job and active step/proc

• SECLABEL dominance checks supported for jobs on initiator (JES2
only)
– If SECLABEL dominance active
– Optional for authorized applications

The initiator subfunction of the JES property SSI returns information on
initiators defined and active in the JESPLEX. It returns the current settings for
the initiator (selection parameters), the status of the initiator, and if present,
the job currently active in the initiator. The SSI supports returning this
information for the local JESPLEX member or some other member of the
JESPLEX. If you are running with SECLABEL dominance active, then a
dominance check is done to determine if the requester can obtain information
about the job executing in the initiator. This check is optional for authorized
applications.

JES Property (SSI 82) – JESPLEX Info Subfunction

• Returns information on members of the JESPLEX
– Subfunction of JES property SSI 82 (IAZSSJP mapping

macro)

– Functions SSJPJXOD and SSJPJXRS (IAZJPLEX mapping
macro

– Directed SSI (Does not require job structure)

– Supports information from other JESPLEX members

• Information includes
– Parameter settings

– Current status

– General system information

The JESPLEX subfunction of the JES property SSI returns information on
member of the JESPLEX (JES2 MAS or JES3 complex). It returns the
parameter settings for the member, the current member status, and general
system information (product version, etc).

JES Property (SSI 82) – JOBCLASS Info
Subfunction

• Returns information on JES job classes
– Subfunction of JES property SSI 82 (IAZSSJP mapping

macro)

– Functions SSJPJCOD and SSJPJCRS (IAZJPNJN
mapping macro

– Directed SSI (Does not require job structure)

• Information includes
– Parameter settings (CIPARMs in JES2)

– Member level limits

– Current execution counts (by member)

• JOBCLASS info on SSI 71 deprecated
– IAZJBCLD interface macro

The job class subfunction of the JES property SSI returns information on job
classes defined to JES. It returns the parameter setting for the class
(Converter parms for JES2), the various limits for the class, and the current
execution counts by member.

Note that the JES2 only job class information subfunction of the JOB/JES2
information SSI (71) has been deprecated and is no longer being enhanced.
This subfunction uses the IAZJBCLD macro to request information similar to
what is returned using this function. Users of IAZJBCLD should switch to
using this SSI to obtain job class information,

JES Device (SSI 83)

• Obtain information on JES devices

– SSI function 83 (IAZSSJD mapping macro)

– Two functions, obtain data and return storage

– Information form other JESPLEX available as applicable

– Support directed SSIs

• SSI supports devices of all types used by JES2/JES3:

– Printers (local and remote)

– Punches (local and remote)

– Readers (local and remote)

– LOGON devices

– NETSRV devices

– Line devices

– OFFLOAD devices

– Job transmitters and receivers (NJE and offload)

– SYSOUT transmitters and receivers (NJE and offload)

– Remotes (RJE/RJP)

The JES device SSI returns information on the devices that JES uses. It
returns the settings for the devices along with the current device status (job
active on the device, etc). It is intended that this information be available in a
JES independent manner when possible. The SSOB extension for this SSI is
IAZSSJD. Filters control what devices information will be returned for. Output
areas for ALL devices are mapped in IASSJD.

it is possible to obtain the information from the perspective of another member
of the JESPLEX.

JES Device (SSI 83) -
SSOB structure

• The IAZSSJD (SSOB extension) is structured as follows:

Standard SSOB stuff (Length, eyecatcher, version)

Function indicator (get info or free storage)

Processing options

Output formatting options

Various filter bits
•Device status filters
•Device type and class filters
•Device settings filters

Filter value area

SSJDRETN – Function return code

Output queues by device class

Queue element counts

The SSOB extension is mapped by IAZSSJD. It is divided into al number of
section to help understand what options are available. The start is the
standard SSOB extension stuff with a function byte to indicate if this is a
request to get information or return storage. This is followed by input fields
used to control what gets returned and how to organize the output. The
processing options indicate if the output is to be in 64 bit storage and if there
is a limit to how much data is to be returned. There are filters that can select
device classes (eg. local, remote, NJE) and device types (eg printers,
punches, lines) to return. There are status filters for things like active vs
inactive, and other general filters like systems, device settings, etc. Many
filters have related value which are then listed.

The input area is followed by the output area. This includes the return code

for the request and the various device queue heads and counts.

JES Device (SSI 83) -
Output

• Output area memory managed by SSI

– 31 or 64 bit storage based on request
• If cannot get 64 bit when requested, falls back to 31 bit

• NOTE: SSI service does not support 64 bit

– Call in 31 bit with 31 bit SSOB and extension.

• All chain pointers are 8 byte

– There are 4 byte equates for 31 bit callers

• Output structure is similar to extended status

– Chained data structures with self identifying sections

– Should use pointers and run time lengths/offsets

– Sections can be added or lengthened by service

– Not all sections present all the time

You can request output to be returned in 31 or 64 bit storage. All output
pointers are 8 byte wide with 4 byte equates for 31 bit address users (8 byte
fields are always valid addresses). If the SSI cannot get needed 64 bit
memory, it will use 31 bit memory instead. Note that even though the output
can be returned in 64 bit storage, the SSI interface does not support 64 bit
callers and all input must be passed in 31 bit storage.

The output of this SSI is very similar to extended status. There are self
defining sections that are chained together with the various output data. The
same rules apply, always use run time lengths when available, be tolerant of
unknown sections or missing sections, and things can change with service.

JES Device (SSI 83) -
Output
• SSI supports two modes of data output (views):

– Device or “normal” view – data area chaining by the device type

– Line view – Devices are reported under line which access them

• Device data is pointed to by fields in IAZSSJD

– Local devices (printers, punches, readers)

– Remote workstations with subdevices (zero in line view)
• printers, punches, readers, consoles

– NJE Connections with subdevices (zero in line view)
• Job/SYSOUT transmitters/receivers

– Offload devices with subdevices
• Job/SYSOUT transmitters/receivers

– Interface devices (NETSERVs, LOGONs)

– Line devices (no subdevices except in line view)

Output areas are chained according to the class of the device. Most devices
fit into exactly one category of output. However, an application can request a
special line view of the data. Under a line view, NJE and RJE devices are
returned under the line that they are associated with instead of being returned
under the remote and NJE connection sections. This allows an application
that is building a display based on lines (BSC line in JES3 and all line types in
JES2) to have an appropriate high level structure (a line) with the appropriate
devices chained under them.

39

TAMDS77

Spool Status – SSI82

•SSJPFREQ = SSJPSPOD

•Search SSPGENI chain and calculate spool usage

Main Processor Status – SSI 82

•SSJPFREQ = SSJPJXOD

•Search JPXGENI chains for processor status

The New Technique

40

TAMDS77

Initiator Status – SSI 82

•SSJPFREQ = SSJPITOD

•Search ITIGDIGI chain and parse needed info

Queue Status – SSI 80

•STATTYPE = STATTERS

•Search STATJQTR chain and count based on STTRPHAZ

and STTRHOLD flags

The New Technique

41

History – Think “Early ‘70s”

•MUSAS (Stanford Wylbur) implemented with OS/VS2 SVS

with HASP4

– Approx. 1000+ users – students, faculty, staff, universities

•Moved to OS/VS2 MVS with JES3

•Use TSO facilities – slow, single-threaded

•1st attempted fix: Create unique interface block to support

multiple STATUS and OUTPUT threads – still too slow

 Our Lone FCT

42

More History –

•2nd attempted fix: Write SSISERV interface to JES3 for

FETCH and LOCATE
• IATUMIJ (FCT)

• IATUMLC (LOCATE)

• IATUMPS (FETCH, RELEASE, CANCEL, PURGE, ALTER)

• IATUMQU (SHOW JOBS/PRINT)

Code ran for 35+ year!

 Our Lone FCT

43

Wylbur LOCATE

•User issues a Wylbur “locate” job status request (name,

number, general, pattern)

•JES3 queries JQE/JCT/MPC for each job and tables back to

Wylbur

•Wylbur deblocks the returned output, evaluates job status

and attributes, and builds response for user

 Out with the Old… FCT

44

JOB 33783 TESTGRP AWAITING EXECUTION PRTY=5 SHIFT=1 GROUP IS OFF

JOB 33784 TESTCLAS AWAITING EXECUTION PRTY=5 SHIFT=1 CLASS IS OFF

JOB 33785 TESTVUN IN VOLUME UNAVAILABLE QUEUE

JOB 33786 TESTVUN AWAITING EXECUTION PRTY=5 SHIFT=1 DUPLICATE JOBNAME
RUNNING

JOB 33787 TESTMNT WAITING FOR VOLUME MOUNT PRTY=5 SHIFT=1

JOB 33788 TESTALLO WAITING FOR ALLOCATION PRTY=5 SHIFT=1

JOB 33789 TESTHOLD AWAITING EXECUTION PRTY=5 SHIFT=1 IN OPERATOR HOLD

JOB 33790 TESTWTR AWAITING PRINT CL=A F=1100 D=XEROX L=37

JOB 33791 TESTHOUT AWAITING PRINT HOLDOUT CL=A F=1100 D=XEROX L=39

JOB 33792 TESTOUTH AWAITING PRINT CL=A F=1100 D=XEROX L=37

JOB 33793 TESTCC4 AWAITING PRINT HOLDOUT CL=A F=1100 D=XEROX L=158

 AWAITING PRINT HOLDOUT CL=G F=1100 D=XEROX L=258

JOB 33794 TESTABS AWAITING PRINT HOLDOUT CL=A F=1100 D=XEROX L=75

JOB 33795 TESTABU AWAITING PRINT HOLDOUT CL=A F=1100 D=XEROX L=160

 AWAITING PRINT HOLDOUT CL=G F=1100 D=XEROX L=263

JOB 33796 TESTJCLE AWAITING PRINT HOLDOUT CL=A F=1100 D=XEROX L=28

JOB 33797 TESTEXEC EXECUTING STEP G ON T PRTY=5 SHIFT=1

 Old Job Status - LOCATE

45

• TERSE call only provides some fields we need

• Some fields are blank

• If a job is ineligible to run, get code NO INFORMATION

• MAXCC set with Cond Code, Abend code, but not on JCL

errors (UPDATE: bug in my code…)

• TERSE JOB returns all jobs, including those waiting print

• TERSE OUTPUT returns *only* jobs awaiting print

Initial Findings

46

JOB01888 TESTJCLE Awaiting Output WTR JCL ERR

JOB01891 TESTEXEC Execting on D

JOB01875 TESTGRP No Subchain

JOB01876 TESTCLAS No Subchain

JOB01877 TESTVUN Unavailable Volumes

JOB01878 TESTVUN No Subchain Duplicate Jobname

JOB01879 TESTMNT Awaiting Mount

JOB01880 TESTALLO Awaiting Allocation

JOB01881 TESTHOLD No Subchain In Operator Hold

JOB01882 TESTWTR Awaiting Output WTR CC 0000

JOB01883 TESTHOUT Awaiting Output WTR CC 0000

JOB01884 TESTOUTH Awaiting Output WTR CC 0000 In Operator Hold

JOB01885 TESTCC4 Awaiting Output WTR CC 0004

JOB01886 TESTABS Awaiting Output WTR AB S806

JOB01887 TESTABU Awaiting Output WTR AB U1234

New Wylbur LOCATE

47

• This looks promising!

• What we were able to work with is powerful and versatile

• Example program in the SSI manual is a good starting point
– Might clean up the CALL section….

• STATPERF (IAZSSST) isn’t set for JES3!
– Can’t measure the cost of running the SSI

• Job Owner vs Job Submitter?

• Overall, TERSE call is good enough for wildcard Wylbur
LOCATE, but VERBOSE is needed for more specific

What We Learned

48

• Look forward to full filtering support in all SSIs

• Continue with JES mod elimination and MUSAS

modification

Where Do We Go From Here?

