

JES2 Debugging

Adam Nadel
anadel@us.ibm.com

IBM - Poughkeepsie, NY

Thursday, August 7, 2014
Session Number 16167

 2

Session 161672

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.
• IBM®
• MVS™
• Redbooks®
• RETAIN®
• z/OS®
• zSeries®

The following are trademarks or registered trademarks of other companies.
• Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
• Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
• UNIX is a registered trademark of The Open Group in the United States and other countries.
• SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.
• All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM
Business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to
non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Session 16167

$HASP088 JES2 ABEND ANALYSIS
$HASP088 --

$HASP088 FMID = HJE7780 LOAD MODULE = HASJES20
$HASP088 SUBSYS = JES2 z/OS1.13
$HASP088 DATE = 2013.343 TIME = 10.23.45
$HASP088 DESC = DISASTROUS ERROR AT LABEL KBLOBERR
$HASP088 MODULE MODULE OFFSET SERVICE ROUTINE EXIT

$HASP088 NAME BASE + OF CALL LEVEL CALLED ##
$HASP088 -------- -------- ------- ------- ---------- ----
$HASP088 HASPRAS 0003B480 + 0005E4 OA41318 *ERROR $DIS
$HASP088 HASPCKPT 1D8C44D0 + 0058F8 OA36155 $DISTERR
$HASP088 HASPCKPT 1D8C44D0 + 004BAE OA36155 KBLEMPTY
$HASP088 HASPCKPT 1D8C44D0 + 0005CE OA36155 KBLOB

$HASP088 PCE = CKPT (1DA4E3B8)
$HASP088 R0 = E0000264 1DA4AFD4 00000000 1DBF18C8
$HASP088 R2 = 00000000 00000000 00000000 00000000
$HASP088 R4 = 00000000 1D8C9DC8 00000000 00000000
$HASP088 R6 = 00000F00 003A1700 00000000 1DA4AE70

$HASP088 R8 = 00000F00 00000000 00000000 00000000
$HASP088 R10 = 00000000 00000000 00000000 00007000
$HASP088 R12 = 00000000 0003B660 00000000 1DA4E3B8
$HASP088 R14 = 00000000 8003B9C0 00000000 0003C390
$HASP088 --

Get To Know Your Error With $HASP088s

3

Exit Code in Control

Save area calling
sequence

PCE = maintask

DTE = subtask

Registers contents

Most JES2 abends will be accompanied by diagnostic $HASP088 messages. These will be

preceded by the JES2 message indicating whether the dump is catastrophic ($HASP095) or

disastrous ($HASP096) and followed by message indicating what level of recovery has occurred

otherwise termination options.

Depending on the type of error produced, the $HASP088 messages may also contain other useful

information such as the jobname (and jobid) being processed at time of error, the

home/primary/secondary ASID at time of error (not guaranteed that JES2 is the primary ASID) etc.

The NETRV address space (JES2Snnn) has an equivalent version via $HASP5088

Session 16167

$HASP096 DISASTROUS ERROR AT SYMBOL TIMERROR IN CSECT HASPJQS

• Spool control block related

• $IOT, $JCT, $HDB etc

• Real I/O error reading from spool

• IOS error details accompanying $HASP064

• Logical error associated with a spool control block

• Control block does not match expectations

• Minimal Impact

Disastrous vs Catastrophic

4

label in JES2 code

Which is worse – Disastrous or Catastrophic errors? Since most forms of disastrous errors are

logical errors in which part of control block does not match expectations, they are typically far less

severe than catastrophic in terms of impact. In logical error cases, there is typically no loss of

JES2 function and the impact of error confined to the JOB in-hand. Real I/O errors are far less

common, but under those circumstances the impact would not necessarily be confined to a single

JOB etc.

While less severe in terms of impact, disastrous errors can often be more difficult to debug –

because it often entails reviewing the entire lifespan of the JOB(s) affected to understand what may

have caused the spooled block to not match expectations. Did something prevent an IO from

completing successfully such as an error/abend within the job itself? Or was there an disruption to

JES2 overall (not a clean shutdown etc)?

 5

Session 16167

$HASP096 DISASTROUS ERROR AT SYMBOL CBIMPL4 IN CSECT HASPNUC,
MQTR=040000A1B90C,UNIT=A056,VOLSER=JES11

$HASP088 JES2 ABEND ANALYSIS
$HASP088 --

$HASP088 FMID = HJE7790 LOAD MODULE = HASJES20
$HASP088 SUBSYS = JES2 z/OS 2.1

$HASP088 DATE = 2014.005 TIME = 09.20.19
$HASP088 DESC = DISASTROUS ERROR AT LABEL CBIMPL4

$HASP088 MODULE MODULE OFFSET SERVICE ROUTINE EXIT
$HASP088 NAME BASE + OF CALL LEVEL CALLED ##

$HASP088 -------- -------- ------- ------- ---------- ----
$HASP088 HASPRAS 00022E30 + 0005E4 OA37847 *ERROR $DIS

$HASP088 HASPNUC 00007000 + 0095A4 OA37654 $DISTERR
$HASP088 HASPTRAK 1A630EE0 + 000DC6 OA37847 $CBIOM

$HASP088 HASPTRAK 1A630EE0 + 0002DA OA37847 PURSAF
$HASP088 HASPTRAK 1A630EE0 + 003432 OA37847 $PURGER
$HASP088 HASPTRAK 1A630EE0 + 002C54 OA37847 VIOTPRG

$HASP088 PCE = PURGE (1A84F0A0) JOB12345 ADAM1
...

What Is a CBIMPL4?

5

CBIMPL4 is the most common of JES2 errors. It is a logical error (disastrous) in which JES2 is

attempting to access a control block for job A (in above case JOB12345 – ADAM1) and instead reads

in a block for job B. The buffer identifying job B can be found within the respective PCE save area

chain (which we will cover shortly) or in the respective SYMREC indicating SPOOL

TRACKGROUP RECOVERY.

If this is a single/isolated instance, then there is no cause for high alarm and we are looking for some

kind of disruption within the lifespan of the job(s) in question that could have prevented an IO from

completing. If this is a one of MANY errors of the same/similar nature, then would be greater

concern as it could be a reflection of adverse impact to spool and/or checkpoint – such as accidentally

starting JES2 with wrong spool or checkpoint volume(s) etc.

 6

Session 16167

• Recovery is confined to job identified
• Job is purged
• Track recovered by spool trackgroup reclamation (SNIFFER)

• SYMREC produced
• Can be controlled/expedited via

SPOOLDEF,GCRATE=NORMAL/FAST

COMPONENT ID: 5752SC1BH
COMPONENT RELEASE LEVEL: Z113

SERVICE RELEASE LEVEL: OA38671
DESCRIPTION OF FUNCTION: SPOOL TRACKGROUP RECOVERY
PROBLEM ID: SYMTABB SUBSYSTEM ID: JES2Z113
...
...
FREE FORMAT COMPONENT INFORMATION:

KEY = 010D LENGTH = 000003 (0003)
+000 0304A4
KEY = 010E LENGTH = 000008 (0008)
+000 00000000 00000000
KEY = 010F LENGTH = 000008 (0008)

+000 80004F2A B6B46F7F
KEY = 0110 LENGTH = 000256 (0100)
+000 C8C4C240

What Is a CBIMPL4?

6

SYMREC type

Control block contents
(HDB, IOT, etc)

MTTR/MQTR

The impact is that the affected job will be purged and the trackgroup in question (that contained

residual data for a different job) will be temporarily be marked as not owned. Thereafter, the JES2

trackgroup reclamation PCE (aka SNIFFER) will run and clean up the track group, restoring it to the

track group map for future reuse. SNIFFER defaults to NORMAL setting – it will cycle through all

tracks within ~7 days. It can be increased to $TSPOOLDEF,GCRATE=FAST which causes

SNIFFER to interrogate all tracks immediately (and after that it automatically returns to NORMAL

rate).

 7

Session 16167

$HASP095 JES2 CATASTROPHIC ABEND. CODE = S0C4 (RC = 00000004)

• CODE=ERROR

• JES2 detected error condition

• $Knn – CKPT read/write errors – module HASPCKPT

• $Qnn – problem with job (JQE) – module HASPJQS

• $Jxx – problem with output (JOE) – module HASPJOS

• Error regs found in $ERROR save area

• JES2 internal Ctraces useful in diagnosis

• CODE=ABEND

• MVS detected error (0C4, 878, B00, etc)

• JES2 maintask ESTAE gets control for recovery

• RTM2WA generated

• System trace table

Disastrous vs Catastrophic

7

JES2 error condition $nnn

-or- MVS ABEND

Catastrophic errors are unexpected, logically detected errors. They encompass both JES2 detected

errors as well as general MVS abends encountered under JES2. For MVS abends, it is appropriate to

approach their diagnosis as you would any other MVS type abend – using RTM2WA, systrace,

SUMM FORMAT, etc.

For JES2 detected errors, there are diagnostics available within JES2 such as $ERROR save area

calling sequence and internal Ctraces.

 8

Session 16167

• $HASP098 Enter Termination Option – worst

• Required PCE failed and could not be recovered

• $HASP073 Recovery Successful – best

• Normal processing resumes

• May be confined to job in hand

• $HASP068 Partial Recovery Successful – good enough?

• PCE has terminated and will not run again

• Processing continues without that PCE

• How many PCEs remain of that type

• Is function impacted

• How can I recover PCE

PCE Recovery (or not)

8

Depending on the severity of the error, there are varying degrees of JES2 recovery. Partial recovery is

intended to keep JES2 operating and stable and allow time to schedule hostart/IPL at your nearest

convenience to recover lost PCE. The type of impact may vary based on the specific type of PCE

affected. A device PCE (PRT1) means the device will not function (may be critical). Other PCEs

such as Sysout API (SAPI) interface may have far smaller impact depending on the number of PCEs

defined. When JES2 terminates a PCE, it produces a message indicating the PCE has terminated and

also how many of that type remain. An ended PCE will prevent a clean shutdown of JES2 and can be

identified via $DPCE(*),ENDED.

 9

Session 16167

JES2 Subtasks

9

Alloc WTO SMF Image VTAM CKVR Subs X 10

Offload

CNVT1

Spool CFEOM

JES2
maintask

Converter Subtask TCBs

CNVT2

MIGR ASST

PCE CNVTNUM=2

= *not* required

JES2 maintask does not like to MVS wait. JES2 creates separate subtask TCB’s to invoke services

that may result in an MVS wait. There are 14 different JES2 subtask types of which one is for

conversion.

The number of converter subtasks corresponds to PCEDEF CVNTNUM parameter. The default is 2.

The MVS converter is linked to in order to converter the JCL images.

The MVS converter also performs the PROC expansions.

Brief Summary of Subtask functions:

ALLOC- used to perform dynamic allocations

WTO – issues MVS WTO to put out JES2 messages

SMF – writes SMF records to SMF dataset

IMAGE – allocates and opens SYS1.IMAGELIB (only done during JES2 startup)

VTAM – used to open or close VTAM ACB

CKVR – checkpoint versions and WLM sampling

SUBS – general purpose subtasks most often used for performing SAF calls (there are 10 of these

TCB’s)

SPOOL – handles spool volume allocations etc

EOM – z4 and up. Processes $SJB placed on the EOM queue for end of memory SSI processing

CF – used when CKPT is on coupling facility to interface with the CF to read/write CKPT data

OFFLOAD – used to perform I/O etc to offload datasets

MIGR and ASST– involved in spool migration processing

 10

Session 16167

• $HASP078 Subtask failed

• Indicates the failing JES2 subtask

• Always MVS abend code

• $HASP095 error $Z03 issued if a required subtask cannot be
recovered

• Potential function loss when subtask terminates

JES2 Subtask Recovery (or not)

10

Impact may vary depending on the type of subtask that was impacted. Barring the *not* required

subtasks, the overall health JES2 is typically going to be in trouble if it loses a subtask. For instance,

losing a CNVT subtask may not be critical if you have 10 defined. However, the loss of the CKPT

version subtask may prevent the updating of checkpoint versions (copies) – which could affect

respective exploiters like SDSF. The loss of the VTAM subtask would impact SNA communications

etc.

 11

Session 16167

30 Second PCE Review

11

PSO3

PSO2

JES2 Maintask TCB

PCE flow

CNVT1 TIMER CMD EXEC

HASPNUC

Dispatcher

CKPT

CNVT1

C’mon
I/O

Tic tock

$W
AIT

$POST for I/O

PSO1

PSO

Resource

Timeused
points

The Processor Control Element (PCE) represents an instance of a “process” running under the control

of JES2 main task – each PCE is a dispatchable unit of work controlled by the JES2 dispatcher.

“Process” is synonymous for JES2 service – such as EXEC, CMD, SAPI, PSO, CNVT, etc. There are

one or more PCEs for each process, some dictated by PCEDEF statement definitions.

Above illustrates basic flow of PCE’s being dispatched by JES2 maintask: When a PCE has work to

do, it is moved into the ready queue (awaiting their turn to be dispatched). When the PCE’s runs

through the dispatcher its entry and exit into and out of it is framed with TIMEUSED macros. This

allows JES2 to capture CPU time information that shows up in internal traces and PERFDATA.

 12

Session 16167

JES2 Component Panels

12

Issued from IPCS primary menu

 IPCS JES2 Format Trace Debug
 --- JES2 Component Data Analysis
 Option ===> 2;6;S JES2;
 Enter JES2 name ===> JES2

 Select desired option for JES2 dump: These panels are for
 1 JES2 base display JES2 FMID: HJE7780
 2 JES2 job control blocks Service level: 0
 3 JES2 job output control blocks
 4 JES2 devices
 5 JES2 processors
 6 JES2 subtasks
 7 JES2 control blocks
 8 JES2 NJE/RJE control blocks
 9 JES2 MAS member data
 10 JES2 checkpoint control blocks
 11 JES2 BERT control blocks
 12 JES2 monitor data

JES2 subsystem name

The following slides assume that the JES2 IPCS Support modules (SHASPARM, SHASMIG,

SHASPNL0) have been loaded into the requisite concatenations on your system. For specific

information on JES2 IPCS Support modules, please refer to z/OS JES2 Diagnosis manual (chapter:

Using IPCS for Diagnosis).

From this panel, you have various formatting options based on what you are attempting to debug;

however, option “1 JES2 base display” is often the best place to begin diagnosis as it is surfaces an

abundance of pertinent information. Most of the options place you in another panel with prompting

fields for additional information. The panels do have help screens to assist in navigation and data

entry.

The subsystem name defaults to JES2, but is an overtype field for alternative JES2 subsystem names

(JESA etc)

Also on this panel (but not illustrated above), is option “101 – Select JES2 control blocks for non-

JES2 address space”. These panels may be useful for JES2-related abends that occur within a user

address space – allowing formatting of JES2 control blocks that reside in common storage

 13

Session 16167

JES2 Base Display

13

*** JES2 Base Display ***

Subsystem "JES2" is in address space ASID(X'002D')
Dump for JES2 release="z/OS 2.1", Product level=43, Service level=0
(pointed to by SSCTSUSE); CVTPRODI=HBB7790
Maximum extended region size for "JES2" is 1,395M (per LDAELIM)
*** WARNING: ASCBDSP1=80

System set non-dispatchable and this ASCB is not exempt (per
ASCBSSND bit)
*** WARNING: DEBUG BERT=NO specified (per $DBGBERT bit off in
$DEBGOPS in $HCT)
*** WARNING: $EVENT(s) exist (PCBEVNTF¬=0 in $PERFCB)

*** NOTICE: $QSUSE is NOT in effect (per $QSONDA bit in $STATUS in
$HCT)
*** NOTICE: SPOOLDEF FENCE=ACTIVE=YES in effect (per CCTSMVFN
bit in CCTSTUS in $HCCT)

This is the top portion of the Base Display. It includes the JES2 product information along with

WARNING, NOTICE, and ERROR alert messages. You will always find alert messages in a dump,

so their presence alone is not indicative of any particular problem. However, WARNING and

NOTICE messages draw attention to key pieces of information that will assist the debugger in

understanding the state of JES2 at time of dump. Some examples are:

-JES2 is abending/abended

-JES2 is quiesced via $P or $PXEQ

-$ZAPJOB has been issued

-$EVENTS exist (produced by JES2MON)

-JES2 ASCB is not dispatchable

etc

ERROR alerts often indicate that certain areas are not able to be formatted. These may be rather

innocuous and simply reflect that some storage area was not dumped, or can shed insight into control

block overlay scenarios etc.

 14

Session 16167

JES2 Base Display

14

$PCE: 1AEBA6E0
+0000 PCEEYE... PCE
+0000 PSVID.... PCE PSVPREV.. 00000000 PSVNEXT.. 2B1C8A28
+00EC RSV...... 00000000

***** INTERNAL READER *****
+0000 RDWTEMP.. C2404040 40404040
+0460 40404040 40404040 40404040 40404040

$PSV: 2B1C8A28
+0000 PSVID.... SAVE PSVPREV.. 1AEBA6E0 PSVNEXT.. 1AEBA6E0
+000C PSVR14... 800EE48A PSVR15... 000F99EE PSVR0.... 1AEBAB50
+005A RSV...... 00000000 0000
+0060 PSVSTCK.. CD05E208 AF3D690C
04/18/2014 09:33:32.008406
Routine name: RERROR

000F9A06: HASPRDR (X'000ED1C8') + X'0000C83E'
Address routine called from (assuming normal linkage):

000EE48A: HASPRDR (X'000ED1C8') + X'000012C2'
1 $PSV(s) processed

$DCT: 1A1BF570
+0000 DCTID.... DCT DCTPCE... 1AEBA6E0 DCTSTAT.. 90
+0028 DCTDEVN.. INTRDR DCTUCB... 00000000 DCTTOKA.. 1A1CF5F0
+010E RIDFLAG3. 00 RIDRSV3.. 00

** $JQE Address=1BCC49B0, Offset=0000E998, Index=000256
** $JQX Address=1CFD1C40, Offset=00008C28
** Address of first $BERT for this $JQA is 20ECEB98
** BERT lock is not held
** NOTE: $JQA incomplete, all fields past label JQABERT are zero
$JQA: (Composite of $JQE and $JQX)

JQE......
+0000 JQEPRIO.. FF JQETYPE.. 20 JQEJOBNO. 1ED2

Current PCE

$Save Area /
Calling Sequence

$DCT from
PCEDCT field

$JQE from
PCEJQE field

This section is towards the bottom of the Base Display panels. I have omitted the middle section

which also displays the $HCT and $HCCT control blocks. All of this information can also be

formatted via other JES2 panels (such as PCE panels, job display panels, subtask panels, etc).

The PCE Save Area ($PSV) can be thought of as the JES2 version of a linkage stack – one entry

produced per PCE to represent the state of processing as it issued a $SAVE (but not yet issued the

$RETURN). Once the $RETURN is issued, the PSV is dechained and available for reuse. It

provides a lot of insight into the path leading up to the error (including register contents) and will

match up to the calling sequence identified in the $HASP088 messages.

It will also format and display other control blocks that are active/in-hand at time of error such as

device blocks (device control table $DCT), job blocks (job queue element $JQE, output blocks (job

output element $JOE), etc.

 15

Session 16167

Useful Commands & Module Background

15

Command ===> IP CBF 000091A0 STR($MODLOC)
 ******************************* TOP OF DATA *******************************
 000091A0: HASPNUC (X'00007000') + X'000021A0' OA36155/UA68055

• HASCnnnn � JES2 module in Common storage

• Maintenance hitting module typically requires WARMstart (IPL)

• HASPnnnn � JES2 module in Private storage

• Maintenance hitting module typically requires HOTstart

Command ===> IP CBF 072E3050 STR($PCE)
******************************* TOP OF DATA *******************************
 $PCE: 072E3050
 +0000 PCEEYE... PCE
 +0000 PSVID.... PCE PSVPREV.. 00000000 PSVNEXT.. 072E3050
 +0018 PSVR1.... 069CC230 PSVR2.... 069CC138 PSVR3.... 00003000

Browsing raw storage, JES2 module eyecatcher information is at the beginning of each module;

however, the maintenance level information is at the end of the module. For this reason, is often very

helpful to use the $MODLOC formatter to verify if/where an address is in JES2 code. The formatters

will also work within the user address space for common modules.

JES2 common modules HASCnnnn are primarily responsible for:

-SSI calls

-Extended status

-Sysout allocation / open / close / PUT / GET / POINT

-SAPI / PSO

The mainline recovery for common modules is HASCLINK

The second example shows formatting an address as a $PCE. JES2 has formatters for many control

blocks ($JQE, $DTE, $JOE, etc), so it may be worthwhile to attempt a CBF against that respective

block to assist in formatting (rather than dealing with raw storage).

 16

Session 16167

JES2 Ctraces

16

 --------------------------- CTRACE DISPLAY PARAMETERS ---------------------------
COMMAND ===> 2;7;1;d

 System ===> (System name or blank)
 Component ===> SYSJES2 (Component name (required))

 Subnames ===> JOE

Issued from IPCS primary menu

• Component is SYSnnn

• nnn = JES2 subsystem name (JES2, JESA, etc)

• Subnames

• DISP

• JQE

• JOE

• SAPI **new** (delivered via APAR OA43882)

The JES2 Ctraces are component traces that are always running internally. They are in-storage only

and cannot be put out to external writer etc. The installation does not control the size of the trace, and

they are rolling traces. These traces can be displayed via the IPCS component trace facility as

displayed above. Alternatively, you can use the “TRACE” drop down menu from the JES2 primary

panel (shown on slide 11).

There are four types of traces/subames: DISP, JOE, JQE, SAPI

 17

Session 16167

JES2 DISP Ctrace

17

SYSA DISP 00000421 21:59:16.610981 Dispatch PCE

PCE Address->1AE8B638 Exit->00 JOB#/offset->00000000 00000000
Module/seq#->HASPPSO 01960000 Wait time->00000000 0027E5AD
$POST type-->0000

PCE description:PROCESS SYSOUT PROCESSOR
$WAIT Events: POST

$WAIT Resource: PSO
$WAIT Options:

$POST Reason: Resource post

SYSA DISP 00000420 21:59:16.611114 PCE $WAIT

PCE Address->1AE8B638 Exit->00 JOB#/offset->00001ED1 0000EC54
Module/seq#->HASPNUC 17000000 Run time->00000000 00000085
CPU time---->00000000 00000085

PCE description:PROCESS SYSOUT PROCESSOR
$WAIT Events: IO

$WAIT Options:

Dispatch point Time length PCE $WAITed till Dispatch

$POST information

$WAIT information

$WAIT point JOB# that PCE is working on

The JES2 dispatcher rolling ctrace shows information on each PCE as it respectively enters/exits the

JES2 dispatcher. It also will show when JES2 encounters an MVS WAIT.

Things to consider while reviewing DISP ctrace:

-Are there abnormally large time gaps between entries or large MVS waits?

-Are one (or more) specific PCE unexpectedly monopolizing the dispatching?

-Any PCEs appear to be looping?

-Any unusual $WAIT conditions?

-Is an exit in control (related to any of the above)?

 18

Session 16167

JES2 JQE Ctrace

18

SYSA JQE 00000203 21:59:16.610444 $QMOD

PCE Address->1AE88148 Exit->00 JOB#/offset->00001ED1 0000EC54
Original Queue->02 New Queue->01 Busy->00 Lock->01
 Artificial JQE

 PCE description:OUTPUT PROCESSOR

SYSA JQE 0000020C 21:59:16.610458 $DOGJQE

PCE Address->1AE88148 Exit->00 JOB#/offset->00001ED1 0000EC54

Original Queue->01 New Queue->01 Busy->00 Lock->01

 PCE description:OUTPUT PROCESSOR

SYSA JQE 00000207 21:59:16.610478 $FREJLOK

PCE Address->1AE88148 Exit->00 JOB#/offset->00001ED1 0000EC54
Original Queue->01 New Queue->01 Busy->00 Lock->00
 Artificial JQE

 PCE description:OUTPUT PROCESSOR

Macro traced

$JQETYPE changed

$JQEJLOK – job lock

$JQEBUSY indicator

The JQE rolling ctrace The above shows information about job state a job state changes – particularly

the (un)busying of the job block, (un)locking of the job, and transitioning of job from queue-to-queue.

 The above case illustrates a job moving from the output queue (being serviced by a OUTPUT PCE),

to the hardcopy queue. As part of this process we can observe the joblock is obtained and then freed.

Things to consider while reviewing JQE ctrace:

-Are there any large gaps in processing?

-Are you looking for a specific job?

-Are you looking to see that a particular queue/phase is being serviced (backlog?)?

--Is an exit in control (related to any of the above)?

 19

Session 16167

JES2 JOE Ctrace

19

SYSA JOE 00000319 21:59:16.611063 $#BUSY

 PCE Address->1AE8B638 Exit->00 Job number->00001ED1 JOE offset->00003FC8

 Original Class->D3 New Class->D3 Busy->01 Type->80

PCE description:PROCESS SYSOUT PROCESSOR

SYSA JOE 00000312 21:59:16.826295 $#REM

 PCE Address->1AE86638 Exit->00 Job number->00000000 JOE offset->00003FC8
 Original Class->D3 New Class->D3 Busy->00 Type->C0

PCE description:PROCESS SYSOUT PROCESSOR

SYSA JOE 0000031A 21:59:18.625218 $#GET

 PCE Address->2B1D9180 Exit->00 Job number->00001ED1 JOE offset->00004510
 Original Class->D8 New Class->D8 Busy->01 Type->80

PCE description:NJE SYSOUT TRANSMITTER

Macro traced

$JOEBUSY indicator

Offset into JOT

The JOE rolling ctrace The above shows information about job output state a job state changes –

particularly the (un)busying of the output block, (un)locking of the output, and transitioning of output

from queue-to-queue. The above case illustrates two pieces of output within the same job being

processed. This is evident by the two different offsets into the JOT along with each JOE being within

different classes. The first piece of output is processed by PSO and purged (noted by JOETYPE=C0).

 The second piece of output is then selected by a NJE sysout transmitter Lnn.STn.

Things to consider while reviewing JOE ctrace:

-Are there any large gaps in processing?

-Are you looking for a specific output?

-Are you looking to see that a particular queue/phase is being serviced (backlog?)?

--Is an exit in control (related to any of the above)?

 20

Session 16167

JES2 SAPI Ctrace

20

 --
SY1 SAPI 05000033 20:54:22.058909 Bulk Modify

 SAPI name---> ADAM1. PCE Address->0BD82200
 Job number-->00000039 JOE offset->00000410 SAPID->00001000

 SSS2SELx 1->E4 2->00 3->00 4->00 5->00 6->00
 CPU Time---->00000000 0000009D Run Time----->00000000 000000A1

 $QSUSE Time->00000000 0000009F Elapsed Time->00000000 0003E516
 $#GET Time-->00000000 0000001C $RQUE Time--->00000000 00000013

 I/O Count--->00000000
 A JOE was returned
 SAPID assigned a JOE
 --
SY1 SAPI 05000031 16:15:23.924338 Put/Get call

 SAPI name---> ARCHIVE2 PCE Address->0BD72B28
 Job number-->00000140 JOE offset->00000478 SAPID->00001000

 SSS2SELx 1->08 2->00 3->00 4->00 5->00 6->00

 CPU Time---->00000000 0000009E Run Time----->00000000 000000E6
 $QSUSE Time->00000000 000000EB Elapsed Time->00000000 00000207
 $#GET Time-->00000000 00000016 $RQUE Time--->00000000 00000049

 I/O Count--->00000001
 A JOE was returned

 SAPID assigned a JOE

Request type

Application name Selection flags/criteria

Amount of CPU

Total time

Time obtaining the JOE

The SAPI rolling ctrace captures the last 2000 SAPI requests at time of dump. It identifies the

requestor, the type of request and breakdown of the overhead of the request. Much of the same

information is captured in the JES2 id traces (ID=28,29 for SAPI, ID=20 for $#GET) – depending on

the duration of the SAPI problem and timeliness of dump, the internal Ctrace may be sufficient. JES2

id traces are more appropriate for capturing data across a wider timeframe.

Things to consider while reviewing SAPI ctrace:

-Are there any unexpected SAPI applications involved in the processing of job output?

-Any SAPI application appear to be looping/processing same output?

-Any requests taking long in duration (wall clock or CPU time)?

-What is the specific request type and criteria (related to any of the above)?

 21

Session 16167

Merging Ctraces

21

 ------------------------------ MERGE SPECIFICATION ------------------------------
Command ===> 2;7;5;c

 Enter/verify trace specifications for this MERGE operation.
 In the left column, type C/G/R: (C = CTRACE G = GTFTRACE R = reset)

C/G/R---Trace Invocation Parameters ---

 1. CTRACE COMP(SYSJES2) SUB((SAPI)) FULL DSNAME('ADAM.SYSA.DUMP1')

 2. CTRACE COMP(SYSJES2) SUB((JQE)) FULL DSNAME('ADAM.SYSA.DUMP1')

 3. CTRACE COMP(SYSJES2) SUB((DISP)) FULL DSNAME('ADAM.SYSB.DUMP2')

 4. CTRACE COMP(SYSJES2) SUB((JOE)) FULL DSNAME('ADAM.SYSB.DUMP2')

 ENTER = continue MERGE definition.
 END/PF3 = return to the MERGE GLOBAL PARAMETERS panel.
 S = start MERGE.

Issued from IPCS primary menu

Sometimes it may be beneficial to merge ctraces in order to gain a better understanding of the

processing flow. This can be achieved via the MERGE ctrace facility. Note that you can specify

multiple datasets which can be handy if processing for a job spanned different JES2 MAS members.

 22

Session 16167

• Most useful in diagnosing JES2 performance problems

• Undocumented command(s) that capture various JES2 performance
statistics

• Proper PERFDATA Collection

• Reset statistics via $TPERFDATA(*),RESET

• Wait interval that covers problem timeframe (10-15 minutes)

• Display all statistics via $DPERFDATA(*)

• Gather several samples

• Good vs Bad timeframe ?

PERFDATA

22

When diagnosing JES2 performance concerns, it is of paramount importance that PERFDATA is

collected correctly. PERFDATA statistics are always running/accumulating, so resetting the statistics

is always the first step to collecting an accurate sample. Without the reset, you may be investigating a

problem in which JES2 CPU utilization drastically increased over a 15 minute timeframe using

statistics covering an interval of 20+ days! In those cases, the data is considered oversaturated in that

there is no way to discern what actually happened in those specific 15 minutes. Typically Level 2

recommends gathering samples in 10-15 minute increments (and you can always gather

multiple/back-to-back samples).

It is also worth consideration to occasionally capture sample(s) when processing is good/normal.

These can become handy to compare and contrast if JES2 performance drastically changes for the

worse. A debugger can view the samples side by side to observe differences in PCE processing, job

throughput, checkpoint cycling, etc.

 23

Session 16167

PERFDATA

23

• $T PERFDATA(*),RESET – resets performance data

• $D PERFDATA(INITSTAT) – JES2 initialization stats

• $D PERFDATA(QSUSE) – PCE $QSUSE summary

• $D PERFDATA(PCESTAT) – detailed PCE stats

• $D PERFDATA(SAMPDATA) – WLM Sampling data

• $D PERFDATA(CPUSTAT) – PCE CPU usage

• $D PERFDATA(CKPTSTAT) – CKPT read/write stats

• $D PERFDATA(SUBTSTAT) – JES2 subtask

• $D PERFDATA(EVENT) – $EVENTS captured

• $D PERFDATA(WSSTAT) – work selection ($#GET & $#POST) stats

• $D PERFDATA(*) –all of the above

The $TPERFDATA(*),RESET is absolutely essential to ensuring a healthy sample is gathered.

Thereafter, the type of display requested may be dictated by the specific problem being investigated;

although Level 2 most commonly asks for all data $DPERFDATA(*). The WSSTAT option is a

newly added section delivered In APAR OA43882. Disclaimer – the output of these displays can be

rather abundant!

 24

Session 16167

$D PERFDATA(CKPTSTAT)

24

$HASP660 CKPT PERFORMANCE STATISTICS SYS1-INTERVAL=11:10:12.320961,

$HASP660 AVGHOLD=0.318337,AVGDORM=45.305289,TOT$CKPT=3284,

$HASP660 WRITE-4K=0,WRITE-CB=788,OPT$CKPT=2496,OPT4K=0,

$HASP660 IO=R1,COUNT=875,AVGTIME=0.010943,

$HASP660 IO=R2,COUNT=0,AVGTIME=0.000000,TOTAL4K=0,TOTALCB=118,

$HASP660 IO=PW,COUNT=876,AVGTIME=0.004066,TOTAL4K=39,TOTALCB=0,

$HASP660 IO=IW,COUNT=878,AVGTIME=0.003776,TOTAL4K=0,TOTALCB=670,

$HASP660 IO=FW,COUNT=876,AVGTIME=0.003888,TOTAL4K=0,TOTALCB=118

AVGHOLD & AVGDORM = average HOLD and DORMANCY values

TOT$CKPT = total number of $CKPTs

AVGWAIT = average I/O times to CKPT

The CKPT statistics section will illustrate whether your CKPT cycling is what you would expect

based on HOLD and DORMANCY settings as well as provide information about the relative health

of CKPT I/Os. On each member in the MAS you can compare AVGHOLD and AVGDORM versus

the HOLD and DORMANCY coded values to verify if JES2 is cycling the CKPT as expected. Large

differences in these values may suggest additional tuning is needed based on workload distribution

etc (eg should some members be favored more because it does most of the job submit? … or

archiving?)

Comparing TOT$CKPT on each member of the MAS is a quick way to assess which members have

the most checkpoint activity.

The AVGWAIT values associated with primary/intermediate/final write can be used to assess relative

health of the I/Os. These times can vary (particularly depending on checkpoint placement on DASD

vs coupling facility); however, the numbers should be consistent for I/O on the device.

 25

Session 16167

$D PERFDATA(CPUSTAT)

25

$HASP660 CPU PERFORMANCE STATISTICS SYS1 - INTERVAL=14:49.926816,

$HASP660 CPU=3.067221,

INTERVAL = length of time data has been accumulating

CPU = CPU time used by all of JES2 over that interval

$HASP660 PCENAME=SPI, CPU%=6.16 ,CPU=0.120145,TIME=0.151743,

$HASP660 QSUSE_TIME=0.098023,IOCOUNT=599,CKPT_COUNT=28280,

PCENAME = name of the group of PCE’s captured (see $DPCE for details)

CPU% = percentage of total JES2 maintask time this subset of PCE’s used

CPU = total CPU time used by this subset of PCE’s

TIME = Wall clock time this subset of PCE’s was disp

This will show a breakdown of CPU utilization by PCE type. These numbers may change

greatly/frequently based on configuration and workload. For instance, a member that is primarily

used for archiving may demonstrate SAPI utilization far higher than a member used for

communications/NJE (in which that member may show higher utilization for NET.SR etc). It is

typically very reasonable to see CKPT PCE towards the top of this list.

Additional fields:

QSUSE_TIME = Wall clock time subset of PCE’s ran when they acquired queue ($QSUSE)

IOCOUNT = Total number of I/O’s issued by this subset of PCE’s

CKPT_COUNT = Number of $CKPT’s issued by this subset of PCE’s

 26

Session 16167

$D PERFDATA(PCESTAT)

26

$HASP660 PCENAME=NET.SR,TIME=43.011997,CPU=40.892083,CPU%=7.63,

$HASP660 QSUSE_TIME=0.277515,IOCOUNT=278356,CKPT_COUNT=7631,

$HASP660 WAIT=IO,MOD=HASPNUC,SEQ=17000000

$HASP660 COUNT=4066,AVGWAIT=0.001505,

$HASP660 POST=IO,COUNT=4066,AVGWAIT=0.001505,

$HASP660 WAIT=BUF,INHIBIT=NO,MOD=HASPNSR,SEQ=70272000

$HASP660 COUNT=4982,AVGWAIT=0.001099,

$HASP660 POST=RESOURCE,COUNT=4970,AVGWAIT=0.000878,

$HASP660 POST=IO,COUNT=12,AVGWAIT=0.092677,

$HASP660 WAIT=CKPT,MOD=HASPNUC,SEQ=28410000

$HASP660 COUNT=221,AVGWAIT=0.342762,CMOD=HASPJQS,CSEQ=03330000,

$HASP660 POST=RESOURCE,COUNT=221,AVGWAIT=0.342762,

This section starts with the CPU statistics (CPUSTAT), and then follows with a breakdown of activity

of that PCE type. Specifically, it will breakdown the PCE $WAITs and $POSTs by type and count.

The AVGWAIT for WAIT=CKPT help give insight into CKPT access time. All wait times include

queue time for the PCE type – the time it is on the ready queue awaiting dispatch.

Fields:

WAIT = wait type(s) passed on the $WAIT macro

MOD/SEQ = module and sequence number where $WAIT was issued

COUNT = the number of $WAITs (or $POSTs) issued from this location

AVGWAIT = Average time the PCE spent at this location waiting

POST = Post type that woke the PCE up from this $WAIT

 27

Session 16167

PERFDATA - CPU Increase Example

27

Problem: JES2 CPU spike! $DPERDATA for a 30 minute interval provided:

$HASP660 PCENAME=STAC,TIME=9:05.678529,CPU=5:58.996610,CPU%=95.67,

$HASP660 QSUSE_TIME=9:01.582558,IOCOUNT=0,CKPT_COUNT=0,

$HASP660 WAIT=CKPT,MOD=HASPNUC,SEQ=28410000

$HASP660 COUNT=1653,AVGWAIT=0.756200,CMOD=HASPSTAC,CSEQ=13100000,

$HASP660 POST=RESOURCE,COUNT=1653,AVGWAIT=0.756200,

$HASP660 WAIT=STAC,INHIBIT=NO,MOD=HASPSTAC,SEQ=09900000

$HASP660 COUNT=1646917,AVGWAIT=0.008434,

CPU% & PCENAME identify STAC (Status/Cancel) as likely culprit.

WAIT=STAC is the STAC PCE wait for work.

COUNT with STACNUM=2 on PCEDEF indicates 823,458 SSI requests were made
with a relative rate of AVGWAIT.

The above demonstrates a scenario in which STAC PCE is monopolizing the JES2 activity – using

95% of the total CPU consumed by JES2. It is interesting to observe TIME vs CPU divergence. In

the above case CPU is ~2/3 of the wall clock TIME – indicating JES2 is ready to run but is not

getting CPU cycles. The CPU cycles it is getting are clearly funneling into STAC. It is also helpful to

review the AWGWAIT associated with CKPT to understand checkpoint access is healthy. From here

we would begin focusing on whether there was a loop within STAC processing or whether someone

was continuously driving STAC requests – possibly requiring separate traces and/or dumps.

 28

Session 16167

PERFDATA - Throughput Analysis

28

PCENAME=JQRP,TIME=0.903077,CPU=0.700405,CPU%=3.13,

QSUSE_TIME=0.278596,IOCOUNT=2196,CKPT_COUNT=35317,

 WAIT=WORK,INHIBIT=NO,MOD=HASPJQS,SEQ=70910000

 COUNT=2061,AVGWAIT=0.329332,

 POST=IO,COUNT=936,AVGWAIT=0.000606,

 POST=$$POST,COUNT=1125,AVGWAIT=0.602831,

 WAIT=CKPT,INHIBIT=NO,MOD=HASPJQS,SEQ=70923300

 COUNT=3542,AVGWAIT=0.095666,

 POST=RESOURCE,COUNT=1528,AVGWAIT=0.188931,

 POST=IO,COUNT=947,AVGWAIT=0.000848,

IOCOUNT / 2 = number of jobs created during this interval

AVGWAIT = average time PCE waiting for CKPT

JQRP PCE shows the total I/O count for the interval. Since JES2 performs 2 I/Os for each job

created, the IOCOUNT divided by 2 yields the count of how many jobs were created during the

PERFDATA interval. In the above example 2196 / 2 = 1098. If the interval were 6 minutes, then that

would suggest approx ~3 jobs were created per second.

The AVGWAIT time gives insight in any problems surrounding CKPT access. Generally, we view

this health based on order-of-magnitude where anything larger than 0.10 seconds *could* indicate

contention for checkpoint.

 29

Session 16167

30 Second Checkpoint Review

MEMBER6

MEMBER4MEMBER1

MEMBER5

MEMBER3

CKPT
MEMBER2

I need a job number !

I need a spool space

Need to
 cr

eate
 O

UTGRP

SAPI needs a JOE

$TJ

$COJ

 Checkpoint access in a MAS looks like…

HOLD=a, DORM=b

HOLD=c, DORM=d

HOLD=a, DORM=b

HOLD=a, DORM=b

HOLD=e, DORM=f

HOLD=a, DORM=b

How equitably the checkpoint is shared amongst MAS members is controlled by the following

MASDEF parameter (which have a scope of member):

HOLD= The minimum length of time a member will hold the checkpoint before it will try to release

it

DORMANCY= The length of time a member will wait before attempting to reacquire the CKPT

Notification of a checkpoint lockout condition is based on the MASDEF parameter:

LOCKOUT=The length of time a member needing the CKPT will wait before issuing $HASP263

 30

Session 16167

MEMBER6

MEMBER4MEMBER1

MEMBER5

MEMBER3

CKPT
MEMBER2

I need a job number

I need a spool space

Need to
 cr

eate
 O

UTGRP

SAPI needs a JOE

$TJ

$COJ

$HASP263

$HASP263 $HASP263

$HASP263

$HASP263

Holding CKPT!

$HASP9207

Another 30 Seconds about Checkpoint…

 Checkpoint lockout in a MAS looks like…

 31

Session 16167

Possible

PSO3

PSO2

JES2 Maintask

PCE flow

CMD EXEC CKPT

I can’t HOLD it
anymore!!

HASPNUC

PSO1

PSO
Resource

$POJQ,ALL

CNVT1

C’mon
I/O

HURRY!

TIMER

I’m busy! I need CPU time!

I’m looping �

I abended!

Just 30 More Seconds about
Checkpoint (don’t lockout on me…)

Checkpoint lockout on the holding member could look like…

The first predicament that the CKPT PCE can find itself in, is being unable to get dispatched under

the maintask. There are several reasons this could occur.

1. The PCE currently processing under maintask is busy doing valid work. It may be the nature of

the work that is resulting in the excessive processing time. Any command that requires the

scanning and/or filtering of a large number of jobs or outgrps can take some time to complete.

The $POJQ with a filter command is an example if it needs to process tens of thousands of jobs. It

is cpu intensive and could result in $HASP263’s on other members depending on the coded

LOCKOUT value.

2. JES2 is currently CPU restricted. That is the maintask TCB is not getting any or enough cycles to

get through the chain of PCE’s in a timely fashion to allow the CKPT PCE to run.

3. A PCE abended and has issued $HASP098 for a termination option. If this abend occured while

the CKPT was held and the WTOR is not replied to in a timely fashion then the CKPT will not be

released

4. A PCE is in a loop in which no $WAIT is issued so it will never give up control of the maintask

TCB

The first two conditions can be transient in nature the $HASP263’s will be issued but then stop as

either the PCE completes its work or JES2 gets the needed CPU cycles. For second two, the

$HASP263’s will be issued until the causing condition is resolved.

 32

Session 16167

• Diagnosis must occur on the system that is HOLDing the checkpoint

• The system that is HOLDing the checkpoint….

• Will not issue $HASP263

• Will not issue IOS071I 016E,**,*MASTER*, START PENDING

• Will issue $HASP9207 JES CHECKPOINT LOCK HELD
DURATION xyz

• Possibly other JES2 monitor $HASP92xx messages too

• The system that is a victim not HOLDing the checkpoint…

• Will issue $HASP263

• LOCK HELD BY MEMBER abc (if CKPT on CF)

Diagnosing Checkpoint Lockout

32

Once the $HASP263’s have started the first step is determining which MAS member is holding the

checkpoint.

The HASP263’s and IOS071I’s really indicate who is NOT holding it. Absence of these messages on

a member would suggest that it is the one holding the CKPT. The $HASP9207 message issued by the

JES2 monitor identifies the system holding the CKPT.

$HASP263 WAITING FOR ACCESS TO JES2 CHECKPOINT. LOCK HELD BY SYSTEM is a

special case. The SYSTEM referred to in the message means that XES has indicated to JES2 that no

member holds the lock but it is currently in the hands of XES. If this message persists and no JES2

member is showing signs of getting any access then a system with XCF/XES errors occurring is likely

the problem. A Vary out of the plex of the system should force XES to release the lock.

 33

Session 16167

Persistent $HASP263s

• Check health of overall system

• MVS commands responding?

• Check JES2 CPU usage

• Check for outstanding JES2 WTOR’s

• Check for indications of JES2 functioning

• $HASP250 (jobs purging)?

• JES2 commands working?

• Diagnostics

• Console dump JES2 on system holding the CKPT –or- slip on $HASP9207

• PERFDATA samples

Diagnosing Checkpoint Lockout

33

The first step is to determine whether or not the problem is at the system or JES2 level. If MVS

commands are not responding then JES2 is likely not releasing the CKPT due to problems outside of

JES2 so terminating or taking other actions on the JES2 asid are likely not to resolve the lockout

condition.

If MVS appears healthy then the focus can shift to the JES2 asid: Has JES2 abended? Are there an

outstanding WTOR’s for JES2? Is JES2 using a lot or any CPU? Resource monitors and SDSF can

assist with this or a D A,JES2 followed by another D A,JES2 will show how much CPU was used

between commands. If no, CPU is used then JES2 is simply not getting a chance to run so other

higher priority tasks may need to be examined. Is JES2 responding to commands? Yes, then this

would indicate that JES2 PCE’s are running which is predicament number two.

If JES2 is not responsive to commands and there are no other messages being issued such as

$HASP100, $HASP250 ($HASP395’s do not count) and there is high CPU then JES2 is likely

looping. Scanning the syslog looking for the last commands or messages issued by JES2 may give an

indication of whether it is related to a CPU intensive command being issued.

 34

Session 16167

Transient $HASP263s

• Messages appear on one or more systems but do not persist

• Normally caused by JES2 being temporarily busy with work/commands or
short on CPU

• Diagnostics

• Console dump JES2 on system holding the CKPT –or- slip on $HASP9207

• PERFDATA samples

Diagnosing Checkpoint Lockout

34

These transient $HASP263’s come in two flavors: the first is “every once in while”. The second is of

a more “roaming” nature. The first type is usually the result of a temporary condition that either

resulted in JES2 being busy or not being dispatched. The second is a little more troublesome. The

messages appear consistently however the system identified as holding the lock changes and may

cycle through all of the members of the MAS. This is much more difficult to isolate to any specific

type of problem or system and could be require a small amount of tuning of HOLD/DORMANCY

 35

Session 16167

Resource Shortages

• $HASP050 message issued

• Not all resources are critical

• BERTs, JQEs, JOEs, JNUMs, TGs are MAS wide resources – critical!

• BERTs - DO NOT RUN OUT OF BERTS!!!!

• BERTs – use $DCKPTSPACE,BERTUSE to identify usage

• TGs – use $DJOBQ,SPOOL=(% > nn) to identify usage

• TGs - should be viewed at a job level not output level

• unless output is SPIN

• BSCB, BUFX, CKVR, CMB, CMD, ICES, LBUF,NHB,SMFB, TTAB,
VTAMB are member specific – not as critical

JES2 will produce $HASP050 message indicating resource shortage – message will repeat until

condition is relieved.

BERTs are one of the most critical JES2 resources. They represent non-contiguous pieces of storage

on checkpoint that back/comprise other JES2 blocks such as $CAT, $DJB, $JQA, etc. There are

some processes in JES2 that cannot wait for BERTs to become available, thus it is imperative to avoid

complete exhaustion. For the BERT resource, in addition to $HASP050 you may also encounter:

$HASP051 EXTREME BERT SHORTAGE detected …

$HASP052 JES2 BERT resource shortage is critical -- IMMEDIATE action required…

Ideally you want to have enough BERTs defined such that you would exhaust any resource it is

backing (such as JOEs, JQEs, $CATs) first rather than exhausting BERTs themselves. When in a

BERT shortage condition, you want to identify and address any offending job/output –and/or-

increase BERTNUM definition.

For TG shortages, you again want to identify and address any offending job/output –and-or- add

additional spool space. It is important to approach TG usage at a job level because trackgroups are

not restored to the TG map until the entire job is purged (exception being SPIN output, in which TGs

restored when output is processed). Consider a job ADAM1 that has two pieces of non-SPIN output:

JOE1 using 1 TG and the other JOE2 using 9K TGs. If you purge JOE2, it will not restore the 9K

TGs because JOE1 still exists with 1 TG!

Spare spool volumes can be formatted in advance and then volume simply started $S if needed –or-

can be formatted dynamically on the $SSPL command.

 36

Session 16167

Resource Shortages

• $JDHISTORY command will show historical usage

• Since JES2 warmstart/IPL

• Hourly time slices of usage (interval at the top of each hour)

• Limit/current/low/high/average usage

• Same resources as $HASP050 message

• SDSF equivalent

• RM panel

• JH command on the MAS panel

• MSGID slip or console dump JES2 *if* needed

When approaching resource shortages one of the key pieces of information is whether the resource

utilization is a sudden unexpected spike vs slow creep vs simply running at a fairly constant number

too close to the warning limit etc. The above displays provide the answers, broken down in 1hr

intervals. It also helps illustrate any relationships between resource trends - eg. Is job output growing

at a 3x rate while jobnums are not growing at all? It may prompt the debugger to scrutinize a

particular time interval in syslog/operlog– does it correspond with a peak or change in workload?

 37

Session 16167

Questions?

 38

Session 16167

yy/mm/dd APAR COMMENTS

14/02/27 OA44612 SECURITY APAR

14/05/27 OA45292 SECURITY APAR

14/02/13 OA44474 $HASP313 & DUPLICATE ICH408I IF INCORRECT CREDENTIALS ON JOBCARD

14/02/17 OA44511 $HASP896 RC83 TGSIZE MISMATCH FOR STUNT VOLUME DURING WARMSTART

14/02/24 OA44564 VARIOUS ERRORS RUNNING IN 64-BIT AMODE WHEN DATA LEFT HIGH HALF OF REG15

14/03/12 OA44724 AFTER OA43541, ABEND0C4 IN IFGDEBCK DURING SYSIN PUT REQUEST

14/03/27 OA44852 ABENDS0C4 ALLOCATING INTERNAL READER IN SECONDARY SUBSYSTEM

14/03/31 OA44908 INCORRECT REASON CODE RETURNED TO SAPI APPLICATION

14/04/08 OA44967 DYNAMIC PROCLIB INCORRECTLY OVERRIDING STATIC PROCLIB AT 2.1

14/04/23 OA45057 HASCSISC REASSEMBLY TO GET APAR OA44094 POST MACRO CORRECTIONS

14/04/28 OA45088 INCORRECT OR MISSING SIGNATURE RECORD IN JES2 SYMREC

14/04/29 OA45118 EXIT53 FAILS TO UPDATE EXECUTION CLASS IN $JCT AT 2.1

14/05/05 OA45123 ABEND0C4 IN HASCPOOL RECOVERY

14/05/06 OA45138 ENHANCEMENTS TO JES2 EXIT32

14/05/19 OA45232 $CBIO FAILS WITH RC=04 DURING $VERIFY

14/05/22 OA45259 EXIT44 FAILS TO OVERRIDE JOBCLASS SCHENV

14/06/02 OA45337 JOBS AWAITING CONVERSION AFTER WLM SERVICE DEFINITION CHANGE

JES2 Service Information

LEGEND:

HiPer APARs (Hi Impact, or Pervasive) Security/Integrity

Special Attention

 39

Session 16167

OA44612 – SECURITY APAR

CVSS values:

CVSS/B=7.2

CVSS/T=6.3

CVSS/V=(AV:L/AC:L/Au:N/C:C/I:C/A:C/E:ND/RL:OF/RC:C)

None

JES2 z/OS 1.13 and 2.1Fix

Rating

Bypass

Refer to CVSS Scoring Site:

http://nvd.nist.gov/cvss.cfm

Refer to z/OS Security portal:

http://www-03.ibm.com/systems/z/advantages/security/integrity.html

 40

Session 16167

OA45292 – SECURITY APAR

CVSS values:

CVSS/B=7.2

CVSS/T=6.3

CVSS/V=(AV:L/AC:L/Au:N/C:C/I:C/A:C/E:ND/RL:OF/RC:C)

None

JES2 z/OS 1.12Fix

Rating

Bypass

Refer to CVSS Scoring Site:

http://nvd.nist.gov/cvss.cfm

Refer to z/OS Security portal:

http://www-03.ibm.com/systems/z/advantages/security/integrity.html

Session 16167

OA44474 - $HASP313 & DUPLICATE ICH408I IF
INCORRECT CREDENTIALS ON JOBCARD

Incorrect credentials (eg. password) specified on
jobcard

JES2 checks security environment two times resulting
in ICH408I and IRR013I issued twice

Failure is counted twice increasing chances that user
get revoked

Correct the credentials to avoid recurrence of
scenario and/or revocation

JES2 z/OS 2.1Fix

Problem

Bypass

Session 16167

OA44511 - $HASP896 RC83 TGSIZE
MISMATCH FOR STUNT VOLUME DURING
WARMSTART

Volume is (or was) in stunted status

JES2 warmstart is performed

Track group size is miscalculated for the volume

$HASP896 message produced & percentage spool
used by jobs incorrect since total SPOOL space
value incorrect

Avoid putting volumes into stunted status

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

Session 16167

OA44564 - VARIOUS ERRORS RUNNING IN 64-
BIT AMODE WHEN DATA LEFT HIGH HALF OF
REG15

Processing for JES2 binary tree service -and-
Extended Status and Job Modify SSIs run in 64-bit
mode

Macros/routines/services that are invoked within run
in 31-bit mode

JES2 improperly manages switching of amode such
that extraneous data is left in part of R15

Results in Abend0C4s etc

None

JES2 z/OS 2.1Fix

Problem

Bypass

Session 16167

OA44724 - AFTER OA43541, ABEND0C4 IN
IFGDEBCK DURING SYSIN PUT REQUEST

OA43541 installed

JES2 calls IFGDEBCK to verify DEB

DEB is on page boundary, DEBCK looks at prefix
area at -4 crossing onto previous page

Abend0C4 can result

None

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

Session 16167

OA44852 - ABENDS0C4 ALLOCATING
INTERNAL READER IN SECONDARY
SUBSYSTEM

Job submitted to JES2 subsystem

Requests allocation of INTRDR on a different
subsystem and requests list of symbols

JES2 allocation code assumes job submission
occurred on this 2ndry subsystem and does not
have addressability to requisite blocks

Abend0C4 can result

Avoid submitting job attempting INTRDR allocation on
a different subsystem than which it was submitted

JES2 z/OS 2.1Fix

Problem

Bypass

Session 16167

OA44908 - INCORRECT REASON CODE
RETURNED TO SAPI APPLICATION

SAPI application does PUT/GET for SYSOUT,
collects token, and returns dataset as KEEP

Associated job is marked HOLD by operator

SAPI application attempts to delete the SYSOUT

SSS2RENM (no matching output) returned instead of
SSS2RENS (matching output not selectable)

Avoid holding jobs for which tokens were previously
collected

JES2 z/OS 2.1Fix

Problem

Bypass

 47

Session 16167

OA44967 - DYNAMIC PROCLIB INCORRECTLY
OVERRIDING STATIC PROCLIB AT 2.1

PROCLIB initialization statement PROC01 with DDs on
VOL=ABC. JES2 init deck contains PROC01 statement with
DD on VOL=XYZ. $DPROCLIB shows init deck PROC01 as
dynamic proclib DDs on VOL=ABC.

JES2 running with static PROC00. A dynamic proc TEMP is
added via $ADDPROCLIB and then switched to PROC00 via
$TPROCLIB. $DELPROC(PROC00) does not fall back to
static instead finds no matching entries

Jobs submission will fail for jobs accessing PROC in question

Hotstart or reallocate the dynamic proclibs explicitly specifying
all appropriate keywords

JES2 z/OS 2.1Fix

Problem

Bypass

 48

Session 16167

OA45057 - HASCSISC REASSEMBLY TO GET
APAR OA44094 POST MACRO CORRECTIONS

POST macro at z/OS 2.1 contained defects as
identified by BCP APAR OA44094

HASCSISC was assembled with this macro when
built for z/OS 2.1

This APAR forces reassembly of HASCSISC to pick
up corrected POST macro

Avoid reassembling any level of HASCSISC with
defective POST macro

JES2 z/OS 2.1Fix

Problem

Bypass

Note: If you reassembled a level of HASCSISC previous to z/OS 2.1 (HJE7790) using the defective

z/OS 2.1 POST macro, then you should reassemble the module using the version of the POST macro

that has been provided by APAR OA44094.

 49

Session 16167

OA45088 - INCORRECT OR MISSING
SIGNATURE RECORD IN JES2 SYMREC

Following a JES2 $DISTERR, JES2 produces a symptom record
in LOGREC containing diagnostic information such as
MTTR/MQTR contents etc. Wrong MTTR passed to $SIGIO
routine resulting in missing or erroneous SYMREC data

Additionally, wrong MTTR/MQTR is passed to routine(s)
responsible for reclaiming track groups previously marked in
bad trackgroup map; thus, track cannot be reclaimed

None

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

 50

Session 16167

OA45118 - EXIT53 FAILS TO UPDATE
EXECUTION CLASS IN $JCT AT 2.1

No CLASS= coded in JCL and exit53 assigns single
character jobclass via JCTCLAS. This worked at
pre-2.1, but no longer honored at 2.1 due to
introduction of 8 character jobclass functionality.

Also applies to exit3

Update exit to alter both JCTJCLAS as well as
JCXJCLA8 (in $JCTX)

JES2 z/OS 2.1Fix

Problem

Bypass

Modifying JCT field will now be honored via exit3 and exit53 respectively. However, new XPL

fields (X003JCLS and X053JCLS) were also added to assist in job class modification rather than exit

directly accessing JCT or JCTX.

 51

Session 16167

OA45123 - ABEND0C4 IN HASCPOOL
RECOVERY

Attempt to return a cell pool fails in CPFREE routine.
JES2 is in 64-bit mode and cell pool recovery fails
as it expected 31-bit mode.

Alternative cell pool created and old one orphaned.
Then abend0C4 or abend0C1 within job or STC
making use of the specific cell.

None

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

 52

Session 16167

OA45138 - ENHANCEMENTS TO JES2 EXIT32

Exit 32 enhanced to support job eviction – specifically
to allow exit to return job to execution queue and the
job start from last known step (per job eviction)

None

JES2 z/OS 1.13, and 2.1Fix

Problem

Bypass

 53

Session 16167

OA45232 - $CBIO FAILS WITH RC=04 DURING
$VERIFY

Installation coded own $CBIO macro invocation with
VERIFY=HDB. JES2 fails with RC=04 and
message $HASP364

None

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

 54

Session 16167

OA45259 - EXIT44 FAILS TO OVERRIDE
JOBCLASS SCHENV

Exit44 being used to override JOBCLASS SCHENV
via field JQASCHE. This worked at pre-2.1, but no
longer honored at 2.1 due to changes to conversion
processing

None

JES2 z/OS 2.1Fix

Problem

Bypass

Modifying JQA field will now be honored via exit44. However, new XPL fields (X044JCLS and

X044SCHE) were also added to assist in job class and scheduling environment modification

respectively

Session 16167

OA45337 - JOBS AWAITING CONVERSION
AFTER WLM SERVICE DEFINITION CHANGE

Last active MAS member terminated and then WLM
Service Definition change made

Upon next hotstart JES2 will detect mismatch against
that which resides on checkpoint

Jobs rejected in conversion processing

Update WLM Service Definition, activate via V
WLM,POLICY=xyz, then reset policy to desired one
-or- perform JES2 all-member warmstart

JES2 z/OS 1.12, 1.13, and 2.1Fix

Problem

Bypass

