Richard Cebula - IBM HLASM

SHARE Pittsburgh 2014
High Level Assembler Bootcamp
(16153, 16154, 16155)

: L]

™ g

| - . HLJ "y
! ha < Jpires

——

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

|{E Prog. |R E
OROOOTOX Key [OMWP|AS|CC Mask lOOOOOOA
0 1 2 56 7 8 121314 15 16 18 20 24 25 31
EOOO0000000000000000000000000000
32 33 63

Instruction Address
64 95

Instruction Address (Continued)
96 127

2 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

_/
|{E Prog. E
OROOOTOX Key [0[MWP]AS|CC Mask/\RI/OOOOOOA
012 56 78 1213141516 18 20 /242\ 31

EO00000000000000000000/‘9%0000000

Instruction Address
64 95
Instruction Address (Continued)
96 127

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= The Program Status Word (PSW) is a register in the processor which includes control
information to determine the state of the CPU.

= The z/Architecture PSW is 128-bits in length
- Bits 0-32 contain flag bits indicating control information for the CPU
- Bits 33-63 are 0
- Bits 64-127 contain the instruction address

= EPSW — Extract PSW
- Obtain bits 0-63 of the PSW and place them into operands of the instruction

= LPSW(E) — Load PSW (Extended)
- Replace the entire PSW with the contents of storage
- This means that the instruction branches — well might do...

4 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

0IR[0 O O|T Mask ||

012 56 7 8 1213141516 18 20 24 25 31

key |opplas|cc| P9 [Mlooo oo 1'

0000000000000000000000000000000

32 33 63

Instruction Address

Instruction Address (Continued)

96 127

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= Since the z/Architecture can run in a number of addressing modes, the instruction address
is determined by a variable number of bits in the PSW. The current addressing mode is
determined by bits 31-32 of the PSW with the following combinations:
- 00 — 24-bit mode
- 01 — 31-bit mode
- 10 — invalid
- 11 — 64-bit mode

= Bits 64-127 are used to determine the address of the next instruction to be executed
- However, some instructions may be interrupted and therefore the PSW may
point at the same instruction which was being executed so that it is
redriven

6 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) — Instruction Address

|{E Prog. |R
OROOOTOX Key [0[MWP]AS|CC Mask lOW@

012 56 7 8 1213141516 18 20 2427 31

00000000000

64-bit address

64 95
96 127

7 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

| Prog. |R E
06000T£>Key oMWP|As|ce| . [1lo00000f
012 56 7 8 1213141516 18 20 24 25 31
EOO00000000000000000000000000000
32 33 63

Instruction Address
64 95
Instruction Address (Continued)
96 127

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

(A bit value of 1 indicates that the CPU is enabled for a function unless stated otherwise)

= Bit 1 — Program Event Recording (PER) Mask
- Controls whether the CPU is enabled for interrupts associated with PER

= Bit 5— DAT Mode
- Controls whether the CPU has Dynamic Address Translation turned on

= Bit 6 — I/O Mask
- Controls whether the CPU is enabled for interrupts

» Bit 7 — External Mask
- Controls whether the CPU is enabled for external interrupts

9 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

[
[
”Ii“”
el

Program Status Word (PSW) — Flag bits

10

' a} Key |o[MMP|AS|CC Enfgk Tooooooi
- 1213141516 18 20 24 25 31

E bO 0O00R000000000000000O0O0OOQO0O
32 3 63
Instruction Address

95

Instruction Address (Continued)

96

127

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

|{E Prog. |R E
OROOOTOX MWP]AS|CC Mask IOOOOOOA
012 56 7 1213141516 18 20 24 25 31
B

00000000000

0000000000000000000

A
32 33 63
Instruction Address
64 95
Instruction Address (Continued)
96 127

11

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Bits 8-11 are used to represent the PSW Key (value of 0-15)

PSW Keys are used to provide a security mechanism over various regions of memory with
key O being the most secure

Whenever an instruction attempts to access a storage location that is protected against that
type of reference (read/write of storage) and the storage key does not match the access
key, a protection exception is recognised.

Programs running in PSW key 0 have read write access to storage in every storage key

Programs in keys 1 — 15 have read access to:
- Storage which matches their PSW key
- Storage (in any key) that's not fetch protected
- Storage in key 9 if the hardware feature “subsystem storage protection
override” is installed

= Programs in keys 1-15 have write access to:
- Storage whose key matches their PSW key
- Storage in key 9 if subsystem storage protection override is installed

12 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= |PK — Insert PSW Key
- Used to insert the PSW Key into register 2
- Used to store a copy of the current PSW Key typically before a switch to
another key.
- Bits 56-59 of register 2 are updated to contain the PSW Key, bits 60-63 are set
to 0 and all other bits remain unmodified

IPK cannot be used when bit 36 of CRO is set to 0 and in problem state

SPKA — Set PSW Key from Address
- Used to set the PSW Key from an address value
- Bits 56-59 of the 2" operand are inserted into the PSW Key

SPKA can only be used to set a key to which the current task is allowed to set a key
determined by the PSW Key mask in CR3

Both IPK and SPKA are privileged instructions

13 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= MVCK — Move with Key
- Moves an operand with an access key specified as part of the instruction
- If the program is not enabled to use that access key, then a privileged
operation exception is raised
- Can be a slow instruction

= BSA — Branch and Set Authority
- Used to branch to another place in code and set the PSW key at the same
time
- Works as a flip-flop branching from “base authority” state to “reduced
authority” state

14 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= BSA — Branch and Set Authority — example scenario
- A service routine, e.g. a middleware service begins in the base authority state
- The routine issues a BSA to switch to running a user routine
- The user routine runs in reduced authority state
- When the user routine wants to invoke the middleware service, it issues a
BSA which branches back to a fixed location in the middleware and the
state is returned to running in base authority state

= The control of the states is determined by the Dispatchable Unit Control Table (DUCT)

15 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

[HTH!
il
|

Program Status Word (PSW) — PSW Key — BSA Operation - DUCT

16

5

PSW-Key Mask PSW E

Key

0 16 24 28

In the 24-Bit or 31-Bit Addressing Mode

31

All Zeros

0

31

B Bits 33-63 of Return Address

A

3233

In the 64-Bit Addressing Mode

63

Bits 0-31 of Return Address

31

Bits 32-63 of Return Address

32

63

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) — PSW Key — BSA Operation

PSW-Key Mask

All Zeros

3233

n Address

63

In the 64-Bit Addressing Mode

Bits 0-31 of Return Address

31

Bits 32-63 of Return Address

32

17

63

© 2014 1BM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= When the BSA instruction is used in base authority, the following is stored in the DUCT:
- The PSW-key Mask (from CR3)
- The current PSW Key
- Problem state bit
- The return address

= BSA then sets the Reduced Authority bit (RA) to 1 and loads:
- The PSW-key Mask into CR3 from operand 1
- The PSW Key from operand 1
- The branch address into the PSW

18 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= When the BSA instruction is used in reduced authority, the following is restored from the
DUCT:
- The PSW-key Mask (to CR3)
- The current PSW Key (to the PSW)
- Problem state bit (to the PSW)
- The return address (to the PSW - therefore the machine branches...)

= BSA then sets the Reduced Authority bit (RA) to O

19 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

|{E Prog. |R E
OROOOTOX Key |0 WHI Mask lOOOOOOA

0 1 2 56 7 8 1213 14 15 16 20 24 25 31

EOOO0000000000000000000000000000

32 33 63
Instruction Address

64 95

Instruction Address (Continued)
96 127

20 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= Bit 13 — Machine Check Mask
- Controls whether the CPU is enabled for interrupts by machine check
conditions

= Bit 14 — Wait State
- If on, the machine is waiting and no instructions are processed but interrupts
may take place.

= Bit 15 — Problem State

- The machine operates in two states — problem state (used for user code) and
supervisor state (used for privileged code)

- If an attempt is made to execute a privileged instruction in problem state, then
a privileged operation exception occurs.
Some instructions are semi-privileged and may or may not be permitted to
execute in problem state depending on the outcome of other flags

- All instructions are valid in supervisor state

21 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) — More flag bits

» Bit 16-17 — Address-Space Control
- Determines how addresses are handled in conjunction with bit 5 (DAT) via the
following table:

0O O 1 Off Real Mode Real Real

0 1 1 Off Real Mode Real Real

1 0 1 On Access-register Mode Primary virtual AR specified vrt

1 1 1 On Home-space Mode Home virtual Home virtual

» Bits 18-19 — Condition Code

22 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) — More flag bits

000000

[pranem s :
“struction Address
95

Instruction Address (Continued)

96 127

23

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

m||
)
hanll
el

Program Status Word (PSW) — PSW Key — Program Mask

|{E P R E
OROOOTOX Key OIVIWPASCC|000000A
012 56 7 8 1213141516 18 20 24 25 31
2000000000000000000000000000000
32 33 63

Instruction Address
64 95
Instruction Address (Continued)
96

24

127

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) — Program Mask

= Bits 20-23 — Program Mask
- Controls a set of program exceptions
- When the corresponding bit is on, the exception results in an interrupt

21 Decimal overflow
23 HFP significance

= The Program Mask can be manipulated by using the instruction SET PROGRAM MASK

(SPM)

» The contents of the Program Mask can be examined using the instruction INSERT
PROGRAM MASK (IPM)

25 © 2014 1BM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= The PSW stores invaluable information about the general state of the machine during a
program's execution

= The most interesting time to examine a PSW is when something goes wrong. Even a
summary dump will provide the programmer with:
- The contents of the PSW
- The contents of the general purpose registers
- The next instruction to be executed

26 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

5YS5TEM COMPLETION CODE=0OC4d REASON CODE=00000010
TIME=10.58.19 3E0=01263 CPU=0000 A5ID=00ZC
P5W AT TIME OF ERROR 0O7VEDOOOO g0007FF6 ILC 4 INTC 10
ACTIVE LOAD MODULE ADDRESS=0000FFFO OFFS5ET=00000006

NAME=GO

DATA

GR 0O:
2:

END O

= Running a job has resulted in an 0C4 ABEND occurring. The summary dump in the job may

AT P3W

¢]
b
8:
A:
I: .
E:
F

STYMPTOM

FDOOOOOS
00000040
00BDADAS
0OBCAFCH
OOBFCE28
elelalalelalale
FDoooOOS
80FDAGEB

DUMP

BBBBTFFB - S9oECDOOC

0DOO6BFF8
00BDADGL
O0BFF130
FDOOOOOD
OOBDBEFO
OOBFF130
0DOOBFB0
BO007/FFO

18CO5BF0 COO6BOTVFE

be enough information to work out what has gone wrong.

27

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

5YS5TEM COMPLETION CODE=0OC4d REASON CODE=00000010
TIME=10.58.19 3E0=01263 CPU=0000 A5ID=00ZC
P5LLA+TIME OF ©REOR 078DO00O g0007FF6 ILC 4 INTC 10
ACTIVE LOAD MODULE ADDRESS=0000FFFO OFFS5ET=00000006
NAME=GO
DA M—f=—=Rs GGUBTFFB - 90ECDOOC 18BCOLBFO CO06OVFE
GR O: : ODOOBFF8

2: : OOBDADGL
: BBEDHDdE

¢] .

6: 00BCAFCH : FDOOOOOO
8: 00BFCEZ2S8 : DOBDBBFO
A: 0000000 : OOBFF130
C
E:
F

. FDOOOOOS . OOOOGFE0 _
80FDAGSS . BOOOTFFO Active load module
SYMPTOM DUMP

= First, look at the active load module
- In this example, the load module name is GO since the LKEDG JCL procedure
was used. From this we already know that the error occurred in our load
module and not in either the assembler, linkage editor nor other part of
z/OS

END O

28 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

5YS5TEM COMPLETION COD S~ UDE=00000010
TIME=10.58.19 35EQz01263 CPU=0000 L1 D=002C
P5W AT TIME OF ERKWOR 0O7VEDOOOO SO007FF6) TILLC A THTC 10

ACTIVE LOAD MOCALE AUURESS=O000{FFO OFFS5ET=0000000UG
NAME=GO

DATA AT P3W OOOOVFFO - 90ECDOOC 18COLBFO 6O07FE
LE 0O FDOOOOOS 1 - O0000GFFH

Address in PSW

UOuUOLHAr Lo [[LV LIV IVIVIVIV]
OOBFCEZ2B g: Qo8LC
areedbreb e Address of load module and offset
: FDOOOOOE D: O0OO0C0r o
E: BoFDAGES F: BOOOTFFO
EMD OF S¥YHMPTOM DUHMP

= Next, double check the information in the PSW against the other information in the summary
dump

- The PSW shows that the next instruction address to be executed is X'7FF6'
- This agrees with the data in the dump showing the address of the load module
(X'7FFQ") and the offset into the load module (X'0006')

29 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

SYSTEM

TIME=10.58.

P5W AT TIME OF ERROR 0O7VEDOOOO

ACTIVE LOAD

NAME=GO

DATA

GR 0O:
2:

END O

AT P3W

¢]
b
8:
A:
I: .
E:
F

STYMPTOM

FDOOOOOS
00000040
00BDADAS
0OBCAFCH
OOBFCE28
elelalalelalale
FDoooOOS
80FDAGEB

MODULE

DUMP

BBBBTFFB - GQOECDOOC

0DOOBFFS
00BDADGL
O0BFF130
FDOOOOOD
OOBDBEFO
OOBFF130
0DOOBFB0
BO007/FFO

COMPLETION CODE=0C4d4 REASONMN CODE=00000010

19 5E0=01263 CPU=0000 A5ID=00ZC

g0007FF6 ILC 4 INTC 10
ADDRESS=0000FFFO OFFS5ET=00000006

18CO5BF0 COO6BOTVFE

Data at PSW

= The data at the PSW shows the instructions which were, are being, and will be executed

30

© 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

DATA AT PS5 QO0007/FFO - S90ECDOOC 1BLCOLBFO COOGOVEFE

*
* MAIN PROGRAM S5TARTS HERE
*
000000 00000 00010 EX1 CSECT
EX1 AMODE 31
EX1 RMODE 24
* USUAL PROGRAM SETUP
000000 90EC DOOC 5TH R14,R12,1Z2(R13)
000004 18C0 LR R1Z2,0
R:C 00006 USTHG =*,12
SET RETURN CODE IN REGISTER 15
000006 5BF0 COD6 L R15, RET_CODE
RETURN
0oeRoA OYVFE BR R14
30 3 30 B 2 e A8 0 0 A 0 A 0 0 0 A 0 o 0 o0 K K
END OF PROGRAM
30 3 30 B 2 e A8 0 0 A 0 A 0 0 0 A 0 o 0 o0 K K
00000C 00000000 RET_CODE DC F'o’
000010 LTORG

= Examining the program listing at offset 6 shows where the error occurred. Using the data at
the PSW and looking at the machine code generated by HLASM in the listing confirms this
and that so far our diagnosis of the problem is correct

31 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

DATA AT PS5 QO0OQO7FFO - HQOECDOOLC ‘]EAIEUE- BF0O Aﬂ 2 FFE)
\ \ s

L 3

* MAIN PROGRAM STARTS HERE

Offset 6 7 x

00o0o O0DO10 EX1 CSECT

EX1 AMODE 31
EX1 RMODE 24
21 % USUAL PROGRAM SETUP
000000 @OEC DOOE STM — R14,R12,12 (R13)
009004 dECD LR R12,0
R:C 00006 USING *,12
SET RETURN CODE IN REGISTER 15

60000 G8FO COO) L R15, RET_CODE
* RETURN
00000A BR R14

30 0 S 0 B B B B B R R K
END OF PROGRAM
30 0 S 0 B B B B B R R K
0000OC 00000000 RET_CODE DC F'a’
000010 33 LTORG ,

= Examining the program listing at offset 6 shows where the error occurred. Using the data at
the PSW and looking at the machine code generated by HLASM in the listing confirms this
and that so far our diagnosis of the problem is correct

= \We now know the instruction which caused the error was:
58F0 CO06 — L R15,RET_CODE

32 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= At this stage of our debugging we know:
- The load module name that caused the error
- The offset into the load module at which the error occurred

= We have also double-checked that what was printed in the summary dump is confirmed by
the data at the PSW

= Examining the instruction at fault, we determine the following:
- B58F0C006 - L R15RET _CODE
- 58 - OPCODE = LOAD
- F — Register 15, the register to be loaded
- 0 - Index register (unused since it has a value of 0)
- C — Base reqister is register 12
- 006 — Displacement from the base register from which the data will be loaded

= S0, the instruction is attempting to load register 15 with the contents of memory at an offset
of 6 from register 12.

33 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

SYSTEM

TIME=10.58.

P5W AT TIME OF ERROR 0O7VEDOOOO
HETIUE LOal
MNAME=
DATA HT P5l
LR O:

FDOOOOOS
00000040
00BDADAS
0OBCAFCH
OOBFCE28
elelalalelalale
FDoooOOS
80FDAGESB

(Y N

L IIJLJLILI—_

BBBBTFFB - 90EC

0DOO6BFF8
00BDADGL
O0BFF130
FDOOOOOD
OOBDBEFO
OOBFF130
0DOOBFB0
B0007/FER

COMPLETION CODE=0C4d4 REASONMN CODE=00000010
19 5E0Q=01263 CPU=

0000 ASID=00Z2C
g0007FF6 ILC 4 INTC 10
ADDRESS=0000FFFO OFFS5ET=00000006

DBQC 18BCoL8F0 COOBOVFE

STrllM DUMP

The summary dump also shows the contents of the general purpose registers

The value in register 12 is X'FD000008'

which is

The instruction at fault is attempting to load a value from address X'FDOOOOOE' —
unaddressable by our program and therefore the cause of the error

Note that the value of register 12 is the same as the value of register O...

34 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

E 3

* MAIN PROGRAM S5TARTS HERE
E 4

elelalalels) 10000 ODO10 EX1 CSECT
EX1 AMODE 31

EX1 RHODE 24
* UsSUAL PROGRAHM SETUP
000ODO 90EC DOOC 5TH R14,.R12,12{R13)
0ooRo4d 18C0 LR R12,0
R:C 00006 USTHLG #*,12

SET RETURN CODE IN REGISTER 15
000006 SH8F0 CO06 L R15, RET_CODE
RETURN
00OROA OFFE BR R14
030 30 0 0 0 0 0 0 00 30 0 3 0 K 0 0B o
END OF PROGRAM
A0 A0 K K A 0 K K 0 K B o 0 o 0 K K o 0K o K oK o K K
000OOC O0DODOOOO RET_CODE DC F 'O’
0ooo10

= Looking back through the program, we can see that register 12 was loaded with the value of
register O during program startup

= |t looks as if the programmer made a typo and instead of using LR 12,0 should have used
BALR 12,0 in order to load the address of the next instruction into register 12. This would
make sense since they are using register 12 to establish addressability to the program's
data

= Correcting this mistake fixes the program

35 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

= Using the data in the summary dump, the PSW and the program listing has allowed us to fix
the cause of the error.

= Although this is a simple example, it demonstrates the basics of debugging assembler
problems.

36 © 2014 IBM Corporation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

