
© 2009 IBM Corporation

SHARE Pittsburgh 2014
High Level Assembler Bootcamp
(16153, 16154, 16155)

Richard Cebula - IBM HLASM

2 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW)

3 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW)

Reserved

4 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW)

■ The Program Status Word (PSW) is a register in the processor which includes control
information to determine the state of the CPU.

■ The z/Architecture PSW is 128-bits in length
– Bits 0-32 contain flag bits indicating control information for the CPU
– Bits 33-63 are 0
– Bits 64-127 contain the instruction address

■ EPSW – Extract PSW
– Obtain bits 0-63 of the PSW and place them into operands of the instruction

■ LPSW(E) – Load PSW (Extended)
– Replace the entire PSW with the contents of storage
– This means that the instruction branches – well might do...

5 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Addresses

6 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Addresses

■ Since the z/Architecture can run in a number of addressing modes, the instruction address
is determined by a variable number of bits in the PSW. The current addressing mode is
determined by bits 31-32 of the PSW with the following combinations:

– 00 → 24-bit mode
– 01 → 31-bit mode
– 10 → invalid
– 11 → 64-bit mode

■ Bits 64-127 are used to determine the address of the next instruction to be executed
– However, some instructions may be interrupted and therefore the PSW may

point at the same instruction which was being executed so that it is
redriven

7 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Instruction Address

24-bit address31-bit

64-bit address

Determine Addressing mode

8 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Flag bits

9 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Flag bits

(A bit value of 1 indicates that the CPU is enabled for a function unless stated otherwise)

■ Bit 1 – Program Event Recording (PER) Mask
– Controls whether the CPU is enabled for interrupts associated with PER

■ Bit 5 – DAT Mode
– Controls whether the CPU has Dynamic Address Translation turned on

■ Bit 6 – I/O Mask
– Controls whether the CPU is enabled for interrupts

■ Bit 7 – External Mask
– Controls whether the CPU is enabled for external interrupts

10 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Flag bits

PER

DAT

I/O EX

11 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key

PSW Key

12 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key

■ Bits 8-11 are used to represent the PSW Key (value of 0-15)

■ PSW Keys are used to provide a security mechanism over various regions of memory with
key 0 being the most secure

■ Whenever an instruction attempts to access a storage location that is protected against that
type of reference (read/write of storage) and the storage key does not match the access
key, a protection exception is recognised.

■ Programs running in PSW key 0 have read write access to storage in every storage key

■ Programs in keys 1 – 15 have read access to:
– Storage which matches their PSW key
– Storage (in any key) that's not fetch protected
– Storage in key 9 if the hardware feature “subsystem storage protection

override” is installed

■ Programs in keys 1-15 have write access to:
– Storage whose key matches their PSW key
– Storage in key 9 if subsystem storage protection override is installed

13 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key – Manipulation

■ IPK – Insert PSW Key
– Used to insert the PSW Key into register 2
– Used to store a copy of the current PSW Key typically before a switch to

another key.
– Bits 56-59 of register 2 are updated to contain the PSW Key, bits 60-63 are set

to 0 and all other bits remain unmodified

■ IPK cannot be used when bit 36 of CR0 is set to 0 and in problem state

■ SPKA – Set PSW Key from Address
– Used to set the PSW Key from an address value
– Bits 56-59 of the 2nd operand are inserted into the PSW Key

■ SPKA can only be used to set a key to which the current task is allowed to set a key
determined by the PSW Key mask in CR3

■ Both IPK and SPKA are privileged instructions

14 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key – Manipulation

■ MVCK – Move with Key
– Moves an operand with an access key specified as part of the instruction
– If the program is not enabled to use that access key, then a privileged

operation exception is raised
– Can be a slow instruction

■ BSA – Branch and Set Authority
– Used to branch to another place in code and set the PSW key at the same

time
– Works as a flip-flop branching from “base authority” state to “reduced

authority” state

15 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key – BSA Operation

■ BSA – Branch and Set Authority – example scenario
– A service routine, e.g. a middleware service begins in the base authority state
– The routine issues a BSA to switch to running a user routine
– The user routine runs in reduced authority state
– When the user routine wants to invoke the middleware service, it issues a

BSA which branches back to a fixed location in the middleware and the
state is returned to running in base authority state

■ The control of the states is determined by the Dispatchable Unit Control Table (DUCT)

16 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key – BSA Operation - DUCT

17 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key – BSA Operation

Problem state bit
Reduced Authority bit

18 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key – BSA Operation – BA

■ When the BSA instruction is used in base authority, the following is stored in the DUCT:
– The PSW-key Mask (from CR3)
– The current PSW Key
– Problem state bit
– The return address

■ BSA then sets the Reduced Authority bit (RA) to 1 and loads:
– The PSW-key Mask into CR3 from operand 1
– The PSW Key from operand 1
– The branch address into the PSW

19 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key – BSA Operation – RA

■ When the BSA instruction is used in reduced authority, the following is restored from the
DUCT:

– The PSW-key Mask (to CR3)
– The current PSW Key (to the PSW)
– Problem state bit (to the PSW)
– The return address (to the PSW – therefore the machine branches...)

■ BSA then sets the Reduced Authority bit (RA) to 0

20 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – More flag bits

21 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – More flag bits

■ Bit 13 – Machine Check Mask
– Controls whether the CPU is enabled for interrupts by machine check

conditions

■ Bit 14 – Wait State
– If on, the machine is waiting and no instructions are processed but interrupts

may take place.

■ Bit 15 – Problem State
– The machine operates in two states – problem state (used for user code) and

supervisor state (used for privileged code)
– If an attempt is made to execute a privileged instruction in problem state, then

a privileged operation exception occurs.
Some instructions are semi-privileged and may or may not be permitted to
execute in problem state depending on the outcome of other flags

– All instructions are valid in supervisor state

22 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – More flag bits

■ Bit 16-17 – Address-Space Control
– Determines how addresses are handled in conjunction with bit 5 (DAT) via the

following table:

■ Bits 18-19 – Condition Code

5 16 17 DAT Mode Instruction
Addresses

Logical
Addresses

0 0 0 Off Real Mode Real Real

0 0 1 Off Real Mode Real Real

0 1 0 Off Real Mode Real Real

0 1 1 Off Real Mode Real Real

1 0 0 On Primary-space Mode Primary virtual Primary virtual

1 0 1 On Access-register Mode Primary virtual AR specified vrt

1 1 0 On Secondary-space Mode Primary virtual Secondary vrt

1 1 1 On Home-space Mode Home virtual Home virtual

23 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – More flag bits

Machine Check

Wait

Problem state

Address Space Control

Condition Code

24 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – PSW Key – Program Mask

Program Mask

25 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Program Mask

■ Bits 20-23 – Program Mask
– Controls a set of program exceptions
– When the corresponding bit is on, the exception results in an interrupt

■ The Program Mask can be manipulated by using the instruction SET PROGRAM MASK
(SPM)

■ The contents of the Program Mask can be examined using the instruction INSERT
PROGRAM MASK (IPM)

Program Mask PSW bit Program Exception

20 Fixed-point overflow

21 Decimal overflow

22 HFP exponent underflow

23 HFP significance

26 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Using the PSW for debugging

■ The PSW stores invaluable information about the general state of the machine during a
program's execution

■ The most interesting time to examine a PSW is when something goes wrong. Even a
summary dump will provide the programmer with:

– The contents of the PSW
– The contents of the general purpose registers
– The next instruction to be executed

27 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ Running a job has resulted in an 0C4 ABEND occurring. The summary dump in the job may
be enough information to work out what has gone wrong.

28 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ First, look at the active load module
– In this example, the load module name is GO since the LKEDG JCL procedure

was used. From this we already know that the error occurred in our load
module and not in either the assembler, linkage editor nor other part of
z/OS

Active load module

29 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ Next, double check the information in the PSW against the other information in the summary
dump

– The PSW shows that the next instruction address to be executed is X'7FF6'
– This agrees with the data in the dump showing the address of the load module

(X'7FF0') and the offset into the load module (X'0006')

Address of load module and offset

Address in PSW

30 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ The data at the PSW shows the instructions which were, are being, and will be executed

Data at PSW

31 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ Examining the program listing at offset 6 shows where the error occurred. Using the data at
the PSW and looking at the machine code generated by HLASM in the listing confirms this
and that so far our diagnosis of the problem is correct

32 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ Examining the program listing at offset 6 shows where the error occurred. Using the data at
the PSW and looking at the machine code generated by HLASM in the listing confirms this
and that so far our diagnosis of the problem is correct

■ We now know the instruction which caused the error was:
58F0 C006 → L R15,RET_CODE

Offset 6

33 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ At this stage of our debugging we know:
– The load module name that caused the error
– The offset into the load module at which the error occurred

■ We have also double-checked that what was printed in the summary dump is confirmed by
the data at the PSW

■ Examining the instruction at fault, we determine the following:
– 58F0 C006 → L R15,RET_CODE
– 58 – OPCODE = LOAD
– F – Register 15, the register to be loaded
– 0 – Index register (unused since it has a value of 0)
– C – Base register is register 12
– 006 – Displacement from the base register from which the data will be loaded

■ So, the instruction is attempting to load register 15 with the contents of memory at an offset
of 6 from register 12.

34 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ The summary dump also shows the contents of the general purpose registers

■ The value in register 12 is X'FD000008'

■ The instruction at fault is attempting to load a value from address X'FD00000E' – which is
unaddressable by our program and therefore the cause of the error

■ Note that the value of register 12 is the same as the value of register 0...

35 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Something has gone wrong

■ Looking back through the program, we can see that register 12 was loaded with the value of
register 0 during program startup

■ It looks as if the programmer made a typo and instead of using LR 12,0 should have used
BALR 12,0 in order to load the address of the next instruction into register 12. This would
make sense since they are using register 12 to establish addressability to the program's
data

■ Correcting this mistake fixes the program

Oops!

36 © 2014 IBM Corporation

SHARE Pittsburgh 2014 High Level Assembler Bootcamp (16153, 16154, 16155)

Program Status Word (PSW) – Using the PSW for debugging

■ Using the data in the summary dump, the PSW and the program listing has allowed us to fix
the cause of the error.

■ Although this is a simple example, it demonstrates the basics of debugging assembler
problems.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

