
S16152 - Coding in COBOL
for optimum performance

Tom Ross IBM
August 7, 2014

GUIDE SHARE EUROPE

Title: Coding in COBOL for optimum
performance

• Compiler options
• Dealing with data types
• Dealing with data items
• COBOL statements
• Sign processing

Finding inefficient COBOL coding

• Future: COBOL V5 may add flagging via RULES option
– (Similar to the PL/I RULES compiler option)

• Inefficient compiler options
• Inefficient use of data types in calculations
• Inefficient use of data types in specific statements
• Inefficient use of data items

• You can find these manually today

Inefficient Compiler options

• NOBLOCK0
– Use BLOCK0!

• NOFASTSRT
– Use FASTSRT!

• SSRANGE
– Use NOSSRANGE
– If range checking desired you might use loop

control tests to minimize performance impact
• SSRANGE is much easier to turn

on and off

Inefficient Compiler options

• TRUNC(STD)
– Should never be used! Use TRUNC(OPT)

• TRUNC(BIN)
– Recommend TRUNC(OPT) and COMP-5 for special case

data items

• Performance considerations using TRUNC:
– On the average, TRUNC(OPT) was 10% faster than

TRUNC(BIN), with a range of 80% faster to equivalent.

– On the average, TRUNC(STD) was 5% faster than TRUNC(BIN),
with a range of 75% faster to 60% slower.

– On the average, TRUNC(OPT) was 4% faster than
TRUNC(STD), with a range of 64% faster to equivalent.

Inefficient Compiler options

• NUMPROC(NOPFD)
– NUMPROC(PFD) is faster

• Performance considerations using NUMPROC:
– On the average, NUMPROC(PFD) was 1% faster than

NUMPROC(NOPFD), with a range of 21% faster to equivalent.

• Investigate your signed data in External Decimal and
Packed-decimal
– How can you do that? It is not easy, but if you really want to…
– If NUMERIC with NUMPROC(PFD) will tell you if you need

NOPFD
1. Create a sniffer program from existing programs to access

all of the data
2. Use IF NUMERIC (CLASS TEST) for every data item in

files and DBs
3. If 100% NUMERIC, change to NUMPROC(PFD)!

Investigate whether you can
use NUMPROC(PFD)

*> Compile ‘sniffer’ with NUMPROC(PFD)
EXEC SQL SELECT Ext-Dec Packed-Dec

INTO … :X, :Y END-EXEC

If X NUMERIC and Y NUMERIC Then
Display ‘Use NUMPROC(PFD)!’
Move 2 To Return-Code

Else
Display ‘Sorry, use NUMPROC(NOPFD)!’
Move 16 To Return-Code *> Or call
CEE3ABD
Stop Run

End-If

Dealing with data types

• Calculations using numeric USAGE DISPLAY
data items

• Perform VARYING identifier-2 data items
defined with USAGE DISPLAY

• Perform VARYING operands with different
data types

• Accessing a table with USAGE DISPLAY
subscripts

• MOVEs and COMPUTEs that convert data
types within loops

Dealing with data types

• Calculations using numeric USAGE DISPLAY data
items
Examples:

Set index_name_I Up By Usage_display_x
If Usage_display_y > Usage_display_z *

Usage_display_w
Compute x = y ** z

ADD, SUBTRACT, MULTIPLY,DIVIDE

• Use BINARY or PACKED-DECIMAL

Dealing with data types

• Perform VARYING identifier-2 data items defined
with USAGE DISPLAY

PERFORM VARYING Usage_display_x
FROM something BY something
UNTIL something_else

END-PERFORM

PERFORM my_section VARYING
Usage_display_y

FROM something BY something
UNTIL something_else

END-PERFORM

PERFORM VARYING with different data types

PERFV1.
PERFORM OTHER-PARA VARYING EXT-DEC

FROM PACKED BY BIN3
UNTIL EXT-DEC > FLOAT

END-PERFORM

PERFV1.
PERFORM OTHER-PARA VARYING EXT-DEC

FROM EXT-DEC2 BY EXT-DEC3
UNTIL EXT-DEC > EXT-DEC4

END-PERFORM

PERFV3.
PERFORM OTHER-PARA VARYING Bin

FROM Bin2 BY Bin3
UNTIL Bin > Bin4

END-PERFORM

PERFORM VARYING with different data types

• Measurements using COBOL V4.2 and V5.1.1
– W/loop control set to 1000
– PERFORM VARYING executed 100,000 times

• PERFV1: All operands different types
– V4.2 CPU: 0 HR 00 MIN 02.88 SEC

– V5.1 CPU: 0 HR 00 MIN 02.23 SEC

• PERFV2: All operands external decimal
– V4.2 CPU: 0 HR 00 MIN 01.59 SEC

– V5.1 CPU: 0 HR 00 MIN 01.17 SEC

• PERFV3: All operands BINARY
– V4.2 CPU: 0 HR 00 MIN 00.99 SEC

– V5.1 CPU: 0 HR 00 MIN 00.30 SEC

Dealing with data types

• Accessing a table with USAGE DISPLAY data items

PERFORM 1000 TIMES
Add 1 to U_disp_x
Move stuff To Table_element (

U_disp_x)
END-PERFORM

• Use BINARY or INDEX-NAMEs:
02 Table_element OCCURS 1000 Times

Indexed By
Index_Name_1.

Dealing with data types

• MOVEs and COMPUTEs that convert data types
within loops

PERFORM blah VARYING blah_blah

blah.
Move Binary_b To Usage_display_x
Compute Binary_b =

Binary_b * Packed_C +
Float_f

• Avoid conversions if possible

• Use EXTERNAL DECIMAL for output only

Dealing with data types

• If IBM provided a DFP (Decimal Floating
Point) data type, would you use it?

– DFP is much faster than other data types
– Is it possible to change a data type for

stored data? DB2, IMS?

• COBOL V5 already uses DFP instructions
– For converting External Decimal before

calculations

– For doing calculations with large Packed-
Decimal data items

Dealing with data items

• Alphanumeric data item inadvertent
padding

• Numeric data item truncation
• Numeric data item overflow
• Initialization of data items

Dealing with data items

• Alphanumeric data item inadvertent padding

Move Cust_Name to Cust_record <* These MOVEs bot h put
Move Cust_Name to Cust_rec_name <* the name in byt es 1-40.

• Looks harmless, right?

77 Cust_Name Pic x(40).
01 Cust_record.

05 Cust_rec_Name Pic x(40).
05 Cust_rec_Account Pic 9(30).
05 Cust_rec_Address Pic x(50).
05 Cust_rec_Policy Pic 9(15).
05 Cust_rec_email Pic x(25).
05 Cust_rec_other.

10 Cust_other1 Pic x(140).
10 Cust_other1 Pic x(200).
10 Cust_other1 Pic x(500).

Dealing with data items

• These moves are quite different!

Move Cust_Name to Cust_rec_name <* Moves 40 bytes
Move Cust_Name to Cust_record <* Moves 1000 byt es!

• The extra bytes moved cost CPU cycles

77 Cust_Name Pic x(40).
01 Cust_record.

05 Cust_rec_Name Pic x(40).
05 Cust_rec_Account Pic 9(30).
05 Cust_rec_Address Pic x(50).
05 Cust_rec_Policy Pic 9(15).
05 Cust_rec_email Pic x(25).
05 Cust_rec_other.

10 Cust_other1 Pic x(140).
10 Cust_other1 Pic x(200).
10 Cust_other1 Pic x(500).

Dealing with data items

• Numeric data item truncation
– DIAGTRUNC compiler option
– Can help find coding ‘errors’

77 Binary_b PIC S9(9) BINARY.
77 Binary_c PIC S9(4) BINARY.

77 Packed_p PIC S9(7)V9(2) COMP-3.
77 Packed_q PIC S9(5)V9(2) COMP-3.

Move Binary_b to Binary_c
Move Packed_p to Packed_q

Dealing with data items

• Numeric data item overflow
• COBOL normally either ignores decimal overflow conditions

or handles them by checking the condition code after the
decimal instruction.

• ILC (Inter Language Communication) triggers switch to a
language-neutral or ILC program mask
– This ILC program mask enables decimal overflow

(COBOL-only program mask ignores overflow)
– COBOL code also tests condition after decimal instructions
– Overflows cause program calls to condition handling
– Overflows can be very common in COBOL

• Result: COBOL math can get bogged down

Dealing with data items

• Numeric data item overflow
• Performance considerations for a mixed COBOL with

C or PL/I application with COBOL using PACKED-
DECIMAL data types in 100,000 arithmetic
statements that cause a decimal overflow condition
(100,000 overflows):

– Without C or PL/I: 0.040 seconds of CPU time

– With C or PL/I: 1.636 seconds of CPU time

Dealing with data items

• Using XML or calling C now common, forcing ILC
• What to do? Make receiving data items larger … or if you

can’t change your data definitions …
• ON OVERFLOW for performance!

Compute x = y ** z
On Overflow CALL ‘CEE3ABND’

End-Compute

Add 1 to U_disp_x
On Overflow Write Error-record-info

End-Add

Dealing with data items

• ON OVERFLOW for performance?

• With ON OVERFLOW phrase, compiler generates code
to check for the condition. If the condition happens,
thousands of instructions and LE condition
management overhead are avoided

• This should be especially considered for programs
that use

– ILC with C or PL/I or

– XML PARSE or XML GENERATE or

– Enterprise COBOL V5!

• All of these cases involve ILC

– Enterprise COBOL V5 always uses C

Dealing with data items

• Best performance and usability would
be achieved with larger data items to
avoid overflow condition

• But ON OVERFLOW can be an
alternative if you can only change the
program you are working on or if data
areas are not under your control

Dealing with data items

• Initialization of data items
– Runtime option STORAGE(00) could be wasting lots of

instructions
• STORAGE(00) is almost a standard!
• STGOPT (or older OPTIMIZE(FULL) could help

– Initialize only those variables that need to be set
• Use XREF compiler option and listings to see which ones

need it

• INITIALIZE statement
– Group MOVE faster than INITIALIZE for tables ?
– Consider INITIALIZE for 1st element of table and then

propagate that value to other elements of the table ?

INITIALIZE

01 WS-GROUP.

02 WS-GROUP-TABLE OCCURS 1000 TIMES INDEXED BY T-ID X.

05 WS1-COMP3 COMP-3 PIC S9(13)V9(2).

05 WS2-COMP COMP PIC S9(9)V9(2).
05 WS3-COMP5 COMP-5 PIC S9(5)V9(2).

05 WS4-COMP1 COMP-1.

05 WS5-ALPHANUM PIC X(11).

05 WS6-DISPLAY PIC 9(13) DISPLAY.

05 WS7-COMP2 COMP-2.

. . .

INITIALIZE WS-GROUP

INITIALIZE + MOVE
01 WS-GROUP.

02 WS-GROUP-TABLE OCCURS 1000 TIMES INDEXED BY T-ID X.

05 WS1-COMP3 COMP-3 PIC S9(13)V9(2).

05 WS2-COMP COMP PIC S9(9)V9(2).
05 WS3-COMP5 COMP-5 PIC S9(5)V9(2).

05 WS4-COMP1 COMP-1.

05 WS5-ALPHANUM PIC X(11).

05 WS6-DISPLAY PIC 9(13) DISPLAY.

05 WS7-COMP2 COMP-2.

SET T-IDX TO 1

INITIALIZE WS-GROUP-TABLE(T-IDX)

PERFORM 999 TIMES

SET T-IDX UP BY 1
MOVE WS-GROUP-TABLE(1) TO WS-GROUP-TABLE(T-IDX)

END-PERFORM

Group MOVE

01 WS-GROUP.

02 WS-GROUP-TABLE OCCURS 1000 TIMES INDEXED BY T-ID X.
05 WS1-COMP3 COMP-3 PIC S9(13)V9(2).

05 WS2-COMP COMP PIC S9(9)V9(2).

05 WS3-COMP5 COMP-5 PIC S9(5)V9(2).

05 WS4-COMP1 COMP-1.
05 WS5-ALPHANUM PIC X(11).

05 WS6-DISPLAY PIC 9(13) DISPLAY.

05 WS7-COMP2 COMP-2.

Move X’00’ To WS-GROUP

Ooops, what did I do wrong?

Group MOVE

01 WS-GROUP.

02 WS-GROUP-TABLE OCCURS 1000 TIMES INDEXED BY T-ID X.
05 WS1-COMP3 COMP-3 PIC S9(13)V9(2).

05 WS2-COMP COMP PIC S9(9)V9(2).

05 WS3-COMP5 COMP-5 PIC S9(5)V9(2).

05 WS4-COMP1 COMP-1.
05 WS5-ALPHANUM PIC X(11).

05 WS6-DISPLAY PIC 9(13) DISPLAY.

05 WS7-COMP2 COMP-2.

Move ALL X’00’ To WS-GROUP

INITIALIZE + MOVE

• Well, I tried it with V4.2!
– Each test PERFORMed 1,000,000 times

• INITIALIZE by itself:
– CPU: 0 HR 00 MIN 02.37 SEC

• INITIALIZE + MOVE
– CPU: 0 HR 00 MIN 04.13 SEC

• Group MOVE
– CPU: 0 HR 00 MIN 05.18 SEC

• It turns out the V4.2 compiler
generates INITIALIZE + MOVE already!

INITIALIZE + MOVE

• Then I tried it with V5.1.1!
– Each test PERFORMed 1,000,000 times

• INITIALIZE by itself:
– CPU: 0 HR 00 MIN 04.31 SEC

• INITIALIZE + MOVE
– CPU: 0 HR 00 MIN 06.78 SEC

• Group MOVE
– CPU: 0 HR 00 MIN 05.15 SEC

• The V5.1 compiler generates
INITIALIZE + MOVE already, but slower
than V4.2 … I will look into that!

INITIALIZE + MOVE

• I always thought INITIALIZE was slow

• Customers told me so and so did the COBOL
Performance Tuning Paper:

• Performance considerations for INITIALIZE on a
program that has 5 OCCURS clauses in the group:

– When each OCCURS clause in the group contained
100 elements, a MOVE to the group was 8% faster
than an INITIALIZE of the group.

– When each OCCURS clause in the group contained
1000 elements, a MOVE to the group was 23%
faster than an INITIALIZE of the group.

• I found differently!

COBOL Statements

• Move calculations outside of loops
whenever possible

• SEARCH ALL
• Examples from clients

Move calculations outside of loops

PERFORM blah VARYING blah_blah

. . .

blah.

* If tran processed after close of business

If Function CURRENT-DATE (19:6)

> 180000 Then

Add 1 to effective-date

End-If

Move calculations outside of loops

77 tofday PIC 9(8).
. . .

Move Function CURRENT-DATE (19:6)
To tofday

PERFORM blah VARYING blah_blah

. . .

blah.

* If tran processed after close of business

If tofday > 180000 Then

Add 1 to effective-date

End-If

Move calculations outside of loops AND
use more efficient data type!

77 tofday PIC 9(8) BINARY.
. . .

Move Function CURRENT-DATE (19:6)
To tofday

PERFORM blah VARYING blah_blah

. . .

blah.

* If tran processed after close of business

If tofday > 180000 Then

Add 1 to effective-date

End-If

SEARCH ALL vs SEARCH

• SEARCH - binary versus serial
– We got the question: Is there a point (a small enough number of items

searched) where a serial search is faster than a binary SEARCH?

• Answer: it depends on your data! I tried a set of tests…
– Using a binary search (SEARCH ALL) to search a 50-element table was

343% slower than using a sequential search (SEARCH)

• BSRCHXS: CPU: 0 HR 00 MIN 01.41 SEC

• SRCHXS: CPU: 0 HR 00 MIN 00.41 SEC
– Using a binary search (SEARCH ALL) to search a 100-element table was

100% slower than using a sequential search (SEARCH)
• BSRCHSM: CPU: 0 HR 00 MIN 01.47 SEC

• SRCHSM: CPU: 0 HR 00 MIN 00.73 SEC

– Using a binary search (SEARCH ALL) to search a 1000-element table was
70% faster than using a sequential search (SEARCH)

• BSRCHBIG: CPU: 0 HR 00 MIN 02.21 SEC

• SRCHBIG: CPU: 0 HR 00 MIN 06.52 SEC

• One customer found that COBOL performance was better
than PL/I and wanted to start using only COBOL for new
applications (they are 50/50 COBOL and PL/I)

• The customer wanted to have replacements for commonly
used PL/I functions:
– VERIFY

– TRIM

– INDEX

• When they tried to code these in COBOL they found they
were too slow

• They asked me to try to do better…

Coding tips from customer situations

* VERIFY PL/I function in COBOL using INSPECT: slow

MOVE '02.04.2010' TO TEXT1

MOVE TEXT1 TO TEXT2

INSPECT TEXT2 REPLACING ALL '.' BY '0'

IF TEXT2 IS NOT NUMERIC

MOVE 'NOT DATE' TO TEXT1

END-IF

Coding tips from customer situations

Coding tips from customer situations

* VERIFY PL/I function in COBOL using CLASS test:
* 40% faster

SPECIAL-NAMES.

CLASS VDATE IS '0' thru '9' '.'.

. . .

MOVE '02.04.2010' TO TEXT1

IF TEXT1 IS Not VDATE Then

MOVE 'NOT DATE' TO TEXT1

END-IF

Coding tips from customer situations

* TRIM PL/I function written in COBOL using INSPECT and
* FUNCTION REVERSE: slow

MOVE ' This is string 1 ' TO TEXT1
COMPUTE POS1 POS2 = 0

INSPECT TEXT1
TALLYING POS1

FOR LEADING SPACES
INSPECT FUNCTION REVERSE(TEXT1)

TALLYING POS2
FOR LEADING SPACES

MOVE TEXT1(POS1:LENGTH OF TEXT1 - POS2 - POS1) TO TEX T2

Coding tips from customer situations

* TRIM PL/I function written in COBOL: 31% faster

MOVE ' This is string 1 ' TO TEXT1
PERFORM VARYING POS1 FROM 1 BY 1

UNTIL TEXT1(POS1:1) NOT = SPACE
END-PERFORM

PERFORM VARYING POS2 FROM LENGTH OF TEXT1
BY -1 UNTIL TEXT1(POS2:1) NOT = SPACE

END-PERFORM

COMPUTE LEN = POS2 - POS1 + 1
MOVE TEXT1(POS1 : LEN) TO TEXT2 (1 : LEN)

Coding tips from customer situations

* INDEX PL/I function written in COBOL: slow

MOVE 'TestString1 TestString2' TO BUFFER

COMPUTE POS = 0

INSPECT BUFFER
TALLYING POS
FOR CHARACTERS
BEFORE INITIAL 'TestString2'

Coding tips from customer situations

* INDEX PL/I function written in COBOL: 83% faster

MOVE 'TestString1 TestString2' TO BUFFER

PERFORM VARYING POS FROM 1 BY 1
UNTIL BUFFER(POS:11) = 'TestString2'

END-PERFORM

