
Insert

Custom

Session

QR if

Desired.

PDSE Version 2: Member Generations
Practical User Applications

Speaker: Thomas Reed /IBM Corporation

SHARE Pittsburgh 2014

Session:16127

Agenda

• PDSE Member Generations Basics

• Working with Member Generations

• ISPF Support

• Member Generations Macro Support

• Member Generations REXX tutorial

– Data Set Information

– Listing Members

– Discovering Generations

– Recovering Generations

What is a PDSE?

• PDSE: Partitioned Data Set Extended

• A PDSE is a collection of directory and data pages

• At V2R1 there are 2 data set formats V1 and V2 PDSEs

• PDSE server consists of one or two address spaces
(SMSPDSE and SMSPDSE1)

• The SMSPDSE(1) address spaces serve client access
requests for PDSE data sets

• Under the hood SMSPDSE(1) also manages PDSE

serialization and buffering

PDSE Versions

• At V2R1 there are 2 data set formats V1 and V2 PDSEs

• The version 1 format is the historic PDSE format

• The version 2 format is a revision of the PDSE format

– Brings better performance and efficiency

– Reduces CPU and Storage utilization

– Supports PDSE member generations

• Version 2 data sets use the same serialization and

buffering subsystems as version 1

• The IMF/BMF performance enhancements at V2R1 apply
to BOTH V1 and V2 datasets

PDSE Version 2:
Member Generations
• Implemented via DFSMS APAR OA42358

– ISPF Support via APARs OA42247 and OA42248

• Exclusive to the V2 PDSE Format

• PDSE Data sets can now retain multiple

generations of members

• Applies to BOTH Data Members and

Program Objects

• Retains generations up to the data set/system limit

PDSE Version 2:
Member Generations
Terminology

• Generation (GEN)

– A prior copy of a member

• Primary Generation

– The current member

– Absolute and Relative 0

• Generation Numbering

– Absolute: GEN(n), GEN(n-1), GEN(n-2)….

– Relative: GEN(-1), GEN(-2),….,GEN(-MAXGENS)

• n being the nth generation created

PDSE Member Generations:
The Basics

• FIFO (First In, First Out) structure

– Oldest generation is permanently deleted

if it’s over the generation limit

– Old generations generally behave just

like primary members

– Aliases are retained for previous generations and can be

recovered*

* When STOW RECOVERG is used

PDSE Member Generations:
The Basics

• Generations are uniquely numbered

– They can be referenced either by their

Absolute or Relative generation

– The Primary Member is always 0,

both relative and absolute

– Greatest number indicates the newest generation

PDSE Member Generations:
The Basics

• Example: MAXGENS = 4 after 10 generations

• Note that the newest generation ALWAYS has the greatest value

-2

Gen

9

-1-3-4------0REL

GenGenGen------PRI

10876543210ABS

PDSE Member Generations:
The Basics

Usage Considerations

• Allow extra space for each generation

• Each generation retains the entire member

• MAXGENS_LIMIT in IGDSMSxx is the

System limit

• MAXGENS_LIMIT can be set dynamically via SET
SMS=xx

– Cannot be set dynamically with SETSMS

• MAXGENS_LIMIT upper limit is set at 2 billion

PDSE Member Generations:
Working with Generations
Enabling Member Generations

1. Ensure that the requisite APARs are applied

2. MAXGENS_LIMIT needs to be set >0 in your IGDSMSxx

3. Allocate a V2 PDSE dataset with greater than 0
generations (must be <= MAXGENS_LIMIT)

PDSE Member Generations:
Coexistence
• Down level systems will tolerate V2 PDSE’s with

Generations and be able to open for INPUT of OUTPUT

• Down level systems will not be able to create or

manipulate generations

• DFSMSdss support is identical to 2.1

– DSS Copy will retain generations with OA43729 or

Concurrent Copy

– Logical or Physical DUMP and RESTORE

retains generations

PDSE Member Generations:
Working with Generations

Allocating a PDSE with Generations Enabled via JCL!

• Note that LIBRARY,2 specifies a V2 data set

• MAXGENS must be <= the system MAXGENS_LIMIT

//ALLOC EXEC PGM=IEFBR14
//PDSE2 DD DSN=TREED.PDSE.GENS,
// DSNTYPE=(LIBRARY,2),MAXGENS=10,// DSNTYPE=(LIBRARY,2),MAXGENS=10,// DSNTYPE=(LIBRARY,2),MAXGENS=10,// DSNTYPE=(LIBRARY,2),MAXGENS=10,
// RECFM=FB,LRECL=80,
// UNIT=SYSALLDA,SPACE=(CYL,(1,1,1)),
// DISP=(,CATLG,DELETE)

PDSE Member Generations:
ISPF Support
Panels

• ISPF now has generations support

• Enhanced member list option must be selected

PDSE Member Generations:
ISPF Support
Allocation

• Allocates like any other PDSE

• MAXGENS must be >0

• Be sure you’re using version 2!

PDSE Member Generations:
ISPF Support
• Accessing generations through 3.4

Don’t forget the ‘/’

PDSE Member Generations:
ISPF Support
Restrictions

• ENQUEUEing on one generation applies to

all generations of that member

– This is not a PDSE serialization restriction

– The native API’s allow for editing of

multiple generations of the same member

• ISPF Options 1 and 2 do not support a

GEN parameter

• ISPF 3.1 and 3.4 do support a GEN parameter

PDSE Member Generations:
Working with Generations
Creating a Generation

• 2 requirements

– (LIBRARY,2)

– MAXGENS > 0

• New generations are automatically created on

replace or delete of a member

• Update in place will not create a new generation

• Generation creation is atomic

PDSE Member Generations:
ISPF Support
Editing

• Editing the current member (GEN 0) results in

a new generation being created

• Editing prior generations does NOT result

in a new member

• Supports referencing generations by either

absolute or relative generation number

• Deleting a member in ISPF deletes all generations

– This is an ISPF implementation feature

– TSO DELETE pdse(member) deletes only the primary

PDSE Member Generations:
ISPF Support
Editing Cont’d

• Generation creation behavior can be forced

– SAVE NEWGEN – Creates a new generation

– SAVE NOGEN – Does not create a new generation

• Edit will tell you which absolute generation

you are working with

PDSE Member Generations:
Working with Generations
Reading Old Generations

• FIND macro will allow programs to connect to old
generations

• Conventional READ and CHECK macros

still apply

• Old generations cannot be accessed via JCL

or dynamic allocation

PDSE Member Generations:
Working with Generations
Deleting Old Generations

• Each generation must be deleted separately

• Deleted generations can be replaced

by using STOW RG

• ISPF member delete will delete all generations

PDSE Member Generations:
Working with Generations
Recovering Old Generations

• Read an old generation and then write it to either the same
or a different member name

– The old generation will become the current generation

– Note: This method will not restore aliases

• Use the RECOVERG option for the STOW macro

– The old generation becomes the current generation of the
member of the same name

– Note: Aliases ARE recovered by this method

PDSE Member Generations:
Working with Generations
Backup Considerations

• IEBCOPY and IDCAMS REPRO

– Only copy the current generation of each member

– All old generations are lost

• DFSMSdss

– Physical or Logical dump and restore retain all old

generations

– This includes HSM backup

PDSE Member Generations:
DESERV Macros
FUNC=GET_G (AKA Get Generation)

• Returns information for the selected generation

• Returns the same information as GET plus the relative and

absolute generation numbers

• A dummy entry is returned if the selected generation does

not exist

• Does not support CONNECT

PDSE Member Generations:
DESERV Macros

FUNC=GET_G

,AREA=(buffer_area, buffer_area_size)

,DCB=data_control_block

,NAME_LIST=(generationname,1)

[,MF={(E,parmlist_name[,NOCHECK|COMPLETE])|S}]

[,RETCODE=return_code]

[,RSNCODE=reason_code]

PDSE Member Generations:
DESERV Macros
FUNC=GET_ALL_G (AKA Get All Generations)

• Returns information for the selected generation for all
members

• Returns the same information as GET_ALL plus the
relative and absolute generation numbers

• A dummy entry is returned if the selected generation does

not exist for a member

• Does not support all the same options as GET_ALL

PDSE Member Generations:
DESERV Macros

FUNC=GET_ALL_G

,AREA=(buffer_area, buffer_area_size)

,DCB=data_control_block

,NAME_LIST=(generationname,1)

[,MF={(E,parmlist_name[,NOCHECK|COMPLETE])|S}]

[,RETCODE=return_code]

[,RSNCODE=reason_code]

PDSE Member Generations:
STOW Macro
DG (Delete Generation)

• Deletes an existing generation

• Takes a member name and generation number

• Leaves a gap in the generation list

• If issued with a generation of 0, deletes the member

without creating a generation

PDSE Member Generations:
STOW Macro
RG (Replace Generation)

• Replaces an existing generation

• Adds a generation if replacing a gap

in the generation list

PDSE Member Generations:
STOW Macro
RECOVERG (Recover Generation)

• Recovers an existing generation

• Removes the selected generation from

the generation list and makes it the

primary member

• Creates a new generation in the replace

process from the former primary member

PDSE Member Generations:
What do we do with it?!

• Manually entering generation numbers in ISPF

– Time consuming

– No generation list

• We can get at these same interfaces programmatically!

– Examples will be in REXX

PDSE Member Generations:
What do we do with it?!

Mainframe-ers

Mainframe-er

Mainframe-er’s

PDSE Member Generations:
What do we do with it?!

• PDF API Changes for Generations

– DSINFO

• ZDSDSNV = The version of the PDSE

• ZDSNGEN = The number of generations specified
(MAXGENS) on allocation of the PDSE

– LMDSLIST

• ZDLDSNV = The version of the PDSE

• ZDLNGEN = The number of generations specified
(MAXGENS) on allocation of the PDSE

– EDIT VIEW BROWSE support the GEN parameter

• GEN(n) = Either relative or absolute generation

– EDIT SAVE supports NOGEN and NEWGEN

PDSE Member Generations:
Code Disclaimer

• This code is UNSUPPORTED and is intended only to

provide usage examples

• These examples are provided as is with no guarantees as

to their correctness of effectiveness

• IBM is not responsible for damages or any other problems

incurred through the use of these examples

PDSE Member Generations:
Generations in Code

• Getting more information about your PDSE

– DSINFO or LMDSLIST

– Both call the same FAMS interface underneath

• This lets us determine the VERSION and MAXGENS of

the PDSE

– No point in trying to manipulate generations in a V1 PDSE

– If MAXGENS is 0 then it won’t work either

PDSE Member Generations:
Generations in Code

• Finding out about your PDSE

/***/
/* Show what type of data set it is */
/***/
ADDRESS ISPEXEC 'DSINFO DATASET('TargetDataSet')'

SAY 'VERSION:'ZDSDSNV' Generations:'ZDSNGEN

• DSINFO sets many variables

• New for 2.1

• ZDSDSNV = The version of the PDSE

•ZDSNGEN = The number of generations specified

(MAXGENS) on allocation of the PDSE

PDSE Member Generations:
Generations in Code

• How do I list the members?

– LISTDS with the MEMBERS option

– Returns Data Set information and Member List

• We can discard the first 6 lines

• We only need the member list

• This only gets us the list of PRIMARY members in the

PDSE

– This doesn’t tell us anything about each member’s

generations, if they have any

PDSE Member Generations:
Generations in Code

• Listing Members

/***/
/* List the members in the data set */
/***/
call outtrap "LIST."
"LISTDS "TargetDataSet" MEMBERS"
call outtrap "OFF"
DO i = 7 to list.0 /* 1 to 6 contains info about the DS*/
member = strip(list.i)
SAY 'Member Name: 'member

END

• "TargetDataSet“ is our DSN

• This will work for V1 and V2 PDSE’s

PDSE Member Generations:
Generations in Code

• How do I list generations for a member?

– First we start with a PRIMARY member name

– EDIT now supports a GEN(n) parameter

• Takes either absolute or relative generation

– EDIT will report a RC=10 if a generation does not exist

• We don’t actually want to EDIT the generation, only see if
it exists.

PDSE Member Generations:
Generations in Code

• How to EDIT without EDITING

– The NOED macro

– Also the sound of one hand clapping

/*REXX MACRO PROGRAM*/
"ISREDIT MACRO PROCESS"
"ISREDIT CANCEL"
ADDRESS 'ISPEXEC'
RETURN

• The macro simply cancels the EDIT session

•Prevents updates to the generation

•Prevents the EDIT dialog from showing on screen

•CANCEL causes a RC=4

PDSE Member Generations:
Generations in Code

• Listing Absolute Generations
/***/
/* See what absolute generations exist */
/***/
ADDRESS ISPEXEC 'LMINIT DATAID(DATAIDV) DATASET('TargetDataSet')'
DO j=0 to 50
ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'
ADDRESS ISPEXEC 'EDIT DATAID('DATAIDV') MEMBER('member') GEN('j') MACRO(NOED)'
IF RC<=4 Then
SAY 'Generation 'j' Exists.'

End

The EDIT Macro

Generation Parm
Check the EDIT RC

•<=4, the gen exists

•>4, the gen doesn’t exist or

we hit an error

PDSE Member Generations:
Generations in Code

• Listing Relative Generations
/***/
/* See what relative generations exist */
/***/
ADDRESS ISPEXEC 'LMINIT DATAID(DATAIDV) DATASET('TargetDataSet')'
DO j=0 to ZDSNGEN

ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'
ADDRESS ISPEXEC 'EDIT DATAID('DATAIDV') MEMBER('member') GEN('j * -1') MACRO(NOED)'
IF RC<=4 Then

SAY 'Generation 'j * -1' Exists.'
End

The EDIT Macro

Generation Parm
We can have up to

ZDSNGEN generations per

member (MAXGENS)

PDSE Member Generations:
Generations in Code

• Now we can:

– Get Version and MAXGENS

– List PRIMARY members in the PDSE

– Determine which generations exist for each member

• This tells us useful information that we didn’t know about

the V2 dataset before

• We’re still not manipulating generations though!

PDSE Member Generations:
Generations in Code

• How do I replace the primary with a previous generation?

– Very similar to determining if a generation exists

– Relative generations are far easier to work with

• Restoring GEN(-1) for example

• No need to reference absolute generation value

• This time we will actually EDIT the generation

– Simply use SAVE NEWGEN to replace the primary

PDSE Member Generations:
Generations in Code

• How to EDIT and create a new primary

– The SAVENEWG macro

/*REXX MACRO PROGRAM*/
"ISREDIT MACRO PROCESS"
"ISREDIT SAVE NEWGEN"
"ISREDIT END"
ADDRESS 'ISPEXEC'
RETURN

• The macro opens the generation in EDIT

•Simply SAVEs the open generation as the primary

•Uses SAVE NEWGEN to force the creation of a new

generation

•Returns RC=0 on success

PDSE Member Generations:
Generations in Code

• Restoring Old Generations
/***/
/* Restore generation -1 */
/***/
ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'
ADDRESS ISPEXEC 'EDIT DATAID('DATAIDV') MEMBER('member') GEN(-1) MACRO(SAVENEWG)'
IF RC>0 Then

SAY 'No Generation to Restore'
ELSE

SAY 'Restored Latest Generation'

The EDIT Macro

Generation parm

using relative

referencing

We may not have a

generation to restore

PDSE Member Generations:
Generations in Code

• Roll back an entire PDSE 1 generation
/***/
/* List the members in the data set */
/***/
call outtrap "LIST."
"listds "TargetDataSet" members"
call outtrap "OFF"
DO i = 7 to list.0 /* 1 to 6 contains info abt the DS*/
member = strip(list.i)
SAY 'Member Name: 'member
/***/
/* See what absolute generations exist */
/***/
ADDRESS ISPEXEC 'LMINIT DATAID(DATAIDV) DATASET('TargetDataSet')'
DO j=0 to 50
ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'
ADDRESS ISPEXEC 'EDIT DATAID('DATAIDV') MEMBER('member') GEN('j') MACRO(NOED)'
IF RC<=4 Then
SAY 'Generation 'j' Exists.'

End
/***/
/* Restore generation -1 */
/***/
ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'
ADDRESS ISPEXEC 'EDIT DATAID('DATAIDV') MEMBER('member') GEN(-1) MACRO(SAVENEWG)'
IF RC>0 Then
SAY 'No Generation to Restore'

ELSE
SAY 'Restored Latest Generation'

END

PDSE Member Generations:
Generations in Code

• Example Output

– Note generations are listed in absolute referencing

– Generation rolled back using relative referencing

VERSION:2 Generations: 4

Member Name: AMEMBER
Generation 0 Exists.
Generation 6 Exists.
Generation 7 Exists.
Generation 8 Exists.
Generation 9 Exists.

Restored Latest Generation

Member Name: BMEMBER
Generation 0 Exists.

No Generation to Restore

Questions? Comments?

Please Fill Out the Survey!

