
Insert

Custom

Session

QR if

Desired.

Accessing IMS Data From

Your Java Environments

#16106

Richard Tran

IMS Software Development

richtran@us.ibm.com

Agenda

• What is unique about IMS

• How the IMS Universal JDBC driver works

– Dynamically mapped data

– Null value representation

– Advance data types

• Performance considerations

The benefits of IMS

• IMS is different from most other databases in that it

is hierarchical

• Faster keyed searches compared to relational

• Ideal for:

– Finance/Banking

– Insurance/Claims

– Retail/Inventory

Isn’t JDBC meant for relational?

• IMS can present a relational model of a hierarchical

database

– 1 to 1 mapping of terms

• PCBs -> Schemas

• Segments -> Tables

• Fields -> Columns

• Record -> Row

– Hierarchical parentage can be shown through

primary/foreign key constraints

• IMS has had a JDBC driver since IMS V7

– IMS Universal JDBC drivers V10+

– IMS Classic JDBC drivers V7-V13

• Note: V13 is the last supported version

IMS’ “Key” concept

ADATAAKEY

BDATABKEY

CKEY

Seg A

Seg B

Seg C

Hierarchical

representation

Relational

representation

AKEY

ADATA BKEY

BDATA

CKEY

CDATA

BDATABKEY

CDATACKEY

A_AKEY

A_AKEY

B_BKEY

Table C

Table BTable A
1

1

*

*

*

Naming of foreign keys

AKEY CKEY

Physical view of Table C

CKEY

CDATA

BKEY CDATACKEY

A_AKEY

B_BKEY

• The main difference in IMS’ handling of foreign keys is the

naming convention

– FK name = <Parent_Segment_Name>_<Parent_Key>

• Unlike a relational database, IMS does not store foreign key

values in the table. It is instead stored in the key feedback area.

– This does not allow users to create custom foreign key

names

Table C

Key Feedback Table Data

JOIN processing

• IMS can only process JOINs along the tables that fall within the

same hierarchical path.

– In the following database, you can join A and B as well as A

and C. B and C would not be joinable

• IMS will do an implicit INNER JOIN when JOIN syntax is not

specified

– Other databases will typically do an implicit CROSS JOIN

• An alternative to OUTER JOINs is to have your DBA create a

logical relationship

– Logical relationship definitions is outside the scope of this

presentation

A

B C

IMS data overlay consideration

• An IMS record can typically be considered as a huge blob of

data.

• Aside from the key field which is in a fixed location, data can be

stored at any field and offset within the database

• This allows for multiple fields to be defined over the same area

– An update to one field may affect the value of another!

• In the following example, the ADDRESS field exist in the same

area as the STREET, CITY and ZIP

ADDRESS
AKEY

Table A

STREET CITY ZIP

IMS dynamic record mapping

• An IMS record can also be mapped in multiple ways depending

on a control field

• For example an Insurance Policy table can be interpreted as

multiple types of policies depending on the value of a control

field

• The IMSJDBC driver will depict invalid mappings as null values

– If looking at a Car Policy, then the ADDRESS, VALUE,

SQFT columns would be shown as NULL

ADDRESS
CTL

Policy Table

Make MODEL YEAR
AKEY

VALUE SQFT

Make MODEL YEARMake MODEL

ADDRESS VALUE SQFTADDRESS VALUE If CTL = “Home”

If CTL = “Car”

IMS NULL value considerations

• IMS does not store NULL values

• However, IMS will represent values as NULL such as

in the dynamic mapping scenario for an invalid

mapping

• IMS will also represent NULL values for variable

length segments

– Some fields may not exist in this scenario but it is not

based on a NULL indicator as is typical for a relational

database

IMS variable length segments

• An IMS record length can vary based on a length field

– This is similar to how relational databases store VARCHAR

and VARBINARY values except we apply it to the whole

record

• The IMS JDBC driver will manage this length value for the user

• For a given record instance, if a field falls outside of the given

length it is treated as null as there is no data associated with it.

• In the following example, the comments field is treated as null

ADDRESSSSN INCOME OCCUPATION COMMENTSLL

1 3 23 33 40 50 70Offsets

Length value of 50 bytes

Non-existent dataWithin the record instance

IMS Data Type support

• Most existing IMS field definitions are based on COBOL

copybooks or PL/I include files

• The IMS JDBC driver is built to handle the more complex data

structures

• Example of a STRUCT

01 SEGMENTA.

05 KEYFIELD PIC X(4).

05 ADDRESS.

10 STREET PIC X(10).

10 CITY PIC X(10).

10 ZIP PIC X(9).

CHAR[10] STREET

CHAR[10] CITY

CHAR[9] ZIP

Defines the structure
ADDRESS

How to read a STRUCT in Java

• Standard SQL assumes the application knows the

makeup of the individual STRUCT attributes

Struct address = (Struct) rs.getObject(“ADDRESS”);

Object[] addressAttributes = address.getAttributes();

String street = (String) addressAttributes[0];

String city = (String) addressAttributes[1];

String zip = (String) addressAttributes[2];

Alternative way to read a STRUCT in Java

• IMS provides a more intuitive lookup of STRUCT

attributes by leveraging additional data within the

IMS catalog

StructImpl addressImpl = (StructImpl) rs.getObject(“ADDRESS”);

String city = addressImpl.getString(“CITY”);

String street = addressImpl.getString(“STREET”);

String zip = addressImpl.getString(“ZIP”);

How to instantiate a STRUCT in Java

• Standard SQL has a bottom up method for STRUCT

creation

Object[] addressAttributes = new Object[]

{ “MYSTREET”, “MYCITY”, “MYZIP” };

Struct address = connection.createStruct(

“ADDRESS”, addressAttributes);

Alternative way to instantiate a STRUCT

• IMS provides a top down STRUCT instantiation

method

StructImpl address = (StructImpl) connection

.createStruct(“ADDRESS”);

address.setString(“CITY”, “MYCITY”);

address.setString(“STREET”, “MYSTREET”);

address.setString(“ZIP”, “MYZIP”);

IMS Data Type support - Arrays

• Similar to STRUCTs, ARRAYS can be based off of COBOL

copybook or PL/I include file defintiions as well

01 STUDENT.

05 COURSES OCCURS 2 TIMES.

10 COURSENAME PIC X(15).

10 INSTRUCTOR PIC X(25).

CHAR[15] COURSENAME

CHAR[25] INSTRUCTOR

Defines the array
COURSES

CHAR[15] COURSENAME

CHAR[25] INSTRUCTOR

How to read an ARRAY in Java

• Java treats the repeating elements of an ARRAY as

a STRUCT

– Similar issues related to the attributes of a STRUCT

Array courses = rs.getArray(“COURSES”);

Struct[] course = (Struct[]) courses.getArray();

for (int i = 0; i < courses.length; i++) {

Object[] courseInfo = course[i].getAttributes();

String coursename = (String) courseInfo[0];

String instructor = (String) courseInfo[1];

}

Alternative way to read an Array in Java

• Allows easier navigation between elements and

element attributes

• Introduce a DBArrayElementSet which treats the

array elements similar to a ResultSet

ArrayImpl courses = (ArrayImpl) rs.getArray(“COURSES”);

DBArrayElementSet elements = courses.getElements();

while (elements.next()) {

String coursename = elements.getString(“COURSENAME”);

String instructor = elements.getString(“INSTRUCTOR”);

}

How to instantiate an ARRAY in Java

• Similar to a STRUCT, the array is defined in a

bottom up manner

Struct[] course = new Struct[2];

// Create the first array element

Object[] mathCourse = new Object[] { “MATH”,

“DR. CALCULUS” };

course[0] = conn.createStruct(“COURSES”, mathCourse);

// Create the second array element

Object[] litCourse = new Object[] { “ENGLISH”,

“MR. ALPHABET” };

course[1] = conn.createStruct(“COURSES”, litCourse);

// Create the array

Array courses = conn.createArrayOf(“COURSES”, course);

Alternative way to instantiate an ARRAY

• IMS provides a top down Array instantiation method

// Create the array

ArrayImpl courses = ((ArrayImpl) ((ConnectionImpl)

conn).createArrayOf(“COURSES”));

DBArrayElementSet elements = courses.getElements();

// Populate the first element

elements.next();

elements.setString(“COURSENAME”, “MATH”);

elements.setString(“INSTRUCTOR”, “DR. CALCULUS”);

// Populate the second element

elements.next();

elements.setString(“COURSENAME”, “ENGLISH”);

elements.setString(“INSTRUCTOR”, “MR. ALPHABET”);

Complex Structure considerations

• ARRAYs and STRUCTs can be nested many levels

deep

– This will add code complexity to handle for both

methods

• Also most JDBC compliant tools do not properly

handle ARRAYs and STRUCTs and if they do they

do not handle nesting

• Consider asking your DBA to flatten out the

metadata in the IMS catalog if the structured format

is not necessary

Custom data type support

• IMS data is stored on disk as a BLOB, so

interpretation of that BLOB is typically left to the

application to decide

• IMS supports the use of custom data types in order

to represent that data as an equivalent Java data

type

• A few examples:

– A date value that is based the number of days since

Jan 1, 1950

– A date value that is stored as a packed decimal

number: 0x19500101c

How to write a custom user type converter

• In order to create a custom user type converter, the

application developer will need to extend the

com.ibm.ims.dli.types.BaseTypeConverter

• The application developer needs to override the

following two methods

– readObject()

• For SQL SELECT calls

– writeObject()

• For SQL INSERT and DELETE calls

Helper classes for writing a type converter

• The IMS JDBC driver provides a ConverterFactory

class that will allow users to instantiate basic

converters

– DoubleTypeConverter

– IntegerTypeConverter

– UIntegerTypeConverter

– PackedDecimalTypeConverter

– etc.

• These converters are located in the

com.ibm.ims.dli.converters package

• It is easier to use these basic converters to build up

the read/write logic for a more complex user type

converter

Custom type converter sample

• The IMS JDBC driver contains an example custom type

converter that can be used as a reference

– com.ibm.ims.dli.types.PackedDateConverter

public Object readObject(byte[] ioArea, int start, int length, Class objectType, Collection<String> warningStrings)

throws ConversionException {

if (objectType == java.sql.Date.class) {

java.sql.Date result = null;

// Retrieves the numeric Packed Decimal Value

boolean isSigned = true;

String pattern = “yyyyMMdd”;

PackedDecimalTypeConverter packedConverter = ConverterFactory

.createPackedDecimalConverter(pattern.length(), 0, isSigned);

BigDecimal packedDecimalValue = packedConverter.getBigDecimal(ioArea, start, length, warningStrings);

SimpleDateFormat formatter = new SimpleDateFormat(pattern);

try {

result = new java.sql.Date(formatter.parse(packedDecimalValue.toString()).getTime());

} catch (ParseException e) {

throw new ConversionException(e.getMessage(), e);

}

return result;

}

How to deploy a custom type converter

• The custom type converter will need to be compiled

and deployed with your application in a place where

the Java class loader will pick it up

– It is recommended to deploy the converters in the

same location as the IMS JDBC driver

• The IMS catalog will need to be updated so that the

column definition refers to the user type converter

– This will require coordination with your DBA

• The IMS JDBC driver will automatically detect that a

custom user type is being requested and will invoke

the appropriate methods behind the scenes

Performance considerations

• There are three sections which can significantly

affect performance

– Application Side

• Here the focus is on reducing the amount of

processing that the IMS JDBC driver will do to

process a SQL query

– Network

• Here the focus is on reducing the amount of data

that is transferred across the wire and the number

of calls

– Server Side

• Here the focus is on tuning the IMS databases

themselves

Application performance considerations

• As mentioned in the beginning, IMS is ideal for

queries that are based on specific key values

– This is because every SQL query is broken down to an

equivalent DL/I query

• Aggregate, ORDER BY and GROUP BY queries do

not break down to equivalent DL/I calls

– Data is pulled down to the client where aggregate,

ordering or grouping processing can occur

– Can be time/resource intensive depending on the size

of the result set being processed

Network performance considerations

• IMS always retrieves the full record but the IMS Open Database

Manager will filter only the requested fields to be sent back

• It is always better to always include a specific field list instead of

doing a SELECT *

• For example,

SELECT A, C FROM TBL

A B C D EA C

Client Side z/OS

Client

Application
ODBM IMS DB

Network performance considerations

• The number of rows that is sent per network call can be

manipulated with the fetchSize parameter

• Setting too high of a fetchSize may cause ODBM to

timeout as it is building out a result set to send over the

network

– This will require tuning in conjunction your DBA

• A fetchSize of 1 is only recommended when performing

taking advantage of updateable result set

– Should only be used for positioning updates on un-

keyed tables

Server side performance considerations

• Unlike other relational database, IMS does not support

the capabilities to set object permissions dynamically with

DCL

• Lock restrictions are set by the DBA through PROCOPT

settings on the PCB

• You should engage with your DBA to determine the

appropriate lock settings for each application

– e.g., Dirty reads, Update locks, etc.

References

• IMS V12 Catalog RedPaper

– http://www.redbooks.ibm.com/redpapers/pdfs/redp481

2.pdf

• IMS Java Development on System z Best Practices

– https://kiesslich-

consulting.de/download/C12_A14_Richard_Tran.pdf

Questions?

