
Efficiently Accessing MQ

Messages from IMS Applications

Session 16096

Steve Nathan – snathan@us.ibm.com

2 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Disclaimer

© Copyright IBM Corporation 2014. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL
PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS
INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE
SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY
DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION
OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS
INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS
AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS
AND/OR SOFTWARE.

IBM, the IBM logo, ibm.com, and IMS are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms
are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this information was published.
Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

3 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

IMS Application Access to MQ Messages

 For Your Information

– As of MQ Version 8, WebSphere MQ is now called MQ – again

4 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

IMS Application Access to MQ Messages

 Acknowledgements

– I would like to thank Luigi Certorelli for helping me to analyze all

the ways that IMS applications can access MQ messages.

– I would like to thank Pete Sadler for his great comments on how to

improve this presentation.

– I would like to thank Suzie Wendler and Ken Blackman for their

suggestion of the Enhanced MQ IMS Queue Monitor.

5 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

IMS Application Access to MQ Messages

 IMS applications can access MQ messages in two
ways:

– 1. The IMS application uses the MQ API to Get and Put messages
with syncpoint coordination with IMS

• IMS BMP MPP IFP (not JMP or JBP - until IMS 13)

– Requires connecting MQ to IMS via ESS

– Link the application program with the MQ IMS stub (CSQQSTUB)

• MQ messages can be inserted to the IMS Message Queue by an
application program (BMP/MPP)

– Could be a Trigger message (MQ IMS BMP Trigger Monitor)

– Could be the real Message

• IMS Batch

– No ESS interface

– Syncpoint coordination requires RRS

– Link the application program with the MQ two-phase commit batch stub

• CSQBRRSI or CSQBRSTB+ATRSCSS

6 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

IMS Application Access to MQ Messages

 IMS applications can access MQ messages in two

ways:

– 2. The MQ IMS Bridge puts the message on the IMS Message

Queue via OTMA

• The MQ IMS Bridge is code in the MQ Queue Manager

• Does not require connecting MQ to IMS via ESS

– But the ESS connection could also exist for programs using the MQ API

• Requires OTMA configuration in the MQ CSQZPARM

7 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Connecting MQ and IMS via ESS

 MQ for z/OS attaches to IMS just like DB2 using the

external subsystem (ESS) (ESAF) interface

OTHER
MQ

SYSTEMS

IMS
DBRC

IMS
DLISAS

IMS BMP

MQ
QUEUE

MANAGER

MQ CHANNEL
INITIATOR

CICS TSO BATCH IMS
CONTROL
REGION

IMS MPR

ESS Interface

IMS
BATCH

RRS

8 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Connecting MQ and IMS via ESS

 Place the MQ authorized library (HLQ.SCSQAUTH) in

the IMS control region and dependent region DFSESL

concatenations

 Copy module CSQQDEFV from HLQ.SCSQASMS to be

customized, assembled, and linked into a library in the

IMS dependent region(s) STEPLIB concatenation

– IMS ABENDU3041 if it is not there

– Old documentation said IMS Control Region STEPLIB and

authorized but this in incorrect

– Match to the LIT’s in the IMS SSM members (next foil)

CSQQDEFV CSECT

 CSQQDEFX NAME=CSQ1,LIT=LIT1,TYPE=DEFAULT

 CSQQDEFX NAME=CSQ3,LIT=LIT2

 CSQQDEFX TYPE=END

9 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Connecting MQ and IMS via ESS

 Define MQ to IMS by adding SSM information to the
IMS PROCLIB (member name IMIDxxxx)

 FORMAT: SSN,LIT,ESMT,RTT,REO,CRC

– SSN: Subsystem Name - MQ subsystem

– LIT: Language Interface Token - From CSQQDEFV

– ESMT: External Subsystem Module Table - “CSQQESMT”

– RTT: Resource Translation Table - Not Used by MQ

– REO: Region Error Option - “R”, “Q”, or “A” (pick any one)

– CRC: Subsystem Recognition Character - Not Used by MQ

• The /SSR command is not supported

– The keyword format of this PROCLIB member is not supported for
MQ

10 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Connecting MQ and IMS via ESS

 Subsystem Connection

/DIS SUBSYS ALL

SUBSYS CRC REGID PROGRAM LTERM STATUS

CSQ3 ! CONN

CSQ1 < CONN

DB2R = CONN

 1 CONN

 5 CONN

11 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 MQ application stubs

– An application program must be linked with a “stub” module in order to

use the MQ API

– There are three possible “stubs” that can be used in IMS applications

1. CSQQSTUB

– IMS stub

– MQ knows the application is running in an IMS environment

– Provides two-phase commit for IMS and MQ API calls

• IMS is the syncpoint coordinator

– Not for IMS Batch (DLI/DBB)

2. CSQBSTUB

– Batch stub

– MQ does not know the application is running in an IMS environment

– There is no two-phase commit with IMS

– Can be used for online processing – more later

12 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 MQ application stubs (continued)

– An application program must be linked with a “stub” module in order to

use the MQ API

– There are three possible “stubs” that can be used in IMS applications

3. CSQBRSTB

– Batch two-phase commit stub

– Can only be used in IMS batch jobs

– Requires RRS

13 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 Calls to MQ, IMS and DB2 can be made within the

same unit of work (UOW)

– MQ API calls

– IMS IOPCB calls

– IMS ALTPCB calls

– IMS database calls

– DB2 calls

14 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 IMS and MQ Units of Work

– An IMS commit is also an MQ and DB2 commit

• SYNC, CHKP, GU to IOPCB (MODE=SNGL), normal program

termination

– An IMS backout (ROLB) is also an MQ and DB2 backout

– Any IMS abend is also an MQ and DB2 backout

• ROLL, miscellaneous abends

15 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 At normal syncpoint....

– IMS input message is dequeued

– IMS NON-EXPRESS output messages are sent

– IMS EXPRESS output messages have already been sent

– IMS database updates are committed

– DB2 updates are committed

16 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 At normal syncpoint....

– MQ input messages marked with SYNCPOINT, or MARK_SKIP

BACKOUT are dequeued

– MQ input messages marked with NO_SYNCPOINT have already

been dequeued

– MQ output messages marked with SYNCPOINT are sent

– MQ output messages marked with NO_SYNCPOINT have already

been sent

– If the IMS application is message driven (BMP or MPP) the MQ

connection handle is closed by MQ for security reasons

– Connection security is by Userid

– Each message can be from a different Userid

– (More later)

17 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 At abnormal termination or ROLx....

– IMS input message is dequeued

• IMS has Non-Discardable Message Exit

– IMS NON-EXPRESS output messages are discarded

– IMS EXPRESS output messages have already been sent

– IMS database updates are backed out

– DB2 updates are backed out

18 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 At abnormal termination or ROLx....

– MQ input messages marked with SYNCPOINT are re-queued

– MQ input messages marked with NO_SYNCPOINT have already

been dequeued

– MQ input messages marked with MARK_SKIP_BACKOUT are not

backed out

• They are passed to a new UOW

• If the new UOW abends for any reason the message will be re-queued

– MQ output messages marked with SYNCPOINT are discarded

– MQ NO_SYNCPOINT output messages have already been sent

19 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 Getting the default queue manager name is not

straightforward...

– MQCONN using default name (blank)

– MQOPEN the Queue Manager

• MQOD Objectype = MQOD_Q_MGR

• MQOD Objectname = blanks

• MQOO_INQUIRE

– MQINQ for object name

20 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 STROBE shows MQ CPU in detail by Module/Section

– Note the expense of MQCONN

#PUP ** PROGRAM USAGE BY PROCEDURE **

 .SYSTEM SYSTEM SERVICES .MQSRIES MVS/ESA MQSERIES

 MODULE SECTION FUNCTION % CPU TIME MARGIN OF ERROR 6.86%

 NAME NAME SOLO TOTAL 00 7.00 14.00

 CSQILPLM MQ DATA MGR SERVICE RTN .98 .98 **

 CSQLLPLM MQ LOCK MGR SERVICE RTN 1.47 1.47 ***

 CSQMLPLM MQ MSG MGR SERVICE RTN 1.47 1.47 ***

 CSQPLPLM MQ BUFFR MGR SERVICE RT .49 .49 *

 CSQQCONN CSQQCONN MQSERIES IMS ADAPTER 12.25 12.25 ******************

 CSQQDISC MQSERIES IMS ADAPTER 1.96 1.96 ***

 CSQQNORM MQSERIES IMS ADAPTER .49 .49 *

 CSQSLD1 MQ STG MGR GLBL MOD EP .49 .49 *

 CSQWVCOL MQ IFC RECORD COLLECTIO 1.47 1.47 ***

 ----- -----

 SECTION .MQSRIES TOTALS: 21.07 21.07

21 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 In a message driven environment MQ forces a
Close/Disconnect and Connect for each message – not
each schedule

– That is because MQCONN authority is by Userid and each message
can be from a different user

– MQCONN and MQDISC are very expensive and do a lot of I/O to
STEPLIB

– Preloading all of the CSQQxxxx modules in the MQ authorized library
eliminated the overhead and STEPLIB access

• This is an absolute MUST if your MPP transactions issue MQ API calls

• It is also required for message-driven BMPs

– A customer reported that preloading CSQACLST, CSQAMLST, and
CSQAVICM to do data conversion was helpful

22 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 In a message driven environment MQ forces a
Close/Disconnect and Connect for each message – not
each schedule

– This can cause problems in a WFI/PWFI environment with Triggered
Queues

– If there are no more messages on the IMS queue and the IMS
application does a GU to the IOPCB IMS does not notify MQ for
TERM THREAD until the next message arrives or a QC is returned
to the IMS application

– During that time the MQ Queue may still be open

• MQ internally closes all open queues when it receives TERM THREAD

– If there are triggered FIRST queues open new messages arriving in
MQ will not generate trigger messages because the queue is open

– To avoid this problem the IMS application should explicitly
MQCLOSE any triggered FIRST queues before issuing the next GU
to the IOPCB

23 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 There have been reports of IMS application programs
ABENDing with 0C1 when issuing MQ API calls

– The main program is an IMS program (ENTRY DLITCBL)

– It dynamically calls a sub-program which ONLY issues MQ API
calls

• There were no IMS calls

– The sub-program was NOT linked with the IMS language
interface DFSLI000

– This resulted the ABEND0C1

– The sub-program must also be linked with DFSLI000 because the
MQ API calls are going through the IMS ESS interface

24 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 In a message driven environment MQ forces a
Disconnect and Connect for each message – not each
schedule
– There is an alternative if your application does not require syncpoint

coordination for MQ calls and IMS

• You can link the application with the MQ batch stub – CSQBSTUB

• Then a Wait-for-input program can Connect once in the beginning and
Disconnect once at the end (but remember previous foil)

• It can Open queues once in the beginning and Close them once at the
end

• It can issue MQGETs and MQPUTs during IMS transactions

• It will have to issue MQCMIT calls for any work done “In Syncpoint”
from an MQ perspective

– The first MQCONN in an address space will determine which
interface will be used so CSQQSTUB and CSQBSTUB transactions
must run in different IMS Message Regions

• This MPR must also have an SSM member excluding MQ

• CSQBDEFV can be used to define a default Queue Manager

25 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Using the MQ API with IMS Applications

 There are several ways the MQ API can be used

to have IMS programs interact with MQ queues

– MQ IMS Trigger Monitor

– Customer MQ IMS Trigger Monitor

– Customer MQ IMS Queue Monitor

– Enhanced MQ IMS Queue Monitor

– Customer MQ IMS Queue Processor

26 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 The MQ IMS Trigger Monitor is an IBM supplied non-

Message Driven BMP job which reads “trigger”

messages from an MQ Initiation Queue and inserts them

to the IMS Message Queue

– The IMS application retrieves the trigger message with a GU to the

IOPCB

– The trigger message contains the Queue Manager and Queue Name

where the real message resides

– The IMS application then uses the MQAPI to retrieve the real

message

– The reply message would be done via MQPUT or ISRT to an ALTPCB

• The reply can not be made to the IOPCB because the message came
from a non-message driven BMP

27 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 These are the steps for the MQ IMS Trigger Monitor

1. The MQ IMS Trigger Monitor BMP (CSQQTRMN) is started

2. MQCONN to the MQ Queue Manager

3. MQOPEN the Initiation Queue

4. MQGET with Wait on the Initiation Queue

5. An MQ application MQPUT’s a message to the triggered queue

6. MQ generates a trigger message and puts it on the initiation queue

• Maybe

7. MQ IMS Trigger Monitor BMP receives the trigger message

28 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 These are the steps for the MQ IMS Trigger Monitor

(continued)

8. The MQ IMS Trigger Monitor BMP does CHNG/ISRT/PURG of the

trigger message to the IMS Queue

9. The MQ IMS Trigger Monitor BMP issues a SYNC call

10. IMS logs the trigger message

11. IMS puts the trigger message in the IMS Message Queue

12. IMS enqueues the trigger message to the IMS transaction

13. The IMS transaction is scheduled in an MPR

14. The IMS transaction does GU to the IOPCB and retrieves the trigger

message

29 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 These are the steps for the MQ IMS Trigger Monitor

(continued)

15. The IMS Transaction does MQCONN for the Queue Manager

16. The IMS Transaction does MQOPEN for the Input Queue

17. The IMS Transaction does MQGET for the real MQ message

18. The IMS Transaction processes the message including IMS and

ESAF calls

19. The IMS Transaction does MQPUT1 for the MQ Reply message

20. The IMS Transaction does MQCLOSE for the MQ Input Queue

21. The IMS Transaction does MQDISC to the Queue Manager

22. The IMS Transaction does GU to the IOPCB to create an IMS (and

MQ if CSQQSTUB) syncpoint

30 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor
 The MQ IMS Trigger Monitor reads the MQ Trigger

Message with NO_SYNCPOINT

– The Trigger Message is deleted immediately

– If the BMP ABENDs before its SYNC call or IMS ABENDs before the

message gets to the IMS message queue the Trigger Message is

gone but the real message is still on the MQ queue

• If the triggering option was FIRST and this was the last message on the

queue there will be no more Trigger Messages and the real message will

not be retrieved until the TriggerInterval is reached

• If the triggering option is EVERY there will not be another trigger message

until the next message arrives on the real queue

• The real message will not be processed until a new trigger message

wakes up the MQ IMS Trigger Monitor

– You could change the first ALTPCB in the CSQQTRMN PSB to

EXPRESS so the trigger message will always be sent to IMS

31 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 IMS application coding consideration

– The IMS application must only process ONE real MQ message per

GU to the IOPCB to retrieve a trigger message (maybe)

– Consider this flow

• GU IOPCB and get trigger message

• MQCONN

• MQOPEN

• MQGET real message

• Process including IMS and DB2 updates

• MQPUT1 the reply

• Go To MQGET until no more messages

– What could go wrong???

– What are other options???

32 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 IMS application coding consideration

– What could go wrong?

• There were no IMS syncpoints in this loop

– MQCMIT is ignored if using the CSQQSTUB

– MQCMIT will not commit IMS or DB2 resources

– You can not issue an IMS CHKP or SYNC call in an MPP

• If there is an ABEND multiple MQ messages worth of updates may be

backed out

– If MQGET in SYNCPOINT all of the MQ messages are re-queued

– If MQGET NO SYNCPOINT they have all been freed

• While you are looping processing the messages all of the IMS and DB2

locks for all of the messages processed are still being held and all of the

database buffers are still in use

• If triggering was EVERY there are trigger messages for which there are no

real messages

– This will result in “false schedules” of IMS transactions

33 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor
 What about triggering

– If triggering is FIRST and the IMS transaction is processing the real

queue and more real messages arrive there will be no more trigger

messages

• But when the real queue is closed – explicitly or implicitly – and there are

messages on the real queue then a trigger message will be generated

– If triggering is EVERY there will be a trigger message for every real

message even if the IMS application has the queue open

– In a Shared MQ Queue environment you may have MQ IMS Trigger

Monitors on multiple MQ Queue Managers each waiting on the same

Shared Initiation Queue

• MQ will generate a Trigger Message for EACH MQ Queue Manager that

has an MQ IMS Trigger Monitor waiting

– One IMS application will get the real message

– One IMS application will have a “false schedule”

– Please read this:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzal.doc/fg15400_.htm#fg15400___fg15400_1

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzal.doc/fg15400_.htm#fg15400___fg15400_1

34 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 One customer developed a solution to these problems

and has given me permission to share it

– 1. GU IOPCB to retrieve a trigger message

• A. If blank status code go to 2.

– IMS will create a syncpoint for the previous unit of work and start a new unit of

work

• B. If QC status code and not no-more-MQ-messages go to 2.

– There are no more trigger messages but there may be more MQ messages

– IMS will create a syncpoint for the previous unit of work and create a new unit

of work even though QC was returned

• C. If QC status code and no-more-MQ-messages then return

35 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 One customer developed a solution to these problems

and has given me permission to share it

– 2. MQCONN

– 3. MQOPEN

– 4. MQGET

• If 2033 return code (no message) set no-more-MQ-messages flag and go

to 1.

– 5. Process MQ message

– 6. MQCLOSE

– 7. MQDISC

– 8. Go to 1.

• Even if there was a previous QC this will work

36 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Trigger Monitor

 Advantages

– It is provided by IBM

– Only the small trigger message is logged in IMS

– Only the small trigger message is in the IMS message queue

– One customer reported that 90% of their 2.8 million transactions per

day come in through their 4 MQ IMS Trigger Monitors

 Disadvantages

– All messages are processed with the Userid of the MQ Trigger

Monitor BMP

– A Trigger Monitor BMP can only wait on one Initiation Queue

• But one Initiation Queue can be used for multiple Real queues

– There are many steps for each message

– MQ Triggering

• There are many considerations

37 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Trigger Monitor

 It is possible to write a Customer IMS Trigger Monitor

– This monitor could be written in assembler and wait on multiple

Initiation Queues at the same time

– The one advantage is that it can wait on multiple queues

– It has all the disadvantages of the IBM MQ IMS Trigger Monitor

– It also has the disadvantage of being very difficult to write

• I did write one and it took over a year to program for all of the

idiosyncrasies of waiting on multiple ECBs

– I mention it here so that you will not do it

38 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Monitor

 It is possible to write a Customer IMS Queue Monitor

which reads “real” messages from an MQ Queue and

inserts them to the IMS Message Queue

– The IMS application retrieves the real message with a GU to the

IOPCB

– The reply message would be done via MQPUT or ISRT to an

ALTPCB

• The reply can not be made to the IOPCB because the message came

from a non-message driven BMP

39 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Monitor

 These are the steps for the Customer IMS Queue Monitor

1. The Customer IMS Queue Monitor BMP is started

2. MQCONN to the MQ Queue Manager

3. MQOPEN the Real Queue

4. MQGET with Wait on the Real Queue

• The wait time is short enough to avoid ABENDS522

5. An MQ application MQPUT’s a message to the Real Queue

6. Customer IMS Queue Monitor BMP receives the Real message

40 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Monitor

 These are the steps for the Customer IMS Queue Monitor

(continued)

7. The Customer IMS Queue Monitor BMP does CHNG/ISRT/PURG of

the Real message to the IMS Queue

• May be a multi-segment message

8. The Customer IMS Queue Monitor BMP issues a SYNC call

9. IMS logs the Real message

10. IMS puts the Real message in the IMS Message Queue

11. IMS enqueues the Real message to the IMS transaction

12. The IMS transaction is scheduled in an MPR

13. The IMS transaction does GU to the IOPCB and retrieves the Real

message

41 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Monitor

 These are the steps for the Customer IMS Queue Monitor

(continued)

14. The IMS Transaction processes the message including IMS and

ESAF calls

15. The IMS Transaction does MQCONN for the reply message Queue

Manager

16. The IMS Transaction does MQPUT1 for the MQ Reply message

17. The IMS Transaction does MQDISC

18. The IMS Transaction does GU to the IOPCB to create an IMS

syncpoint

42 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Monitor

 The Customer IMS Queue Monitor can read the MQ Real

Message In SYNCPOINT

– The Real Message is not deleted until the IMS SYNC call

– If the BMP ABENDs before its SYNC call or IMS ABENDs before the

message gets to the IMS message queue the MQ message is re-

queued

• The number of times this happens will be shown in

MQMD_BackOutCount

43 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Monitor

 The Customer IMS Queue Monitor may have to pass the

Reply-to Queue and Reply-to Queue Manager information

to the IMS transaction

– The IMS application does not do the MQGET for the real message

and does not get the MQMD

– The Customer IMS Queue Monitor can insert an extra IMS message

segment

• Could pass just the Reply-to information

• Could pass the entire MQMD

44 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Monitor

 Advantages
– Less overhead in the IMS MPR than a trigger monitor

– No MQ Triggering complications and overhead

 Disadvantages
– All messages are processed with the Userid of the Customer IMS

Queue Monitor

– The Customer IMS Queue Monitor can only wait on one Real Queue
• But there can be multiple BMP’s reading the same queue

– Someone has to add the llzzTRANCODE
• MQ application

• Customer IMS Queue Monitor

– The Real MQ message may have to be segmented
• If > 32K

– The Real MQ message is logged in IMS
• This could be VERY large

– The Real MQ message goes in the IMS message queue
• This could be VERY large

45 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Enhanced IMS Queue Monitor

 It is possible to write an Enhanced IMS Queue Monitor

which reads “real” messages from an MQ Queue and

sends them to the IMS transaction using IMS 13

Synchronous Program Switch

– The IMS application retrieves the real message with a GU to the

IOPCB

– The IMS application inserts the reply to the IOPCB

– The BMP receives the reply message

– The BMP sends the reply message via MQPUT1 to the Reply-to

Queue and Queue Manager

46 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Enhanced IMS Queue Monitor

 Database

IMS DB
services

Customer IMS
Queue Monitor BMP

IMS TM
services

MPP, JMP
IFP, MD BMP

OTMA ICAL

MQ Queue Manager

MQ
Input

Queue

MQ
Reply-to
Queue

MQGET MQPUT1

MQ Application

MQ Application

MQPUT MQGET

47 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Enhanced IMS Queue Monitor

 These are the steps for the Enhanced IMS Queue Monitor

1. The Enhanced IMS Queue Monitor BMP is started

2. MQCONN to the MQ Queue Manager

3. MQOPEN the Real Queue

4. MQGET with Wait on the Real Queue

• The wait time is short enough to avoid ABENDS522

5. An MQ application MQPUT’s a message to the Real Queue

6. The Enhanced IMS Queue Monitor BMP receives the Real message

48 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Enhanced IMS Queue Monitor

 These are the steps for the Enhanced IMS Queue Monitor

(continued)

7. The Enhanced IMS Queue Monitor sends the message to the IMS

application via Synchronous Program Switch

8. IMS logs the Real message

9. IMS puts the Real message in the IMS Message Queue

10. IMS enqueues the Real message to the IMS transaction

11. The IMS transaction is scheduled in an MPR

12. The IMS transaction does GU to the IOPCB and retrieves the Real

message

49 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Enhanced IMS Queue Monitor

 These are the steps for the Enhanced IMS Queue Monitor

(continued)

13. The IMS Transaction processes the message including IMS and

ESAF calls

14. The IMS Transaction inserts the reply message to the IOPCB

15. IMS logs the Reply message

16. IMS puts the Reply message in the IMS Message Queue

17. The IMS Transaction does GU to the IOPCB to create an IMS

syncpoint

18. The Enhanced IMS Queue Monitor does MQPUT1 for the MQ Reply

message

19. The Enhanced IMS Queue Monitor issues a SYNC call

50 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Enhanced IMS Queue Monitor

 The Customer IMS Queue Monitor can read the MQ Real

Message In SYNCPOINT

– The Real Message is not deleted until the IMS SYNC call

– If IMS or the BMP ABEND before its SYNC call the MQ message is re-

queued

• The number of times this happens will be shown in

MQMD_BackOutCount

51 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Enhanced IMS Queue Monitor

 The Enhanced IMS Queue Monitor does not have to pass

the Reply-to Queue and Reply-to Queue Manager

information to the IMS transaction

– The Enhanced IMS Queue Monitor has the MQMD

– The Enhanced IMS Queue Monitor can send the reply to the Reply-to

Queue and Queue Manager

52 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Enhanced IMS Queue Monitor

 Advantages
– Less overhead in the IMS MPR than a trigger monitor

– No MQ Triggering complications and overhead

– No need to set up the MQ OTMA interface (MQ IMS Bridge)

– No changes to existing IMS applications

 Disadvantages
– All messages are processed with the Userid of the Customer IMS

Queue Monitor

– The Customer IMS Queue Monitor can only wait on one Real Queue
• But there can be multiple BMP’s reading the same queue

– Someone has to add the llzzTRANCODE
• MQ application

• Enhanced IMS Queue Monitor

– The Real MQ input and reply messages are logged in IMS
• These could be VERY large

– The Real MQ input and reply messages go in the IMS message queue
• These could be VERY large

53 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Processor

 It is possible to write a Customer IMS Queue Processor

which reads “real” messages from an MQ Queue and

does all of the processing within the BMP itself

– There is no message switching to an IMS transaction

– The reply message would be done via MQPUT or ISRT to an

ALTPCB

– This is the most efficient way for IMS applications to process MQ

messages using the MQ API

54 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Processor

 These are the steps for the Customer IMS Queue

Processor

1. The Customer IMS Queue Processor BMP is started

2. MQCONN to the MQ Queue Manager

3. MQOPEN the Real Queue

4. MQGET with Wait on the Real Queue

• The wait time is short enough to avoid ABENDS522

5. An MQ application MQPUT’s a message to the Real Queue

6. Customer IMS Queue Processor BMP receives the Real message

55 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Processor

 These are the steps for the Customer IMS Queue

Processor (continued)

7. The Customer IMS Queue Processor processes the message

including IMS and ESAF calls

• It may have to call different subroutines for different “transaction codes”

8. The Customer IMS Queue Processor does MQPUT1 for the MQ

Reply message

9. The Customer IMS Queue Processor does an IMS SYNC call

10.The Customer IMS Queue Processor loops to do another MQGET

with Wait

56 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Processor

 The Customer IMS Queue Processor can read the MQ

Real Message In SYNCPOINT

– The Real Message is not deleted until the IMS SYNC call

– If the BMP ABENDs before its SYNC call or IMS ABENDs before the

message gets to the IMS message queue the MQ message is re-

queued

• The number of times this happens will be shown in

MQMD_BackOutCount

57 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Processor

 The Customer IMS Queue Processor does not have to

pass the Reply-to Queue and Reply-to Queue Manager

information to the IMS transaction

– The input MQMD is available

58 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Processor

 Advantages

– No IMS MPR overhead

– No IMS logging of the MQ messages

– No IMS message on the IMS Queue

– No MQ Triggering complications and overhead

– No llzzTRANCODE

– No message segmentation

59 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Customer IMS Queue Processor

 Disadvantages

– All processing is done with the Userid of the Customer Queue

Processor

– Volume may require more than one Customer IMS Queue Processor

• This is not a problem

– There can be multiple Customer Queue Processor BMPs reading the same

queue

– No different than multiple MPPs processing these messages

– The Customer IMS Queue Processor can only wait on one Real

Queue

• But there can be multiple BMP’s reading different queues

60 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

Alternatives for Using the MQ API Summary

 There are several ways the MQ API can be used to have

IMS programs interact with MQ queues

– MQ IMS Trigger Monitor

– Customer MQ IMS Trigger Monitor

– Customer MQ IMS Queue Monitor

– Customer MQ IMS Queue Processor

• This is my favorite

61 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

 This is code in the MQ Queue Manager

– The IMS Bridge is an OTMA client

• For specially defined queues it will MQGET the messages from the queue

and send them to IMS using the IMS OTMA interface

– The IMS bridge also gets output messages from IMS via the OTMA

interface

• IOPCB output

– The output message is MQPUT to the Reply-to Queue and Reply-to Queue

Manager in the original MQ input message MQMD passed and returned in the

OTMA Prefix User Data

• ALTPCB output

– The output message is MQPUT to the Reply-to Queue and Reply-to Queue

Manager in the MQMD created by the OTMA DRU exit and returned in the

OTMA Prefix User Data

62 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

SERVER
z/OS,WIN,

AIX, SUN, …

SNA

z/OS

TCP/IP

ICON

OTMA

IMS

VTAM

IMS BRIDGE

MQ QM

LU1
LU2

LU 6.1
LU 6.2

XCF

Any
TCP/IP

App

RYO
Client

TN3270

Websphere

ITRA

PC

ICON

IMS BRIDGE

MQ QM

z/OS

XCF

XCF

ITRA

Websphere

PC

MQ QM

TCP/IP

Websphere

ITRA

End User

TCP/IP
Application

SCI

OM

IMS Control

Center

63 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

 MQ IMS Bridge

– One MQ queue manager can connect to multiple IMS control regions

– One IMS control region can connect to multiple MQ queue managers

– MQ and all of the IMS Control Regions it connects to must be in the

same XCF group

– MQ and IMS can be on different LPARs in the same Sysplex

– MQ IMS Bridge start and stop events are sent to the

SYSTEM.ADMIN.CHANNEL.EVENT.QUEUE

64 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

 Define MQ to OTMA in CSQZPARM

– OTMACON keyword on CSQ6SYSP macro

• OTMACON(Group,Member,Druexit,Age,TPIPEPrefix)

– Group = XCF group

– Member = MQ XCF member (OTMA TMEMBER)

– Druexit = IMS exit to format OTMA User Data (overrides DFSYDTx)

• Consider a name of DRU0xxxx (xxxx = MQ Queue Manager name)

– Age = how long a Userid (ACEE) from MQ is valid in the OTMA cache before

it expires

– TPIPEPrefix = three character prefix for TPIPE name

• To avoid collision with IMS transaction code names

• Two characters for MQ shared queues

– Member CSQ4ZPRM in data set hlq.SCSQPROC has default

CSQZPARM members you can use to build your members

– My strong requirement is that all of these should be able to be

specified (and used!!!) on the STGCLASS definition

65 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

 MQ IMS Bridge
– When the message arrives in MQ it will be sent via XCF to the IMS

OTMA interface

– Message may be:

• an IMS transaction

• an IMS command (only a subset of commands are allowed)

• NOT a message to an IMS LTERM

– IMS will put it on the IMS message queue

– The application will do a GU to the IOPCB to retrieve the message

• This is very similar to the implicit LU6.2 process

• There are no changes to existing IMS programs

– ALTPCB output may have to be routed by OTMA exits or OTMA Descriptors

– A remote queue manager can send a message to a local queue

destined for IMS via OTMA

66 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

 These are the steps for the MQ IMS Bridge

1. An MQ application MQPUT’s a message to the IMS Bridge Queue

specifying a Reply-to Queue and Queue Manager in the MQMD

2. The MQ IMS Bridge sends the message to OTMA via XCF

• The MQMD is sent in the OTMA User Data

3. IMS logs the Real message

4. IMS puts the Real message in the IMS Message Queue

5. IMS enqueues the Real message to the IMS transaction

6. The IMS transaction is scheduled in an MPR

7. The IMS transaction does GU to the IOPCB and retrieves the Real

message

8. The IMS transaction inserts the reply to the IOPCB

67 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

 These are the steps for the MQ IMS Bridge

9. IMS logs the Reply message

10. IMS puts the Reply message in the IMS Message Queue

11. IMS enqueues the Reply message to the output TPIPE

• If Commit Mode 0

12. IMS OTMA sends the reply message to MQ via XCF

• The MQMD is returned in the OTMA User Data

13. The MQ IMS Bridge puts the message on the Reply-to Queue

There is no change to the IMS application

68 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

1. Message arrives
on local queue

4. MQGET from local queue
- or -

transmission to remote queue

3b. IMS output returned to
reply-to-queue-manager
and reply-to-queue via

OTMA

 IMS
Transactions

2. Message sent via OTMA to IMS
message queue and IMS

transaction started

MQSeries
Application

(local or remote)

IBM Mainframe Queue
Manager

Inbound local
queue

(stgclass=IMS)

Local or
Transmit

queue

IMS LTERM

3c. IMS output routed to
other LTERM via OTMA

exit

XCF

3a. Message retrieved by
transaction via GU IOPCB

IMS Bridge

69 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

 Asynchronous output (ALTPCB output) can also be send

to MQ via OTMA

– Requires the use of IMS exits or OTMA descriptors (IMS 13)

 There are many other setup parameters and

considerations for using the MQ IMS Bridge

– These are topics for another presentation

70 Efficiently Accessing MQ Messages from IMS Applications

Summer Share 2014 - Pittsburgh

MQ IMS Bridge

 Advantages

– Less overhead in the IMS MPR than using the MQ API

– No MQ Triggering complications and overhead

– All messages are processed with the Userid in the OTMA Header

– There are no changes to existing IMS applications

 Disadvantages

– The MQ application has to provide the llzzTrancode

– The MQ application may have to do additional segmenting

– The Real MQ message is logged in IMS

• This could be VERY large

– The Real MQ message goes in the IMS message queue

• This could be VERY large

Questions?

