What's New in ...
Enterprise PL/l 4.4 and
z/OS V2R1 XL C/C++

Dickson Chau
IBM

August 6, 2014
Session 16092

00
#SHAREorg
0o Copyight (€) 2014 by SHARE Inc. @ (@ @ @) bt . o s oo @ SP!:Ib%:ZROE

Educate - Network - Influence

Agenda

New Features in ...

¢ z/OS V2R1 XL C/C++ * Enterprise PL/I v4.4

— Language — Middleware Support
* C11 standard — Usability
* C++11 standard
* Metal C

— Usability
— Performance
* OpenMP API v3.1

— Performance

.00
e SHARE

N in Pittsburgh 2014

2 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

z/OS V2R1 XL C/C++
C11 standard

* C11is a new version of the C programming language
standard

 Was known as C1X before its ratification

* New LANGLVL sub-option EXTC1X
* Enable all currently supported C11 features

* Features are phased in towards full compliance

* Currently support:
* Anonymous structures
* Complex type initialization
* Generic selection
 Static assertions
* The _Noreturn function specifier .:%:ARE

Pittsburgh 2014

3 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C11 standard

Anonymous Structures
An anonymous structure is a structure that does not have a tag or a
name and that is a member of another structure or union

* All the members of the anonymous structure behave as if they were
members of the parent structure

* Example:

struct s {
struct {

// This is an anonymous structure, because it has no tag, no name, and is a
member of another structure.

int a;
};
int b;
} s1;

int main(void) {

sl.a=1;
sl.b = 2;
: K1l
.SHARE
* Already supported by C++ Pisburgh 2017

Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C11 standard

Complex Type Initialization
Can initialize C99 complex types with the CMPLX, CMPLXF, or

CMPLXL macros

* The 2 values specified on the macro are of the form x + yi, where x
and y can be any floating point value, including INFINITY or NAN.

* Example:

#include <stdio.h> > xlc -gqlanglvl=extclx -gfloat=ieee a.c

: nelud h B >./a.out
#include <math.h> cl Value: 1.200000e+00 + INF * I
#include <complex.h> c2 Value: 2.300000e+00 + NaNQ(1l) * I

c3 Value: 4.500000e+00 + 6.700000e+00 * I
int main(void) {
float Complex cl = CMPLX(1.2, INFINITY)
double Complex c2 = CMPLXF (2.3, NAN);
long double Complex c3 = CMPLXL(4.5, 6.7);

printf ("cl Value: %e + %e * I\n", __real (cl), _ imag_ (cl));
printf ("c2 Value: %e + %e * I\n", __real (c2), _imag_ (c2));
printf("c3 Value: %Le + %Le * I\n", real (c3), _ imag_ (c3));
return O;
}
K1l
* Supported as a C++ extension as well] SHA%E

5 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C11 standard

Generic Selection
* Provides a mechanism to choose an expression according
to a given type name at compile time

* A common usage of which is to define type generic macros

* Example:
#define myfunc(X) _Generic((X), \ > xlc -glanglvl=extclx a.c
long double:myfunc_1ld, \ > a.out
default:myfunc d, \ calling myfunc_1ld
float:myfunc_f \ calling myfunc_d
) (X) calling myfunc f
long double myfunc_ld(long double x) {printf("calling%s\n",_func_) 7}
double myfunc_d(double x) {printf("calling %s\n",_func_);}
float myfunc f(float x) {printf("calling %s\n",__func__ 7}

int main(void)

{
long double 1d;
double d;
float £;

ld=myfunc (1d) ;

d=myfunc(d) ;
f=myfunc (£f) ; ..
o
. e SHARE
return O; ®_ inPittsburgh 2014

Complet{e your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C11 standard

Static Assertions
* Can be declared to detect and diagnose common usage errors at

compile time
» Static_assert

 static_assert
* defined in assert.h

* Example:
int main(void) {
_Static_assert(sizeof (long)==4, “not using ILP32”");
return O;

}

> xlc -gqlanglvl=extclx -g64 a.c
ERROR CCN3865 ./a.c:2 not using ILP32

* Already supported as a C++ extension

.00
o SHARE

.. in Pittsburgh 2014
7 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C11 standard

The Noreturn Function Specifier
* Declares a function that does not return to its caller

* _Noreturn

* noreturn
* defined in stdnoreturn.h

* Function must call:
* abort, exit, Exit, longimp, quick exit, thrd_exit

* The compiler can better optimize your code without regard to what
happens if it returns

* Example:

_Noreturn void quit() {
exit(1l);
}

* Supported as a C++ extension as well

.00
o SHARE

.. in Pittsburgh 2014

8 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

z/OS V2R1 XL C/C++

C++11 standard
* Was known as C++0x before its ratification

* Continue to phase in new features toward full compliance

* Added in this release:
* Explicit conversion operators
* Generalized constant expressions
* Scoped enumerations
* Right angle brackets
* Rvalue reference

.00
e SHARE

N in Pittsburgh 2014

O Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C++11 standard

Explicit Conversion Operators
* Can apply the explicit function specifier to the definition of

a user-defined conversion function

* Inhibit unintended implicit conversions through the user-
defined conversion function

® Example > x1C -glanglvl=explicitconversionoperators a.C
./a.C, line 14.40: CCN5218 (S) The call doesn’t match any

#include <iostream> parameter list for operator+.

template <class T> struct Ptr { ./a.C, line 14.40: CCN6283 (I) builtin operator+(int, int) is
Ptr () :rawptr_(0) {} not a viable candidate.
Ptr (T* Ptr) :rawptr (T) {}
explicit operator bool() const {return rawptr_!'= 0; }
T* rawptr_;

}i
int main() {
int varl, var2;
Ptr<int> ptrl, ptr2(&var2);
ptrl = &varl;
if (ptrl) //explicit bool operator provided - good.
return 66;
std: :cout << “ptrl+ptr2= “ << (ptrl+ptr2) << endl; //warning

return O;
.00
e SHARE

.. in Pittsburgh 2014
10 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C++11 standard

Generalized Constant Expressions
* Constant expression is an expression that can be evaluated at
compile time

* A new constexpr specifier
* Example 1:

constexprinti=1;

* Example 2:
struct S {
constexpr S(int i) : mem(i) {}
private:
int mem;

|5

constexpr S s(55);

.00
o SHARE

.. in Pittsburgh 2014

11 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C++11 standard

Scoped Enumerations
* Example:

enum class color {red, white};
enum shape {square, circle};

int main() {
color cl = color::red; // valid

color c2 = white; // invalid

shape sl = shape::square; // valid
shape s2 = circle; // wvalid

.00
o SHARE

.. in Pittsburgh 2014

12 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C++11 standard
Right Angle Brackets

* The >> token can be treated as two consecutive > tokens
* Example:

const vector<int> vi = static_cast<vector<int>>(v);

- same as const vector<int> vi = static_cast<vector<int> >(v);
- 1st> token is treated as the ending delimiter for the template parameter list

- 2" > token is treated as the ending delimiter for the static_cast operator

.00
o SHARE

.. in Pittsburgh 2014

13 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

C++11 standard

Rvalue Reference
* An rvalue reference type is defined by placing the reference modifier

&& after the type specifier.
* Example:

string &string::operator=(string &&) ;
string a,b,c;
a=>b+ c;

This result in a move operator (AKA destructive copying) on the assignment.

If instead, using a normal copy assignment operator, which has this signature:
string &string::operator=(string &) ;

- requires a deep-copy of the temporary variable created from b+c

- discard the temporary variable

.00
o SHARE

.. in Pittsburgh 2014

14 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

z/OS V2R1 XL C/C++
Metal C

* New enhancements to Metal C

* Mixed addressing mode with IPA

* Metal C applications with AMODE-switching requirements can
take advantage of inter-procedural analysis optimization

* Example:
xlc -gmetal -q32 -qipa -c 32.c
xlc -gmetal -q64 -qgipa -c 64.c
xlc -gmetal -qgipa -S 32.0 64.0
* SYSSTATE option

* User nominated main function

.00
e SHARE

N in Pittsburgh 2014

15 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Metal C suane
SYSSTATE Option

-NOASCENV-

>>-SYSSTATE- (-—--+-+-ASCENV--—+-—-—-—-—————— +=t-=) —=-><
I | -— NONE --| I
' -OSREL-- (--+-ZOSVnRm-+--) - ‘-

Default is SYSSTATE(NOASCENV,0SREL(NONE))

* OSREL=NONE|ZOSVnRm provides the value for the OSREL
parameter on the SYSSTATE macro generated by the compiler. The
value provided must be in the form of ZOSVnRm as described in the
"zIOS MVS Programming: Assembler Services Reference". The
default is NONE with which no OSREL parameter will appear on the
SYSSTATE macro.

* ASCENV | NOASCENV ASCENYV indicates to the compiler to
automatically generate additional SYSSTATE macros with the
ASCENYV parameter to reflect the ASC mode of the function. The
default is NOASCENYV with which no ASCENYV parameter will appear
on the SYSSTATE macro.

.00
e SHARE

N in Pittsburgh 2014

16 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Metal C suane
SYSSTATE Option (cont’d)

int main (void) {
int 1lv=256, addr;

asm(" GETMAIN RC,LV=(%1l) ,Key=(%2),LOC=(%3,%4) \n"
" ST 1,%0\n"
:"=m" (addr)
:"r" (1v) ,"I"(6) ,"I"(31),"1I" (31)
:"rl","rl5") ;

__asm(" FREEMAIN RU,LV=256,A=(1) \n");

return O;

}

> xlc -gqMETAL -S -qSYSSTATE=ASCENV test.c

°* SYSSTATE ASCENV=P appears before function entry point marker
* If function compiled w/ -QARMODE orhas attribute ((armode))

°* SYSSTATE ASCENV=AR appears before function entry point marker
o0
o SHARE

.. in Pittsburgh 2014
17 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval "

Metal C sHARE
User Nominated main Function

#pragma map (main, "ANEWMAIN")
void dosomething (char *);

int main(int argc, char *argv|[]) ({
for (int i=1; i<argc; i++) {
dosomething (argv[i]) ;
}

return O;

* When a Metal C program is built with the RENT option, it needs a “main” function to
anchor the Writable Static Area (WSA) creation process. However a Metal C program
may not have a function called “main” as the entry point thus not having the opportunity
to be built with the RENT option.

* The entry point name in the generated code will be ANEWMAIN.

* When you link your program, you'll need to tell the binder that the entry point name is
ANEWMAIN, such as this:

/bin/1ld -o a.out a.o -e ANEWMAIN

‘oCD
o SHARE

.. in Pittsburgh 2014

18 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

z/OS V2R1 XL C/C++

Usability Enhancements
* include master header

* INCLUDE option

* To add additional include file(s) through option
* New C++ name mangeling sub-option

* NAMEMANGLING(ZOSV2R1_ANSI)
* Debug improvement

* Debugging optimized code

* Debugging inlined procedures

.00
¢ SHARE

Pittsburgh 2014
19 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Usability Enhancements
Debugging Optimized Code

* Itis hard to debug optimized code because:

* The debugger doesn't know where to find the value of a
variable, I.e. it can be in a register, not in memory

* The code generated ordering may not match the source
code ordering

* The Debug Optimize Code feature:

* Creates different levels of snapshots of objects at selected
source locations

* Makes the program state available to the debugging session
at the selected source locations

* When stopping at the snapshot points, the debugger should

be able to retrieve the correct value of variables ,;:ARE

tsburgh 2014

20 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Usability Enhancements ZMERS

Debugging Optimized Code (cont’d)

* The granularity of the snapshot points is controlled by the
DEBUG(LEVEL) sub-option:

* DEBUG(LEVEL(2)): No snapshot points inserted

* DEBUG(LEVEL(5)): Snapshot points inserted before and
after: if-endif, function, loop, and the first executable line of a
function

* DEBUG(LEVEL(8)): Snapshot points inserted at every
executable statement

* The line number table will only contain entries for the
snapshot points

* The debugger can only stop at snapshot points when doing
source view debugging

- Applies to DWARF format and OPT(2) o0
¢ SHARE

Pittsburgh 2014

21 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Usability Enhancements

Debugging Inlined Procedures
* In V1IR13, we added debug information for inline

procedures
* Set entry breakpoint for all inline instances of a procedure

* No debug information is provided for the parameters and
local variables of the inline instances
* Debugger cannot show the value of these objects

* V2R1 provides debug information for parameters and local
variables of each inline instance of a procedure

* The debugger is able to set and show the values of the
parameters and locals of an inline instance

00
.SHARE

tsburgh 201/

22 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Usability Enhancements LLLL
Debugging Code Example

> cat a.c
#include <stdio.h>

int foo(int input) {
int a;
a = input * 2;
printf("a = %d\n", a);

return a;

int main (void) {
int i = foo(l); // inlined
int j =1 + 3;

return j;

.00
o SHARE

.. in Pittsburgh 2014

23 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

=

SHARE

Debugging Code Example (cont’d)

DEBUG(LEVEL)

> xlc —-gdebug[=level=2] -02 a.c
> dbx a.out
(dbx64) stop in main

[1] stop in 'int main()' File
SYSTEM: /home/share/inline/a.c, Line 6.
(dbx64) run

[1] stopped in foo at line 6 in file "a.c" ($t2)
6 printf("a = %d\n", a);
(dbx64) step
a=2
stopped in foo at line 12 in file "a.c" ($t2)
12 int j =1i + 3;
(dbx64) step
stopped in foo at line 14 in file "a.c" ($t2)
14)
(dbx64) step
FDBX0414: Program exited with a return code of 5.

24 Complete your session evaluations online at www.SHARE.org/Pittsburghebes0414: Program exited with a return code of 5.

> xlc —gdebug=level=8 -02 a.c
> dbx a.out
(dbx64) stop in main

[1] stop in 'int main()' File
SYSTEM: /home/share/inline/a.c, Line 3.
(dbx64) run

[1] stopped in foo at line 3 in file "a.c" ($t2)
3 int foo(int input) ({
(dbx64) print input

1
(dbx64) s
stopped in foo at line 5 in file "a.c" ($t2)
5 a = input * 2;
(dbx64) s
stopped in foo at line 6 in file "a.c" ($t2)
6 printf("a = %d\n", a);
(dbx64) s
a=2
stopped in foo at line 7 in file "a.c" ($t2)
7 return a;
(dbx64) s
stopped in main at line 13 in file "a.c" ($t2)
13 return j;
(dbx64) s
stopped in main at line 14 in file "a.c" ($t2‘.’
14) o SHARE
(dbx64) s A Pittsburgh 2014

®..

z/OS V2R1 XL C/C++

Performance Enhancements
« New ARCH/TUNE(7) defaults

* matches new ALS to z9 on z/OS V2R1
INOJTHREADED option

* Better instruction selection

* Built-in functions
* Decimal-Floating-Point (DFP) zoned conversion
* Packed decimal
* Transactional memory
GNU C/C++ language extensions and compatibility
° __ builtin_expect
* Attribute always_inline
- OpenMP API 3.1 sSHARE

Pittsburgh 2014

25 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements
NOTHREADED option

* For user to assert their application is single-threaded

* Allows for more aggressive optimization and can potentially
increase run-time performance

Defaults is THREADED

* Example:
xlc -gnothreaded single-threaded.c
xlc [-gthreaded] multi-threaded.c

.90
e SHARE

N in Pittsburgh 2014

26 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements

Better Instruction Selection
* Compiler can now make better use of the z/Architecture

* Traditional 32-bit instructions are used for 4-byte operations
eg. char, short and int

* Eliminates all the unnecessary zero- and sign-extensions
* Reduces code size and path length => improves run-time
* Can make use of the High-Word Facility

It used to be
* The entire 64-bit GPRs are always populated

* 64-bit operations are performed
I.e. 64-bit version of instructions are used

* For:
* LP32 with HGPR, and a function that make use of long Igse
- LP64 S R

27 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements SHARE

DFP Zoned Conversion Built-in Functions
* Available with the DFP and ARCH(10) options

* Converts from zoned type to DFP type:

_Decimall28 cxzt(void* source, unsigned char length,
const unsigned char mask) ;
_Decimal64 _ cdzt(void* source, unsigned char length,

const unsigned char mask) ;

* Converts from DFP type to zoned type:

int czxt(_Decimall28 source, void* result, unsigned
char length, const unsigned char mask);

int _ czdt(_Decimal64 source, void* result, unsigned
char length, const unsigned char mask) ;

00
.SHARE

n Pittsburgh 2014

28 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements

Packed Decimal built-in functions
* 6 new built-in functions are available for C/C++ programs

to access the hardware packed-decimal instructions
* Compare Decimal — CP
Add Decimal — AP
Subtract Decimal — SP
Multiply Decimal — MP
Divide Decimal — DP
 Shift and Round Decimal - SRP
* C++ and Metal C users now can directly utilize packed-
decimal instructions
* C++ does not have support for packed decimal intrinsic type

* Decimal instructions are not normally generated 0
oSHARE

tsburgh 201/

29 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements SHARE

Transactional Memory Built-in Functions
* For exploitation of the Transactional-Execution Facility

* Multi-threaded applications can benefit from processors'
“opportunistic locking” of memory blocks. This could result
in fast lock-free execution where there is no conflict.

* Following intrinsics are provided:
*long TM simple begin(void);
long TM begin(void const TM buff);
*long TM end(void);

void = TM non transactional store(void const
addr, 1ong 1ong const wvalue);

long TM nesting depth(void const TM buff) ;

00
.SHARE

nPittsburgh 2014

30 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements
TM Built-in Functions (cont’d)

* Transaction failure diagnostic functions:

° long TM is user abort(void* const TM buff);

°* long TM is named user abort(void* const TM buff,
un31gned char* code)

°* long TM is illegal(void* const TM buff) ;

°* long TM is footprint exceeded(void* const TM buff);
°* long TM is nested too deep(void* const TM buff);

°* long TM is conflict(void* const TM buff) ;

° long TM is failure persistent(long const result);

* long TM is failure address(void* const TM buff);
°* long TM failure code(void);

°* void _ TM abort assist(unsigned int num aborts) ;

00
.SHARE

nPittsburgh 2014

31 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements
TM Built-in Functions Example
¢ without TM BIFs: * with TM BIFs:
pthread mutex lock (&mutex) ; if(__TM simple begin()) {
for (int i=l; i<NUMELEM; ++i) // transaction failed
tmp[i] = MAX(global[i],tmp[i-1]); // non-zero on TM begin means failed
pthread mutex unlock (&mutex) ; pthread mutex lock (&mutex) ;

// start of transaction
for (i=1; i<NUMELEM; ++i)

tmp[i] = MAX(global[il,tmp[i-1]);
// end of transaction

if(__ T end()) {
// not in a transaction state

pthread mutex unlock (&mutex) ;

.00
o SHARE

.. in Pittsburgh 2014
32 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements SHARE
__builtin_expect

if(builtin expect(x, 0)) {

error () ;

}

* Here, we expect that x will be equal 0, and we will not
execute the statement for this branch very frequently

* Providing this additional information to the compiler allows
it to be exploited for optimization

00
.SHARE

tsburgh 201/

33 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements
Attribute always inline

° attribute ((always inline))

* Greater control for the end users to instruct the compiler to
inline a function

* Available with OPT

00
.SHARE

tsburgh 2014

34 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements

OpenMP API 3.1
* Industry-standard API designed to create portable C/C++
applications to exploit shared-memory parallelism

* Users can create or migrate parallel applications to take
advantage of the multi-core design of modern processors

* Consists of a collection of compiler directives and library
routines

* New SMP option to allow OpenMP parallelization
directives to be recognized
* Only supported in 64-bit
* Executable must be run under USS

* Thread-safe version of standard library must be used inside
the parallel regions e®

o
* Not supported with Metal C s SHARE

Pittsburgh 2014
35 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Performance Enhancements
OpenMP API 3.1 example

int bar (void) {
#pragma omp parallel for
for (int 1 = 0; 1 < N; i++) {
// executed in parallel by a # of threads

.90
e SHARE

N in Pittsburgh 2014

36 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educate - Network - Influence

Latest z/OS C/C++ Compiler Service Info

* V2R1 —released on April 2014
- Ul6362, Ul6444

* V1R13 — released on March 2014
* UlI15229

* V1R12 —released on Oct. 2013
 UK98192

* For latest PTFs info. refers to
http://www-01.ibm.com/support/docview.wss?uid=swg21108506

.00
¢ SHARE

Pittsburgh 2014

37 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

http://www-01.ibm.com/support/docview.wss?uid=swg21108506

Agenda 7"
New Features in ...
’ * Enterprise PL/I v4.4
- — Middleware Support
' — Usability
: — Performance
O
:;HARE

.. in Pittsburgh 2014

38 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Enterprise PL/l v4.4

Middleware Support
* Improved SQL support

* More helpful messages from the SQL preprocessor

* EMPTYDBRM SQL preprocessor option

* For users that want an empty DBRM when the source contains
no EXEC SQL

* Structures with arrays supported
* Nicer commenting out of SQL statements

00
.SHARE

tsburgh 201/

39 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Enterprise PL/l v4.4

Middleware Support (cont’d)
* Improved IMS support

* Base 64 encoding and decoding functions
°* base6d4encode8(p, m, g, n)
°* base64decode8(p, m, g, n)
°* base6d4encodel6(p, m, g, n)
°*base64decodel6(p, m, g, n)

* XML normalization and cleaning functions
* WHITESPACEREPLACE
* WHITESPACECOLLAPSE

* XMLCLEAN
* LOCATES attributes and associated functions for sparse
arrays
O
:;HARE

.. in Pittsburgh 2014

40 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Enterprise PL/l v4.4

Usability Enhancements
* WIDEPIC attribute

» For UTF-16 PICTURE support

INDEXR built-in function

* Searches, from the right, for the first occurrence of one string
within another

DEFAULT statement expanded
New 2" argument to ALLOCATE n bytes from an AREA
CANCEL THREAD statement

Nicer handling of INCLUDEs

* Beginning and end of the include are marked by comments
In the listing

.00
¢ SHARE

Pittsburgh 2014

41 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Enterprise PL/l v4.4

Performance Enhancements
* Improved exploitation of zEC12 and zBC12 hardware

* Faster listing generation

* The code in the backend to generate the pseudo-assembler
listing has been significantly improved

* Recommending STATIC
* User programs contain declares which are arrays or
structures that are declared with INIT attributes and never
changed
* This will generate a vast amount of code that will be

executed every time the containing procedure is called. This
is terrible for both compile-time and run-time performance

* A W-level message for any declares
* With more than 100 INITIAL items g;:ARE

42 comptete your sBAL IR 2SI A0 Hlass.Qiher.than STATIC
s

Enterprise PL/l v4.4

Performance Enhancements (cont’d)
* The compiler is itself compiled with ARCH(7)

* Still supports generating code with the ARCH(6) option
* Support for ARCH(6) is likely to end in the near future

Inlining of FIXED to WIDECHAR

* For “nice” FIXED, conversion to WIDECHAR will be inlined
by converting to ASCII and then converting the ASCII to
WIDECHAR

* “nice” FIXED BIN is (UN)SIGNED REAL FIXED BIN(p,0)
* “nice” FIXED DEC is REAL FIXED DEC(p,q) with 0 <= g and g
<=p
* Improved code for UTF-8 and UTF-16

* Plus, some BlFs may now be used in restricted expressions

.00
¢ SHARE

Pittsburgh 2014

43 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Enterprise PL/l v4.4

Performance Enhancements (cont’d)
* More DFP instructions exploitation in PICTURE

conversions
* v4.3 only able to handle source precision was 9 or less
* Now, extended to support source precision is 18 or less

* Lesson learned from the Zoned-to/from-DFP Facility:
* Alonger set of instructions may be faster than a shorter set
* Reducing storage references helps performance
* Eliminating packed decimal instructions can help performance
* Using decimal-floating-point may improve your code’s
performance even in program’s that have no floating-point data

* The compiler knows when these new ARCH(10) instructions will

help and will exploit them appropriately for you -
O
¢ SHARE

N in Pittsburgh 2014

44 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educate - Network - Influence

PICTURE to DFP Example

process float (dfp) ;
pic2dfp: proc(ein, aus)
options (nodescriptor) ;
dcl ein(0:100 _000) pic'(9)9' connected;
dcl aus (0:hbound(ein)) float dec(16) connected;
dcl jx fixed bin(31);
do jx = lbound(ein) to hbound(ein);
aus (jx) = ein(jx);
end;

end;

‘oQ
o SHARE

.. in Pittsburgh 2014

45 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

PICTURE to DFP Example (cont’d) o

* Under ARCH(9), the heart of the loop consists of these 17

Instructions:

0060 F248 DOFO FO00 PACK #pd580 1(5,rl3,240), shadow4 (9,rl5,0)
0066 C050 0000 0035 LARL r5,F'53"

006C D204 DOF8 DOFO0 MVC #pd581 1(5,rl3,248),#pd580 1(rl3,240)
0072 41F0 F009 LA rl5,#AMNESIA(,rl5,9)

0076 D100 DOFC 500C MVN #pd581 1(1,rl3,252) ,+CONSTANT AREA (r5,12)
007C D204 DOEO DOF8 MVC _temp2(5,rl3,224) ,#pd581 1(rl3,248)

0082 F874 D100 2000 ZAP #pd586_1(8,rl3,256), shadow3(5,r2,0)

0088 D207 DOE8 D100 MVC _templ(8,rl3,232),#pd586 1 (rl3,256)

O0O8E 5800 4000 L r0, shadow2(,r4,0)

0092 5850 4004 L r5, shadow2(,r4,4)

0096 EBOO 0020 000D SLLG r0,r0,32

009C 1605 OR r0,r5

009E B3F3 0000 CDSTR £0,r0

00A2 EB0OO 0020 000C SRLG r0,r0,32

00A8 B914 0011 LGFR rl,rl ®
00AC B3F6 0001 IEDTR £0,f0,rl o..SHARE
00BO 6000 E000 STD £0,_ shadowl (,rl4,0) o R

46 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

PICTURE to DFP Example (cont’d) o

* While under ARCH(10), it consists of just these 8

instructions
0060 EB2F 0003 OODF SLLK r2,r1l5,3

0066 BOFA 202F ALRK r2,rl5,r2

006A A7FA 0001 AHI rl5,H'1l'

006E BO9FA 2023 ALRK r2,r3,r2

0072 EDO8 2000 00AA CDZT £0,#AddressShadow(9,r2,0) ,b'0000"
0078 B914 0000 LGFR r0,r0

007C B3F6 0000 IEDTR £0,£0,r0

0080 6001 EOOO STD £0, shadowl(rl,rl4,0)

* The loop runs more than 4 times faster

.00
o SHARE

.. in Pittsburgh 2014

47 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educate - Network - Influence

Latest Enterprise PL/l Compiler Service Info

* V4.R4 —released on May 2014

» UI18188, UI19089, UI18064, UI16996
V4.R3 — released on May 2014

- UI17889, UI19088, UI18063, UI17541
V4 R2 — released on March 2014

* UIM5877, UK72572, UK97586, UK95453

V3.R9 — released on Nov. 2013
* UlI12685, UK61147, UK90880, UK63656, UK83050

For latest PTFs info. refers to

http://www-01.ibm.com/support/docview.wss?uid=swg21170820
o®
¢ SHARE

Pittsburgh 2014

48 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

http://www-01.ibm.com/support/docview.wss?uid=swg21170820

Recap on ...

New Features in z/OS V2R1 XL C/C++
* C11 standard

* Anonymous structures

Complex type initialization
Generic selection

Static assertions

The Noreturn function specifier

* C++11 standard

* Explicit conversion operators
Generalized constant expressions
Scoped enumerations
Right angle brackets
Rvalue reference

00
.SHARE

tsburgh 201/

49 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Recap on... (cont’d)

new features in z/OS V2R1 XL C/C++
* Metal C:

* Mixed addressing mode with IPA
* SYSSTATE option
* User nominated main function

* Debug improvements

* Performance enhancements
« New ARCH/TUNE(7) defaults

* Built-in functions
* Decimal-Floating-Point (DFP) zoned conversion
* Packed decimal
* Transactional memory

- OpenMP AP 3.1 .o

. SHARE

tsburgh 201/

50 complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educate - Network - Influence

References

* Peter Elderon, Enterprise PL/l 4.4 Highlights,

SHARE Anaheim, Mar. 2014
* Visda Vokhshoori, What's New in z/OS XL C/C++ V2R1
Enterprise PL/1 4.4, SHARE Boston, Aug. 2013

.00
¢ SHARE

Pittsburgh 2014

online at www.SHARE.org/Pittsburgh-Eval

51 Complete your session evaluations

Educate - Network - Influence

Quick Survey

* Users of:
* PL/I
C/C++
NOOPTIMIZE/OPTIMIZE(O), OPTIMIZE(2), OPTIMIZE(3)
ARCH(7), ARCH(8), ARCH(9), ARCH(10)

* C/C++ only:
* TUNE
* LP64
* PDF
* HOT
* |IPA
;%:ARE

ittsburgh 2014

52 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educate - Network - Influence

Please join me tomorrow for ...

* Make Your PL/l and C/C++ Code Fly With the Right
Compiler Options
* Session 16091
* Thursday, August 7, 2014: 3:00 PM-4:00 PM
* Room 317 (David L. Lawrence Convention Center)

gh 2014

. SHARE

53 Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Educate - Network - Influence

Questions?

* Connect with us
* Email me

* Rational Café - the compilers user community & forum
e C/C++: http://ibm.com/rational/community/cpp
* PL/I: http://ibm.com/rational/community/pli

* RFE community — for feature requests
* C/C++: http://www.ibm.com/developerworks/rfe/?PROD __ID=700
* PL/I: http://www.ibm.com/developerworks/rfe/?PROD _ID=699

* Product Information
e C/C++: http://www-03.ibm.com/software/products/us/en/czos
* PL/I: http://www-03.ibm.com/software/products/en/plicompfami

Thank You! °®

¢ SHARE

N in Pittsburgh 2014

54 complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/pli
http://www.ibm.com/developerworks/rfe/?PROD_ID=700
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www-03.ibm.com/software/products/us/en/czos
http://www-03.ibm.com/software/products/en/plicompfami

	What's New in … Enterprise PL/I 4.4 and z/OS V2R1 XL C/C++
	Agenda
	z/OS V2R1 XL C/C++ C11 standard
	C11 standard Anonymous Structures
	C11 standard Complex Type Initialization
	C11 standard Generic Selection
	C11 standard Static Assertions
	C11 standard The _Noreturn Function Specifier
	z/OS V2R1 XL C/C++ C++11 standard
	C++11 standard Explicit Conversion Operators
	C++11 standard Generalized Constant Expressions
	C++11 standard Scoped Enumerations
	C++11 standard Right Angle Brackets
	C++11 standard Rvalue Reference
	z/OS V2R1 XL C/C++ Metal C
	Metal C SYSSTATE Option
	Metal C SYSSTATE Option (cont’d)
	Metal C User Nominated main Function
	z/OS V2R1 XL C/C++ Usability Enhancements
	Usability Enhancements Debugging Optimized Code
	Usability Enhancements Debugging Optimized Code (cont’d)
	Usability Enhancements Debugging Inlined Procedures
	Usability Enhancements Debugging Code Example
	Debugging Code Example (cont’d) DEBUG(LEVEL)
	z/OS V2R1 XL C/C++ Performance Enhancements
	Performance Enhancements NOTHREADED option
	Performance Enhancements Better Instruction Selection
	Performance Enhancements DFP Zoned Conversion Built-in Functions
	Performance Enhancements Packed Decimal built-in functions
	Performance Enhancements Transactional Memory Built-in Functions
	Performance Enhancements TM Built-in Functions (cont’d)
	Performance Enhancements TM Built-in Functions Example
	Performance Enhancements __builtin_expect
	Performance Enhancements Attribute always_inline
	Performance Enhancements OpenMP API 3.1
	Performance Enhancements OpenMP API 3.1 example
	Latest z/OS C/C++ Compiler Service Info
	Slide 38
	Enterprise PL/I v4.4 Middleware Support
	Enterprise PL/I v4.4 Middleware Support (cont’d)
	Enterprise PL/I v4.4 Usability Enhancements
	Enterprise PL/I v4.4 Performance Enhancements
	Enterprise PL/I v4.4 Performance Enhancements (cont’d)
	Slide 44
	PICTURE to DFP Example
	PICTURE to DFP Example (cont’d)
	Slide 47
	Latest Enterprise PL/I Compiler Service Info
	Recap on … New Features in z/OS V2R1 XL C/C++
	Recap on… (cont’d) new features in z/OS V2R1 XL C/C++
	References
	Quick Survey
	Please join me tomorrow for …
	Questions?

