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• does good application performance mean to you?

• Fast Execution Time

• Short Compile Time

WHAT …
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• to achieve good application performance?

• Install New Hardware

• Utilize Compiler Options

• Code for Performance

HOW …
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• Can make your code run faster

• Requires NO
• Recompilation
• Relinking
• Migration to new release

• BUT, are you taking full advantage of all the new features 
from the new hardware?
• i.e. the full ROI on the new piece of hardware

Install New Hardware
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• zEC12 – OOO+, Architectural Extensions, 
Enablement for new Software Paradigms
• zEC12 – OOO+, Architectural Extensions, 
Enablement for new Software Paradigms
• zEC12 – OOO+, Architectural Extensions, 
Enablement for new Software Paradigms

  System Z Models

• zEC12 – OOO+, Architectural Extensions, 
Enablement for new Software Paradigms

  System z Models



• Allows the compiler to exploit the hardware:
• ARCH
• HGPR
• FLOAT(AFP)

• Balance between compile-time vs. execution-time:
• OPT(2)
• OPT(3)
• HOT [C/C++]
• IPA [C/C++]
• PDF

Utilize Compiler Options
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• Provide the details about the source or environment:
• C/C++:
• ANSIALIAS
• IGNERRNO
• LIBANSI
• NOTHREADED
• NOSTRICT
• STRICT_INDUCTION
• XPLINK

• PL/I:
• REDUCT
• RESEXP
• RULES(NOLAXCTL)
• DEFAULT(CONNECTED REORDER NOOVERLAP)

Utilize Compiler Options (cont’d)
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• Controls load module size:
• COMPACT [C/C++]
• INLINE [C/C++]
• DEFAULT(INLINE) [PL/I]
• UNROLL

Utilize Compiler Options (cont’d)
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• The ARCH option specifies the level of the hardware on 
which the generated code must run
• C/C++ default – is ARCH(7)*
• produces code that will run on z9 machines

• PL/I default – is ARCH(6)
• produces code that will run on z990/z980 machines

• Must set ARCH to the lowest level machine where your 
generated code will run
• If you specify ARCH(n) and run the generated code on an 

ARCH(n-1) machine, you will most likely get an operation 
exception

* new default in z/OS XL C/C++ V2R1. Default architecture is ARCH(5) for all versions 
before this. ARCH(5) produces code that runs on z900 and newer

ARCHitecture Option
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ARCHitecture - Timeline
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G1:

Support for string 
operation h/w 
instruction

G2, G3, G4:

Support for 
branch 
relative

all models

G5, G6:

12-Additional 

Floating Point 
registers 

Support for 
IEEE Floating 
Point

z900, z800 – 
ESA/390 mode:

Support for 

32-bit add/

subtract with 
carry/borrow

z900, z800 – 
z/Architecture:

LP64 support

z990, z890:

Long displacement,  
Load Byte …

z9:

Extended immediate, 
Extended translation, 
Decimal Floating point

z10:

Compare and Branch, 
Prefetch, Add Logical 
with Signed Immediate

ARCH(9)

z196, z114:

Load/store on condition, 
Non-destructive ops, 
High-word

ARCH(10):

zEC12, zBC12:

DFP-Zoned Conversions, 
Transaction Execution

z/Architecture

Out-Of Order 
(OOO) pipeline



int bar(void);

int foo(void) {

  return ( (bar()==2) ? 1 : -1);

}

> xlc -c -O2 -qarch=8 –qlist loc.c

…

 000003 |       *    return ( (bar()==2) ? 1 : -1);

 0000D8  58F0  3000        000003 |                 L        r15,=V(bar)(,r3,0)

 0000DC  0DEF              000003 |                 BASR     r14,r15

 0000DE  A7FE  0002        000003 |                 CHI      r15,H'2'

 0000E2  0700              000000 |                 NOPR     0

 0000E4  A7F8  FFFF        000003 |                 LHI      r15,H'-1'

 0000E8  A774  0004        000003 |                 JNE      @1L3

 0000EC  41F0  0001        000003 |                 LA       r15,1

                           000004 |       *  }

 0000F0                    000004 |        @1L3     DS       0H

> xlc -c -O2 -qarch=9 –qlist loc.c

…

 000003 |       *    return ( (bar()==2) ? 1 : -1);

 0000D8  58F0  3000        000003 |                 L        r15,=V(bar)(,r3,0)

 0000DC  0DEF              000003 |                 BASR     r14,r15

 0000DE  4100  0001        000003 |                 LA       r0,1

 0000E2  A7FE  0002        000003 |                 CHI      r15,H'2'

 0000E6  A7F8  FFFF        000003 |                 LHI      r15,H'-1'

 0000EA  B9F2  80F0        000003 |                 LOCRE    r15,r0

                           000004 |       *  }

ARCH(9): Load-on-condition Example
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• Stands for High half of 64-bit General Purpose Register

• Permitted to exploit 64-bit GPRs in 32-bit programs
• Compiler can now make use of 
• The 64-bit version of the z/Architecture instructions
• The High-Word Facility [with ARCH(7) or above]

• Can be viewed as having an additional 16 GPRs

• PRESERVE sub-option
• Save/re-store in prolog/epilog the high halves of used GPRs
• Only necessary if the caller is not known to be compiler-

generated code

• Default is NOHGPR(NOPRESERVE)
• Metal C defaults to HGPR(PRESERVE)

HGPR Option

12



• Additional Floating-Point (AFP) registers were added to 
ESA/390 models

• AFP sub-option enable use of the full set (16) of FPRs

• VOLATILE sub-option
• FPR8 – FPR15 is considered volatile
• i.e. compiler will not expect they’re preserved by any called program

• No longer required for CICS TS V4.1 or newer

• Default is AFP(NOVOLTILE)
• [C/C++] for ARCH(3) or higher

FLOAT(AFP) Option
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• The OPT option controls how much, or even if at all, the 
compiler tries to optimize your code
• A trade-off between compile-time vs. execution-time 

• NOOPT/OPT(0): 
• The compiler simply translates your code into machine code
• Generated code could be large and slow
• Good choice for:
• Matching code generated with written source code

• for the purpose of debugging a problem
• Reducing compile time 

• Terrible choice if you care about run-time performance

OPTIMIZE Option
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• When optimizing, the compiler will improve, often vastly, 
the code it generates by, for example
• Keeping intermediate values in registers
• Moving code out of loops
• Merging statements
• Reordering instructions to improve the instruction pipeline
• Inlining functions

• Require more CPU and REGION during compilation

OPTIMIZE Option (cont’d)
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• OPT(2): 
• Start enabling the optimizer 
• A balance between compile speed and code quality

• OPT(3):
• Optimizer much more aggressive
• Tips balance towards code quality over compile speed
• C/C++ compiler will alter other options defaults:
• ANSIALIAS, IGNERRNO, STRICT, etc

• The C/C++ and PL/I compilers use the same optimizing 
backend
• But there are differences in what the OPT sub-options does

OPTIMIZE Option (cont’d)
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• HOT option
• High-Order loop analysis and Transformations
• More aggressive optimization on the loops
• Requires to use with OPT(2) or higher

• IPA option
• Inter-Procedural Analysis
• Optimization decisions made based on the entire program
• 3 sub-levels to control aggressiveness
• Requires OPT(2) or higher

• PDF sub-option
• Profile Directed Feedback

• Sample program execution to help direct optimization
• Requires a training run with representative data

Other C/C++ Options Related to OPT
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IPA Option [C/C++] (cont’d)
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IPA PDF Sub-Option [C/C++]
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• Optimizer presumes pointers can point only to objects of 
the same type
• The simplified rule is that you cannot safely dereference a 

pointer that has been cast to a type that is not closely related 
to the type of what it points at
• The ISO C and C++ standards define the closely related types

• If this assumption is false, wrong code could be generated
• The INFO(ALS) option might able to help you find potential 

violation of the ANSI type-based aliasing rule

• OPT(3) defaults to ANSIALIAS
• OPT(2) defaults is NOANSIALIAS

• Has no effect to NOOPT/OPT(0)

ANSIALIAS Option [C/C++]
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• Informs the compiler that the program is not using errno

• Allows the compiler more freedom to explore optimization 
opportunities for certain library functions 
• For example: sqrt

• Need to include the system header files to get the full 
benefit 

• OPT(3) defaults to IGNERRNO

• NOOPT and OPT(2) defaults are NOIGNERRNO

IGNERRNO Option [C/C++]
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• Indicates the name of an ANSI C library function are in 
fact ANSI C library functions and behave as described in 
the ANSI standard

• The optimizer can generate better code based on existing 
behavior of a given function
• Like, whether or not a particular library function has any side 

effects

• Provides additional benefits when used in conjunction with 
IGNERRNO

• Defaults is NOLIBANSI

LIBANSI Options [C/C++]
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• For user to assert their application is single-threaded

• Allows for non-thread-safe transformations be performed

• Defaults is THREADED

NOTHREADED Option [C/C++]
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• Allows the optimizer to alter the semantics of a program
• Performing code motion and scheduling on computations 

such as loads and floating-point computations that may 
trigger an exception

• Relax conformance to IEEE rules
• Reassociating floating-point expressions

• OPT(3) defaults is NOSTRICT

• NOOPT and OPT(2) defaults are STRICT

NOSTRICT Option [C/C++]
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• Asserts to the compiler the induction (loop counter) 
variables do not overflow or wrap-around
• Use STRICT_INDUCTION only if your program logic has 

such intent

• Only affects loops which have an induction variable 
declared with a different size than a register

• Default is NOSTRICT_INDUCTION
• Except with the c99 invocation command on USS

NOSTRICT_INDUCTION Option [C/C++]
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• XPLINK stands for eXtra Performance LINKage
• A modern linkage convention that is 2.5 times more efficient 

than the conventional linkage conventions
• We have seen some programs improved by 30%
• XPLINK and non-XPLINK parts can work across DLL and 

fectch() boundaries
• Must tell compiler about this, so the (expensive) switching code 

get executed
• If your application contains few switches, then mixing will still be 

beneficial

• Defaults:
• ILP32: NOXPLINK
• LP64: XPLINK

XPLINK Option [C/C++]
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• REDUCE option
• Specifies that the compiler is permitted to reduce an 

assignment of a null string to a structure into a simpler 
operation
• Even if that means padding bytes might be overwritten

• Padding bytes may be zerored out

• RESEXP option
• Specifies that the compiler is permitted to evaluate all 

restricted expressions at compile time even if this would 
cause a condition to be raised and the compilation to end 
with S-level messages

REDUCE and RESEXP Options [PL/I]
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• Specifies that the compiler disallows a CONTROLLED 
variable to be declared with a constant extent and yet to 
be allocated with a differing extent

• To allocate a CONTROLLED variable with a variable 
extent, that extents must be declared either with an 
asterisk or with a non-constant expression.

• When the compiler sees a reference to a structure, or to 
any member of that structure, it knows the lengths, 
dimensions or offsets of the fields in it

RULES(NOLAXCTL) Option [PL/I]
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• CONNECTED sub-option
• Compiler presumes application never passes nonconnected 

parameters

• REORDER sub-option
• Indicates that the ORDER option is not applied to every 

block, meaning the compiler doesn’t have to maintain 
variables in that block referenced in ON-units (or blocks 
dynamically descendant from ON-units) have their latest 
values

• NOOVERLAP sub-option
• Compiler presumes the source and target in an assignment 

does not overlap

DEFAULT Sub-Option
CONNECTED REORDER NOOVERLAP
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• Compiler favors optimizations that tend to limit the 
growth of the code

• Depending on your specific program, the object size may 
increase or decrease and the execution time may increase 
or decrease

• Default is NOCOMPACT

COMPACT Option [C/C++]
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• Inlining eliminates the overhead of the function call and 
linkage, and also exposes the function's code to the 
optimizer

• Too much inlining can increase the size of the program

• AUTO sub-option [C/C++]
• Inliner runs in automatic mode
• Threshold sub-option
• Maximum relative size of a subprogram to inline

• LIMIT sub-option
• Maximum relative size a subprogram can grow before auto-

inlining stops

INLINE Option [C/C++] 
DEFAULT(INLINE) Option [PL/I]
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• Instructs the compiler to perform loop unrolling
• It replicates a loop body multiple times, and adjusts the 

loop control code accordingly
• It increases code size in the new loop body

• Auto sub-option
• Compiler decides via heuristics the appropriate candidate 

and amount of unrolling

UNROLL Option
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• Writing good code

• Make use of built-in functions

• Make use of #pragmas [C/C++]
• Make use of attribute and keyword [C/C++]

• OpenMP [C/C++]

Code for Performance
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• Keep it simple and concise
• Good for both the programmer and the compiler to 

understand the code easily

• Don’t ignore the compiler informational and warning 
messages, even if the program appears to work

• Attempts to be clever and produce “optimal” code might 
produce:
• Code that is unreadable
• Code that cannot be maintained
• Code that performs worse than the straightforward solutions
• Code that fails

Writing Good Code
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• Library function example:
• Less efficient comparison on a loop

int i, a[1000], b[1000];
…
for (i = 0; i < 1000; ++i)
  if (a[i] != b[i])
    break;
if (i == 1000)
  /* arrays are equal */

• More efficient comparison with a memcmp() library function
int a[1000], b[1000];
…
if (!memcmp (a, b, sizeof(a)))
  /* arrays are equal */

Make Use Of Built-in Functions
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• Hardware built-in function example
• A naive implementation of population count

unsigned long popcount(unsigned long op) {
  unsigned long count = 0;
  unsigned long bit = 1;
  for (int i = 0; i < 64; i++) {
    if (op & bit)
     count++;
    bit = bit << 1;
  }
  return count;
}

• with __popcnt() hardware built-in function
unsigned long __popcnt(unsigned long op)

• Available from ARCH(9)
• A single POPCNT instruction

Make Use Of Built-in Functions (cont’d)
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• Provides more details about your code to help the optimizer
• #pragma execution_frequency (C++only)
• Marks program source code that you expect will be either very 

frequently or very infrequently executed

• #pragma isolated_call 
• Lists functions that have no side effects (that do not modify global 

storage)

• For fine-grained control
• #pragma inline (C only)
• Hint to the compiler to inline this frequently used function

• #pragma noinline
• Prevents a function from being inlined

• #pragma unroll
• Informs the compiler how to perform loop unrolling on the                 loop 

body that immediately follows it

Make Use Of #pragmas [C/C++]
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• Provides more details about your code to help the optimizer
• restrict keyword
• Use with ASSERT(RESTRICT) to indicate disjointed pointers

• Defaults is ASSERT(RESTRICT)
• Two restrict qualified pointers, declared in the same scope, designate 

distinct objects and thus shouldn’t alias each other
• RESTRICT option (C only) can also be used to indicates to the compiler 

that pointer parameters in all functions or in specified functions are 
disjoint

• Defaults is NORESTRICT

• For fine-grained control
• inline keyword
• Hint to the compiler to inline this frequently used function

• always_inline function attribute
• Instructs the compiler to inline a function

Make Use of Attributes & Keywords [C/C++]
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• Industry-standard API designed to create portable C/C++ 
applications to exploit shared-memory parallelism

• Users can create or migrate parallel applications to take 
advantage of the multi-core design of modern processors

• Consists of a collection of compiler directives and library 
routines

• New SMP option to allow OpenMP parallelization 
directives to be recognized
• Only supported in 64-bit 
• Executable must be run under USS
• Thread-safe version of standard library must be used inside 

the parallel regions
• Not supported with Metal C

OpenMP API 3.1 [C/C++]
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int bar(void) {

  #pragma omp parallel for 

  for (int i = 0; i < N; i++) {

    // executed in parallel by a # of threads

    …

  }

} 

OpenMP API 3.1 Example [C/C++]
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• Let the compiler work for you by telling it
• The hardware to exploit
• The importance of compile-time vs. execution performance
• More precise details about the source code
• Sensitiveness of module size

• Work together with the compiler
• Writing good code 
• Make use of BIFs and #pragmas
• Exploit the language features

Recap

41



• z/OS C/C++ Programming Guide
• Part 5. Performance optimization
• http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zos.v2r1.cbcpx01/cbc1p2399.htm

• Enterprise PL/I for z/OS Programming Guide
• Chapter 13. Improving performance
• http://publibfp.boulder.ibm.com/epubs/pdf/ibm4pg03.pdf

Additional Reading Materials
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• Visda Vokhshoori, Make Your C/C++ and PL/I Code FLY 
With the Right Compiler Options, 

SHARE Boston, Aug. 2013
• Peter Elderon, Make Your C/C++ and PL/I Code FLY With 

the Right Compiler Options,

SHARE San Francisco, Feb. 2013
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• Users of:
• PL/I
• C/C++
• NOOPTIMIZE/OPTIMIZE(0), OPTIMIZE(2), OPTIMIZE(3)
• ARCH(7), ARCH(8), ARCH(9), ARCH(10)
• C/C++ only:
• TUNE 
• LP64
• PDF
• HOT
• IPA

Quick Survey
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• Connect with us
• Email me
• Rational Café - the compilers user community & forum
• C/C++: http://ibm.com/rational/community/cpp
• PL/I: http://ibm.com/rational/community/pli

• RFE community – for feature requests
• C/C++: http://www.ibm.com/developerworks/rfe/?PROD_ID=700
• PL/I: http://www.ibm.com/developerworks/rfe/?PROD_ID=699

• Product Information
• C/C++: http://www-03.ibm.com/software/products/us/en/czos
• PL/I: http://www-03.ibm.com/software/products/en/plicompfami

Thank You!

Questions?
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