
Insert
Custom
Session
QR if
Desired.

Make Your PL/I and C/C++ Code Fly
With the Right Compiler Options

Dickson Chau
IBM

August 7, 2014
Session 16091

• does good application performance mean to you?

• Fast Execution Time

• Short Compile Time

WHAT …

2

• to achieve good application performance?

• Install New Hardware

• Utilize Compiler Options

• Code for Performance

HOW …

3

• Can make your code run faster

• Requires NO
• Recompilation
• Relinking
• Migration to new release

• BUT, are you taking full advantage of all the new features
from the new hardware?
• i.e. the full ROI on the new piece of hardware

Install New Hardware

4

5

• zEC12 – OOO+, Architectural Extensions,
Enablement for new Software Paradigms
• zEC12 – OOO+, Architectural Extensions,
Enablement for new Software Paradigms
• zEC12 – OOO+, Architectural Extensions,
Enablement for new Software Paradigms

 System Z Models

• zEC12 – OOO+, Architectural Extensions,
Enablement for new Software Paradigms

 System z Models

• Allows the compiler to exploit the hardware:
• ARCH
• HGPR
• FLOAT(AFP)

• Balance between compile-time vs. execution-time:
• OPT(2)
• OPT(3)
• HOT [C/C++]
• IPA [C/C++]
• PDF

Utilize Compiler Options

6

• Provide the details about the source or environment:
• C/C++:
• ANSIALIAS
• IGNERRNO
• LIBANSI
• NOTHREADED
• NOSTRICT
• STRICT_INDUCTION
• XPLINK

• PL/I:
• REDUCT
• RESEXP
• RULES(NOLAXCTL)
• DEFAULT(CONNECTED REORDER NOOVERLAP)

Utilize Compiler Options (cont’d)

7

• Controls load module size:
• COMPACT [C/C++]
• INLINE [C/C++]
• DEFAULT(INLINE) [PL/I]
• UNROLL

Utilize Compiler Options (cont’d)

8

• The ARCH option specifies the level of the hardware on
which the generated code must run
• C/C++ default – is ARCH(7)*
• produces code that will run on z9 machines

• PL/I default – is ARCH(6)
• produces code that will run on z990/z980 machines

• Must set ARCH to the lowest level machine where your
generated code will run
• If you specify ARCH(n) and run the generated code on an

ARCH(n-1) machine, you will most likely get an operation
exception

* new default in z/OS XL C/C++ V2R1. Default architecture is ARCH(5) for all versions
before this. ARCH(5) produces code that runs on z900 and newer

ARCHitecture Option

9

ARCHitecture - Timeline

10

0

1

2

ARCHitecture

3

4

5

6

7

8

9

10

G1:

Support for string
operation h/w
instruction

G2, G3, G4:

Support for
branch
relative

all models

G5, G6:

12-Additional

Floating Point
registers

Support for
IEEE Floating
Point

z900, z800 –
ESA/390 mode:

Support for

32-bit add/

subtract with
carry/borrow

z900, z800 –
z/Architecture:

LP64 support

z990, z890:

Long displacement,
Load Byte …

z9:

Extended immediate,
Extended translation,
Decimal Floating point

z10:

Compare and Branch,
Prefetch, Add Logical
with Signed Immediate

ARCH(9)

z196, z114:

Load/store on condition,
Non-destructive ops,
High-word

ARCH(10):

zEC12, zBC12:

DFP-Zoned Conversions,
Transaction Execution

z/Architecture

Out-Of Order
(OOO) pipeline

int bar(void);

int foo(void) {

 return ((bar()==2) ? 1 : -1);

}

> xlc -c -O2 -qarch=8 –qlist loc.c

…

 000003 | * return ((bar()==2) ? 1 : -1);

 0000D8 58F0 3000 000003 | L r15,=V(bar)(,r3,0)

 0000DC 0DEF 000003 | BASR r14,r15

 0000DE A7FE 0002 000003 | CHI r15,H'2'

 0000E2 0700 000000 | NOPR 0

 0000E4 A7F8 FFFF 000003 | LHI r15,H'-1'

 0000E8 A774 0004 000003 | JNE @1L3

 0000EC 41F0 0001 000003 | LA r15,1

 000004 | * }

 0000F0 000004 | @1L3 DS 0H

> xlc -c -O2 -qarch=9 –qlist loc.c

…

 000003 | * return ((bar()==2) ? 1 : -1);

 0000D8 58F0 3000 000003 | L r15,=V(bar)(,r3,0)

 0000DC 0DEF 000003 | BASR r14,r15

 0000DE 4100 0001 000003 | LA r0,1

 0000E2 A7FE 0002 000003 | CHI r15,H'2'

 0000E6 A7F8 FFFF 000003 | LHI r15,H'-1'

 0000EA B9F2 80F0 000003 | LOCRE r15,r0

 000004 | * }

ARCH(9): Load-on-condition Example

11

• Stands for High half of 64-bit General Purpose Register

• Permitted to exploit 64-bit GPRs in 32-bit programs
• Compiler can now make use of
• The 64-bit version of the z/Architecture instructions
• The High-Word Facility [with ARCH(7) or above]

• Can be viewed as having an additional 16 GPRs

• PRESERVE sub-option
• Save/re-store in prolog/epilog the high halves of used GPRs
• Only necessary if the caller is not known to be compiler-

generated code

• Default is NOHGPR(NOPRESERVE)
• Metal C defaults to HGPR(PRESERVE)

HGPR Option

12

• Additional Floating-Point (AFP) registers were added to
ESA/390 models

• AFP sub-option enable use of the full set (16) of FPRs

• VOLATILE sub-option
• FPR8 – FPR15 is considered volatile
• i.e. compiler will not expect they’re preserved by any called program

• No longer required for CICS TS V4.1 or newer

• Default is AFP(NOVOLTILE)
• [C/C++] for ARCH(3) or higher

FLOAT(AFP) Option

13

• The OPT option controls how much, or even if at all, the
compiler tries to optimize your code
• A trade-off between compile-time vs. execution-time

• NOOPT/OPT(0):
• The compiler simply translates your code into machine code
• Generated code could be large and slow
• Good choice for:
• Matching code generated with written source code

• for the purpose of debugging a problem
• Reducing compile time

• Terrible choice if you care about run-time performance

OPTIMIZE Option

14

• When optimizing, the compiler will improve, often vastly,
the code it generates by, for example
• Keeping intermediate values in registers
• Moving code out of loops
• Merging statements
• Reordering instructions to improve the instruction pipeline
• Inlining functions

• Require more CPU and REGION during compilation

OPTIMIZE Option (cont’d)

15

• OPT(2):
• Start enabling the optimizer
• A balance between compile speed and code quality

• OPT(3):
• Optimizer much more aggressive
• Tips balance towards code quality over compile speed
• C/C++ compiler will alter other options defaults:
• ANSIALIAS, IGNERRNO, STRICT, etc

• The C/C++ and PL/I compilers use the same optimizing
backend
• But there are differences in what the OPT sub-options does

OPTIMIZE Option (cont’d)

16

• HOT option
• High-Order loop analysis and Transformations
• More aggressive optimization on the loops
• Requires to use with OPT(2) or higher

• IPA option
• Inter-Procedural Analysis
• Optimization decisions made based on the entire program
• 3 sub-levels to control aggressiveness
• Requires OPT(2) or higher

• PDF sub-option
• Profile Directed Feedback

• Sample program execution to help direct optimization
• Requires a training run with representative data

Other C/C++ Options Related to OPT

17

IPA Option [C/C++] (cont’d)

18

file1.c

file2.c

file3.c

xlc

xlc

xlc

file1.o

file2.o

file3.o

xlc

binder

executable

IPA compile

IPA(LINK)

libraries

IPA PDF Sub-Option [C/C++]

19

PDF1:

Training run:
executable

with
instrumentation

typical input profiling information

file1.c
file2.c

file.c
xlc

xlc
xlc

file.o
file3.o

xlc

executable
with

instrumentation

IPA compile PDF1

file.o

IPA link PDF1

PDF2:

file.o
file3.o

xlc

PDF optimized
executable

(w/o instrumentation)

file.o

IPA link PDF2

• Optimizer presumes pointers can point only to objects of
the same type
• The simplified rule is that you cannot safely dereference a

pointer that has been cast to a type that is not closely related
to the type of what it points at
• The ISO C and C++ standards define the closely related types

• If this assumption is false, wrong code could be generated
• The INFO(ALS) option might able to help you find potential

violation of the ANSI type-based aliasing rule

• OPT(3) defaults to ANSIALIAS
• OPT(2) defaults is NOANSIALIAS

• Has no effect to NOOPT/OPT(0)

ANSIALIAS Option [C/C++]

20

• Informs the compiler that the program is not using errno

• Allows the compiler more freedom to explore optimization
opportunities for certain library functions
• For example: sqrt

• Need to include the system header files to get the full
benefit

• OPT(3) defaults to IGNERRNO

• NOOPT and OPT(2) defaults are NOIGNERRNO

IGNERRNO Option [C/C++]

21

• Indicates the name of an ANSI C library function are in
fact ANSI C library functions and behave as described in
the ANSI standard

• The optimizer can generate better code based on existing
behavior of a given function
• Like, whether or not a particular library function has any side

effects

• Provides additional benefits when used in conjunction with
IGNERRNO

• Defaults is NOLIBANSI

LIBANSI Options [C/C++]

22

• For user to assert their application is single-threaded

• Allows for non-thread-safe transformations be performed

• Defaults is THREADED

NOTHREADED Option [C/C++]

23

• Allows the optimizer to alter the semantics of a program
• Performing code motion and scheduling on computations

such as loads and floating-point computations that may
trigger an exception

• Relax conformance to IEEE rules
• Reassociating floating-point expressions

• OPT(3) defaults is NOSTRICT

• NOOPT and OPT(2) defaults are STRICT

NOSTRICT Option [C/C++]

24

• Asserts to the compiler the induction (loop counter)
variables do not overflow or wrap-around
• Use STRICT_INDUCTION only if your program logic has

such intent

• Only affects loops which have an induction variable
declared with a different size than a register

• Default is NOSTRICT_INDUCTION
• Except with the c99 invocation command on USS

NOSTRICT_INDUCTION Option [C/C++]

25

• XPLINK stands for eXtra Performance LINKage
• A modern linkage convention that is 2.5 times more efficient

than the conventional linkage conventions
• We have seen some programs improved by 30%
• XPLINK and non-XPLINK parts can work across DLL and

fectch() boundaries
• Must tell compiler about this, so the (expensive) switching code

get executed
• If your application contains few switches, then mixing will still be

beneficial

• Defaults:
• ILP32: NOXPLINK
• LP64: XPLINK

XPLINK Option [C/C++]

26

• REDUCE option
• Specifies that the compiler is permitted to reduce an

assignment of a null string to a structure into a simpler
operation
• Even if that means padding bytes might be overwritten

• Padding bytes may be zerored out

• RESEXP option
• Specifies that the compiler is permitted to evaluate all

restricted expressions at compile time even if this would
cause a condition to be raised and the compilation to end
with S-level messages

REDUCE and RESEXP Options [PL/I]

27

• Specifies that the compiler disallows a CONTROLLED
variable to be declared with a constant extent and yet to
be allocated with a differing extent

• To allocate a CONTROLLED variable with a variable
extent, that extents must be declared either with an
asterisk or with a non-constant expression.

• When the compiler sees a reference to a structure, or to
any member of that structure, it knows the lengths,
dimensions or offsets of the fields in it

RULES(NOLAXCTL) Option [PL/I]

28

• CONNECTED sub-option
• Compiler presumes application never passes nonconnected

parameters

• REORDER sub-option
• Indicates that the ORDER option is not applied to every

block, meaning the compiler doesn’t have to maintain
variables in that block referenced in ON-units (or blocks
dynamically descendant from ON-units) have their latest
values

• NOOVERLAP sub-option
• Compiler presumes the source and target in an assignment

does not overlap

DEFAULT Sub-Option
CONNECTED REORDER NOOVERLAP

29

• Compiler favors optimizations that tend to limit the
growth of the code

• Depending on your specific program, the object size may
increase or decrease and the execution time may increase
or decrease

• Default is NOCOMPACT

COMPACT Option [C/C++]

30

• Inlining eliminates the overhead of the function call and
linkage, and also exposes the function's code to the
optimizer

• Too much inlining can increase the size of the program

• AUTO sub-option [C/C++]
• Inliner runs in automatic mode
• Threshold sub-option
• Maximum relative size of a subprogram to inline

• LIMIT sub-option
• Maximum relative size a subprogram can grow before auto-

inlining stops

INLINE Option [C/C++]
DEFAULT(INLINE) Option [PL/I]

31

• Instructs the compiler to perform loop unrolling
• It replicates a loop body multiple times, and adjusts the

loop control code accordingly
• It increases code size in the new loop body

• Auto sub-option
• Compiler decides via heuristics the appropriate candidate

and amount of unrolling

UNROLL Option

32

• Writing good code

• Make use of built-in functions

• Make use of #pragmas [C/C++]
• Make use of attribute and keyword [C/C++]

• OpenMP [C/C++]

Code for Performance

33

• Keep it simple and concise
• Good for both the programmer and the compiler to

understand the code easily

• Don’t ignore the compiler informational and warning
messages, even if the program appears to work

• Attempts to be clever and produce “optimal” code might
produce:
• Code that is unreadable
• Code that cannot be maintained
• Code that performs worse than the straightforward solutions
• Code that fails

Writing Good Code

34

• Library function example:
• Less efficient comparison on a loop

int i, a[1000], b[1000];
…
for (i = 0; i < 1000; ++i)
 if (a[i] != b[i])
 break;
if (i == 1000)
 /* arrays are equal */

• More efficient comparison with a memcmp() library function
int a[1000], b[1000];
…
if (!memcmp (a, b, sizeof(a)))
 /* arrays are equal */

Make Use Of Built-in Functions

35

• Hardware built-in function example
• A naive implementation of population count

unsigned long popcount(unsigned long op) {
 unsigned long count = 0;
 unsigned long bit = 1;
 for (int i = 0; i < 64; i++) {
 if (op & bit)
 count++;
 bit = bit << 1;
 }
 return count;
}

• with __popcnt() hardware built-in function
unsigned long __popcnt(unsigned long op)

• Available from ARCH(9)
• A single POPCNT instruction

Make Use Of Built-in Functions (cont’d)

36

• Provides more details about your code to help the optimizer
• #pragma execution_frequency (C++only)
• Marks program source code that you expect will be either very

frequently or very infrequently executed

• #pragma isolated_call
• Lists functions that have no side effects (that do not modify global

storage)

• For fine-grained control
• #pragma inline (C only)
• Hint to the compiler to inline this frequently used function

• #pragma noinline
• Prevents a function from being inlined

• #pragma unroll
• Informs the compiler how to perform loop unrolling on the loop

body that immediately follows it

Make Use Of #pragmas [C/C++]

37

• Provides more details about your code to help the optimizer
• restrict keyword
• Use with ASSERT(RESTRICT) to indicate disjointed pointers

• Defaults is ASSERT(RESTRICT)
• Two restrict qualified pointers, declared in the same scope, designate

distinct objects and thus shouldn’t alias each other
• RESTRICT option (C only) can also be used to indicates to the compiler

that pointer parameters in all functions or in specified functions are
disjoint

• Defaults is NORESTRICT

• For fine-grained control
• inline keyword
• Hint to the compiler to inline this frequently used function

• always_inline function attribute
• Instructs the compiler to inline a function

Make Use of Attributes & Keywords [C/C++]

38

• Industry-standard API designed to create portable C/C++
applications to exploit shared-memory parallelism

• Users can create or migrate parallel applications to take
advantage of the multi-core design of modern processors

• Consists of a collection of compiler directives and library
routines

• New SMP option to allow OpenMP parallelization
directives to be recognized
• Only supported in 64-bit
• Executable must be run under USS
• Thread-safe version of standard library must be used inside

the parallel regions
• Not supported with Metal C

OpenMP API 3.1 [C/C++]

39

int bar(void) {

 #pragma omp parallel for

 for (int i = 0; i < N; i++) {

 // executed in parallel by a # of threads

 …

 }

}

OpenMP API 3.1 Example [C/C++]

40

• Let the compiler work for you by telling it
• The hardware to exploit
• The importance of compile-time vs. execution performance
• More precise details about the source code
• Sensitiveness of module size

• Work together with the compiler
• Writing good code
• Make use of BIFs and #pragmas
• Exploit the language features

Recap

41

• z/OS C/C++ Programming Guide
• Part 5. Performance optimization
• http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zos.v2r1.cbcpx01/cbc1p2399.htm

• Enterprise PL/I for z/OS Programming Guide
• Chapter 13. Improving performance
• http://publibfp.boulder.ibm.com/epubs/pdf/ibm4pg03.pdf

Additional Reading Materials

42

http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zos.v2r1.cbcpx01/cbc1p2399.htm
http://publibfp.boulder.ibm.com/epubs/pdf/ibm4pg03.pdf

• Visda Vokhshoori, Make Your C/C++ and PL/I Code FLY
With the Right Compiler Options,

SHARE Boston, Aug. 2013
• Peter Elderon, Make Your C/C++ and PL/I Code FLY With

the Right Compiler Options,

SHARE San Francisco, Feb. 2013

References

43

• Users of:
• PL/I
• C/C++
• NOOPTIMIZE/OPTIMIZE(0), OPTIMIZE(2), OPTIMIZE(3)
• ARCH(7), ARCH(8), ARCH(9), ARCH(10)
• C/C++ only:
• TUNE
• LP64
• PDF
• HOT
• IPA

Quick Survey

44

• Connect with us
• Email me
• Rational Café - the compilers user community & forum
• C/C++: http://ibm.com/rational/community/cpp
• PL/I: http://ibm.com/rational/community/pli

• RFE community – for feature requests
• C/C++: http://www.ibm.com/developerworks/rfe/?PROD_ID=700
• PL/I: http://www.ibm.com/developerworks/rfe/?PROD_ID=699

• Product Information
• C/C++: http://www-03.ibm.com/software/products/us/en/czos
• PL/I: http://www-03.ibm.com/software/products/en/plicompfami

Thank You!

Questions?

45

http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/pli
http://www.ibm.com/developerworks/rfe/?PROD_ID=700
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www-03.ibm.com/software/products/us/en/czos
http://www-03.ibm.com/software/products/en/plicompfami

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

