
1

2

3

The point here is that for real business applications, there is a

connected back-end for services. The “mobile” part of the app is just a

presentation layer that is unique for the mobile environment.

Luckily, our enterprise had most of the back-end (services, middleware,

business logic) already.

4

This is a high level depiction of how a mobile client can interact with an

enterprise back-end environment.

The back-end already existed for us as a result of our existing web

applications and was a combination of mainframe and open systems

infrastructure.

5

6

The primary business need was to reach people who are more and

more engaging service providers from a mobile channel. Ultimately, this

led to the discussion of how to provide mobile application support for

existing self-service features.

7

The research phase was critical to determine the direction of the app

including whether it was really needed and if so what the features

should be.

Ultimately, we determined that there was great interest in having

features exposed in a mobile channel and which features were the

minimum requirements. This helped us to shape a plan to get some

features our first with an opportunity to phase additional features in over

time (subsequent releases).

8

The discussion between IT and the business was very productive and

ultimately shaped the technical decisions to be made. Fortunately, we

were able to clearly articulate the implications of business choices

which allowed the business owners to make more informed business

decisions.

9

After providing implications around things such as cost, scope of effort,

and device use, we were able to make technical choices around the

needed technology stack, skills, and development approach.

This was new ground for us, but we started off by identifying what we

could leverage from what we had and what we needed to add.

10

We were already a large enterprise shop with support for mainframe

and open systems applications. Much of what we already had in place

to support web application development could be leveraged for mobile

development.

Having a SOA framework proved to be key to the transition from web

development, although with some slight enhancements.

11

Visual representation of our existing infrastructure/architecture.

12

While the items that we needed were incremental to what we already

had, there were still a lot of details.

Items highlighted as RED are just to point out some high level concepts

development technologies that were new.

Thinking from the perspective of a client application was a key

departure from our current web applications. The development of the

client application reused some existing skills that we had including

HTML, CSS, and Javascript, but to a much larger degree than we had

used in the past. The Dojo framework was new and as such had its

own complexities and nuances.

It was also important to think in the mobile operating system mindset for

both iOS and Android. Concepts between the two are similar, but there

are real differences between the two platforms. PhoneGap helped to

insulate differences from a coding perspective, but the deployment and

testing were distinctly different.

13

Ultimately, we were able to code one application code base that was

usable for 3 platforms:

• Mobile web – this was HTML 5, CSS, Javascript, and Dojo and was

capable of running in a web browser (though not in older versions of

Internet Explorer)

• iOS and Android versions embedded the mobile web app in

PhoneGap with unique configuration for each mobile OS

14

Dojo

• Just one of many HTML 5 frameworks

• Javascript/CSS-based

Like any framework, Dojo provides a lot of functionality “out of the box”.

It was challenging at times to get the right level of documentation even

though there is a large site dedicated to the product (dojotoolkit.org).

Additionally, the product was still evolving, so understanding the

capabilities of a given version was important.

15

High level depiction of the primary components of Dojo (visual

components, Javascript libraries, stylesheets).

An important item to note is that mobile apps are typically built using a

single page architecture. This means that there is a single HTML page

with additional page fragments (views) that are loaded dynamically

based on user interaction. This is not required, but is a standard

pattern of use.

16

A single mobile web app is created and then all of the web files (.html,

.css, .js, images) are embedded in native OS projects:

• iOS – Xcode PhoneGap project (see subsequent pages)

• Android – Java PhoneGap project (see subsequent pages)

17

• A developer account is needed with Apple and needs to be owned by

someone. This requires purchasing and acceptance of terms which

can involve procurement and legal collaboration.

• Mobile devices not easy to manage – bill payment and

reimbursement, data plan, ownership and governance of devices,

physical security

• Developers should become familiar with Xcode and the configuration

settings for PhoneGap

• We had to develop procedures related to connectivity and software

versioning since Macs are used very sparingly in our enterprise

• Reviewing and understanding Apple’s extensive review and

acceptance policies and distribution methodology was key

18

• Needed to establish an account with Google, similar to what we did

with Apple with similar setup and ownership considerations

• Also similar to Apple, there was a need for developers to be familiar

with PhoneGap configuration unique to Android

• We were able to leverage existing desktops/laptos and development

tools, although we did have to establish additional installations for

Android development tools

• Our Windows policies blocked external devices, so we had to

establish exceptions for the developers that connected Android

devices to their laptops

• Software versioning was already established for our Eclipse

environment, so no additional needs were required for Android

development

19

• This lists some of the testing needs that we identified from different

perspectives

• Physical device management

• Driver installs, policy settings, cables, and more

• Governance of physical devices

• Physical device management is not easy

20

• For our initial foray into mobile development and testing, we went the

route of acquiring on hand, physical devices for sharing across

developers, testers, and user experience staff

• As an enterprise, we also established a cloud-based service for

testing internet-connected devices

• The biggest value proposition for this was the ability to use

automated scripting to replay a script multiple times, including

sharing parts of the scripts across devices

• For remote testers we needed to have a method for distributing

application versions to other devices

• We had differences between iOS and Android, but there are

online services that assist with this (free)

• Unit testing is part of our development culture, so we also made

attempts to build out our unit testing capabilities for Javascript. Dojo

has a framework included called DOH (Dojo Objective Harness), but

there are others as well.

21

• Key point was that our devices were operating outside our firewall

since the app on the device would make REST service calls to our

back end systems

• Having an SOA appliance (DataPower) was key to mediating

authentication and authorization for our applications as well as

handling CORS

• CORS – Cross-origin resource sharing

• Normally, a web page cannot make a request to a URL (such

as a service call) that is not on the same domain as that from

which the page was loaded (security vulnerability)

• Some SOA appliances will mediate this concern to expose the

service on the same domain as the website

• CORS is still an issue for desktop testing since local server is

not the same as the web service sever

• Started with JSONP and JSON, but required extra

coding

• Implemented local IBM HTTP Server with configuration

for desktop testing

22

Basic diagram depicting the interaction between the application on the

device and access to back-end services through DataPower

23

• Visual design for mobile optimized apps was new for our team

• Mobile actually helped to build visual design experience along

with other web initiatives

• Tools

• Mobile Device Sled - DIY constructed bracket to focus web

cam on device for usability testing

• Tried maqetta.org as a Dojo-based prototyping tool. It was

good for trying concepts, but didn’t work well for visual

designers or conversion from prototype into development

• It was very important to monitor visual design throughout the process

to ensure that we could implement the visual design without a lot of

customization. In general, we tried to stick to the out of the box Dojo

mobile widgets.

24

25

• This was a shift in development thinking – client-based apps vs.

server-based (at least as compared to previous web development)

• Javascript was the key “language” skill needed by developers

• Open source

• Versions change regularly

• Emerging frameworks

• A positive was that our existing SOA approach fit well into a client

app that was just for presentation and navigation and we could

leverage our existing services

• Biggest change (with simple implementation) was to adjust

services to return JSON instead of XML

26

• This was an implication of the application residing on a client device

• Security calls were from the client instead of server to server

(more security required)

• Where we used to have REST service calls from sever-side Java

code internal to the network, now the services were invoked by the

client app requiring additional security to avoid unauthorized external

access

• We had to work with our firewall administrators to open IP addresses

for the mobile devices used for testing (blocks of IP addresses based

on carrier)

• iOS doesn’t trust non-certified SSL calls, so we had to purchase

certificates for our test servers

• There is a workaround in the Objective C code that we used

temporarily until the certificates were applied (found via

internet search)

• We also had to be concerned about the protection of end user

information and avoid any coding that would store any user

information locally on the device

27

• For iOS we needed to provide our own support for Macs in the

enterprise. We had access to developers who were already familiar

with Mac OS and we developed additional expertise internally. It’s a

good idea to involve some existing expertise in this area.

• To automate the Android build process, we had to modify our existing

scripts and builds to augment with software from Google.

• Ultimately, we leveraged existing knowledge in both the iOS and

Android OS arenas.

• Designing the Javascript code to be configurable from environment to

environment is key and not necessarily trivial.

• Our builds generated different environment variables based on

the IT or QA deployment environments as well as production

• Our goal (as in any other app) was to ensure no coding

changes were required between deployment environments

28

• With frameworks ever changing, there is a tendency to shift to new

UI frameworks over time. It’s helpful to strike a balance between

leveraging the framework, while minimizing dependence for future

migrations.

• Coordinating versions (i.e. Dojo vs. PhoneGap vs. iOS/Android OS)

could be challenging. We did experience some compatibility issues

at some points between the different layers. This required some

overriding of the framework code based on fixes found on the

internet.

29

• To coordinate iOS and Android releases, we would stage iOS to be

reviewed, but requiring manual release. In this way, once the review

was accepted by Apple, we could basically release the iOS release

and Android simultaneously.

• A side benefit was that we had more flexibility in scheduling

development and deployment since the mobile app was mostly

stand-alone. The only dependence was on the service interfaces.

30

31

• We found that not only did the developers need to understand mobile

technology, but our architects needed to understand how the mobile

client app fits in with all of the rest of our layers of architecture.

• In other words, our architecture was already complex, and we added

another layer/variation to it.

32

• AngularJS is a promising, emerging UI framework that we are

beginning to use for enterprise development (and which has support

for mobile)

• As stated earlier, we see a need to limit framework dependence in

our code to facilitate future migration to other UI frameworks

33

• Developing “mobile” applications for internal staff does require an

additional license from Apple

• Developer license is for the App Store

• Enterprise license is for employees

• There is also a B2B extension to the App Store for sharing

apps with external partners or customers

34

35

