

SAN and FICON Long Distance Connectivity

Session 16001 David Lytle, BCAF Global Solutions Specialist Brocade Communications <u>dlytle@brocade.com</u>

Uli Schlegel Director, Global Business Development Datacenter Solutions ADVA Optical Networking uschlegel@advaoptical.com

Copyright (c) 2014 by SHARE Inc. Co (i) (S) (i) (Creative commons.org/licenses/by-nc-sa/3.0/

- Who are Brocade and ADVA
- Fundamentals of SAN and FICON FC Long Distance Connectivity
 - Mainframe Channel Cards and Long Distance Connectivity
 - MAN / WAN / SONET / SDH
 - Direct-attached storage
 - Switch-attached storage but FICON non-cascaded
 - Switch-attached storage and FICON cascaded
- Brocade and ADVA Products
- WDM options and benefits

Brocade Communications Inc., Today

- Founded in 1995, currently has about 4,100 employees worldwide
- Serves a wide range of industries and customers in more than 160 countries
- An industry leader in providing reliable, high-performance network solutions
- Brocade provides our users:
 - Unmatched simplicity to overcome today's complexity
 - Non-stop networking to maximize business uptime
 - Optimized applications to increase business agility and gain a competitive advantage

BRO

- Investment protection to provide a smooth transition to new technologies while leveraging existing infrastructure
- 90 percent of the Global 1000 rely on Brocade solutions
- 38.7 million SAN switch ports shipped, 200,000+ SANs in production, 50,000+ Brocade directors installed worldwide

ADVA Optical Networking Today

Mission

Our MISSION is to be the trusted partner for innovative connectivity solutions that ADVANCE next-generation networks for cloud and mobile services.

met and Mobile Backhar Mobi herer Innovatio frastructure Access to Cor for LTE peed for Customers Claud and Data Center Connectivity Trusted Partner

Key Facts

Our NUMBERS >1400 employees €311* million revenue 20 years of innovation

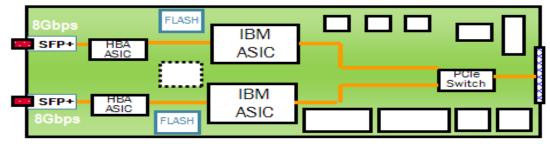
Our CUSTOMERS Hundreds of carriers Thousands of enterprises

> Our QUALITY TL 9000, ISO 14001 Award-winning supply chain

We bring differentiation, quality and ease-of-use to next-generation networks

*2013

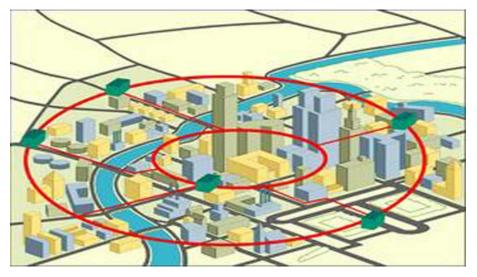
FUNDAMENTALS OF FIBRE CHANNEL LONG DISTANCE CONNECTIVITY



FICON: Analysis of Mainframe Channel Cards

Standard PCIe card

- zEC12, zBC12, z196, z114
- 2, 4 or 8 Gbps link rate
- FICON never creates full frames
- Buffer Credits:
 - 2Gbps 107 BCs per port
 - 4Gbps 200 BCs per port
 - 8Gbps 40 BCs per port
 - Out to 5km assuming 1K frames
 - No "Long Distance" capability



- For FICON, zHPF, and FCP environments
 - CHPID types: FC and FCP (2 PCHIDs/CHPIDs)
- Auto-negotiates to 2, 4, or 8Gbps
- Increased performance versus FICON Express8
- 10KM LX 9 micron SM fiber
 - Unrepeated distance 10 km which 6.2 miles
- SX 50 or 62.5 micron multimode fiber
 - Distance variable with link data rate and fiber type
- 2 channels of LX or SX (no mix)
- Small form factor pluggable (SFP) optics
 - Concurrent repair/replace action for each SFP

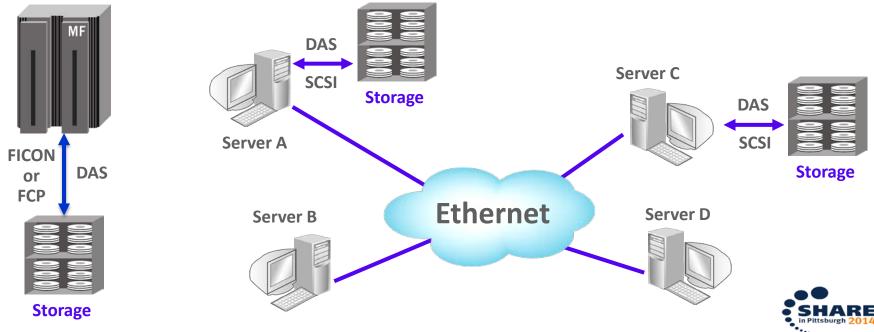
Metropolitan-Area/Regional-Area Networks

- A MAN or RAN covers a North American metropolitan area, or a small to medium-sized country in Europe or Asia
- Provides an optical ring/mesh topologies with adequate back-up and protection
- Main technologies:
 - SONET/SDH
 - OTN
 - Gigabit
 - 10-Gigabit Ethernet
 - CWDM, DWDM
- Several LANs could be connected to a single MAN
- The graphic shows how a ring topology might be beneficial.

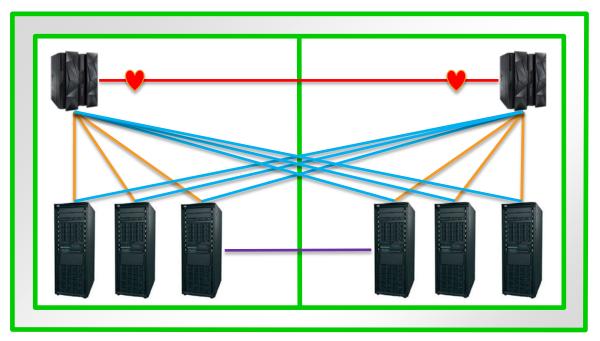
Wide-Area Networks (WAN)

- Long haul intra-city and intra-country connections
- Typically government-regulated or in the public network environment
 WANS originated in telephony
- Main technologies: SONET/SDH, OTN, WDM
 - Voice circuits vs. data packets

SONET/SDH - OTN

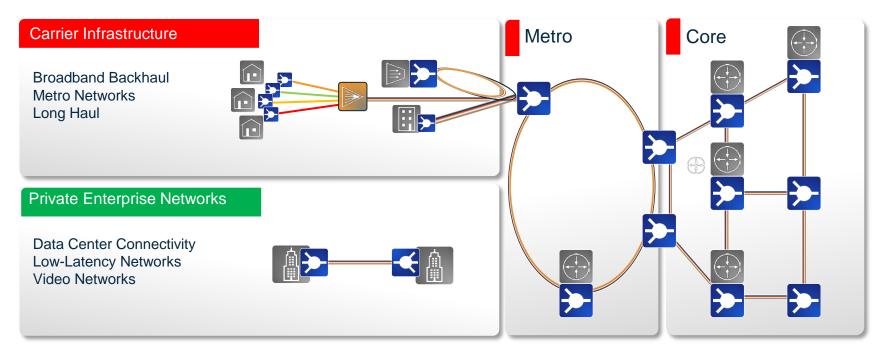

- SONET (Synchronous Optical Nettworks) is the Time Division Multiplexing (TDM) optical network standard for North America (called SDH in the rest of the world)
 - It is the de-facto standard for fiber backhaul networks
 - WDM is usually the underlying transport structure
 - OC-1 (with a frame format of SONET STS-1) using optical fiber has:
 - A transmission speed of up to 51.84 Mbps
 - OC-12 (with a frame format of SONET STM-4) using optical fiber has:
 - A transmission speed of up to 622.08 Mbps
 - OC ranges from OC-1 up to OC-768 which has:
 - A transmission speed of up to 39.813 Gbps
- OTN (Optical Transport Network) is the new standard for optical data transmission
 - Is the evolutionary successor of SONET/SDH technology
 - OTU-1 with a transmission speed of 2.67Gbps
 - OTU-2 with a transmission speed of 10.7Gbps
 - OTU-3 with a transmission speed of 43.0Gbps
 - OTU-2 with a transmission speed of 111.8Gbps

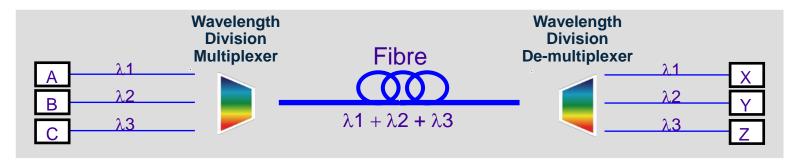
Storage: Direct attached



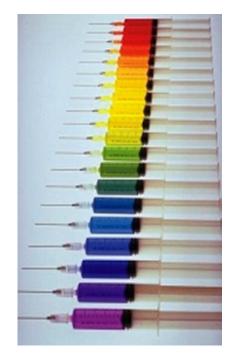
• Data storage connected directly to a server or workshop through Host Bus Adapter (HBA), there is no network between storage and host servers

Storage: Direct attached <10km


- Scalability ? 🛞
- Management ? 😕
- Link Utilization ? ⊗
- Long Distance ? ⊗

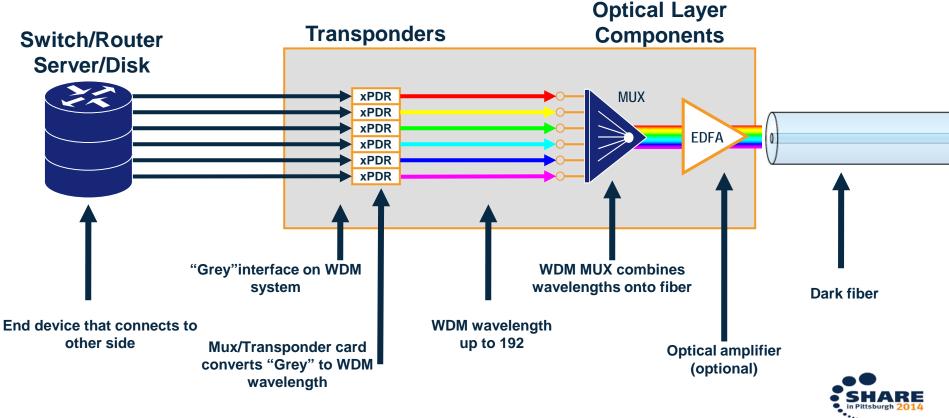

WDM transport – The big picture

Wavelength Division Multiplexing (WDM)

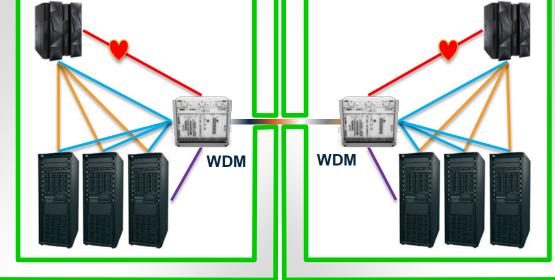

- Multiple channels of information carried over the same fibre, each using an individual wavelength
- Attractive multiplexing technique
 - > High aggregate bit rate without high speed electronics or modulation
 - Low dispersion penalty for aggregate bit rate
 - Very useful for upgrades to installed fibres
 - Commonly used for distances up to 3000km
- Loss, crosstalk and non-linear effects are potential problems

Wavelength Division Multiplexing

- Two WDM flavors available
 - CWDM (Coarse WDM)
 - Up to 16 optical lambdas max
 - Cheaper than DWDM
 - No amplification, optical switching (80km max)
 - DWDM (Dense WDM)
 - Up to 192 optical lambdas
 - Up to thousands of kilometers
 - Lambda switching, 100G, advanced features
 - DWDM is qualified for System Z only



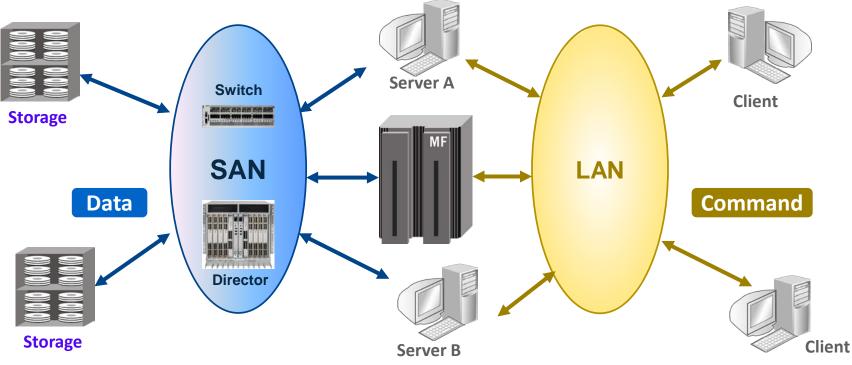
Basic WDM scheme



Scalability ?

- Management ? 😐
- Link Utilization ? ⊗
- Long Distance ? ⊗

Storage: Direct attached with WDM <10km

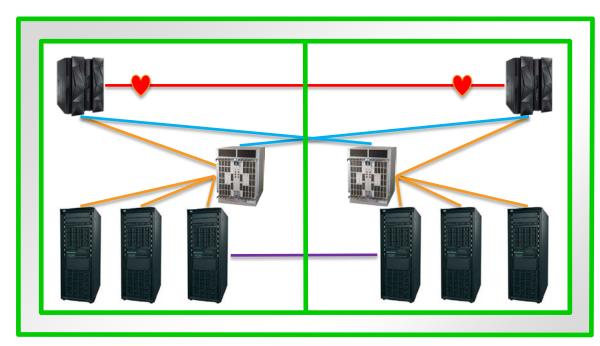


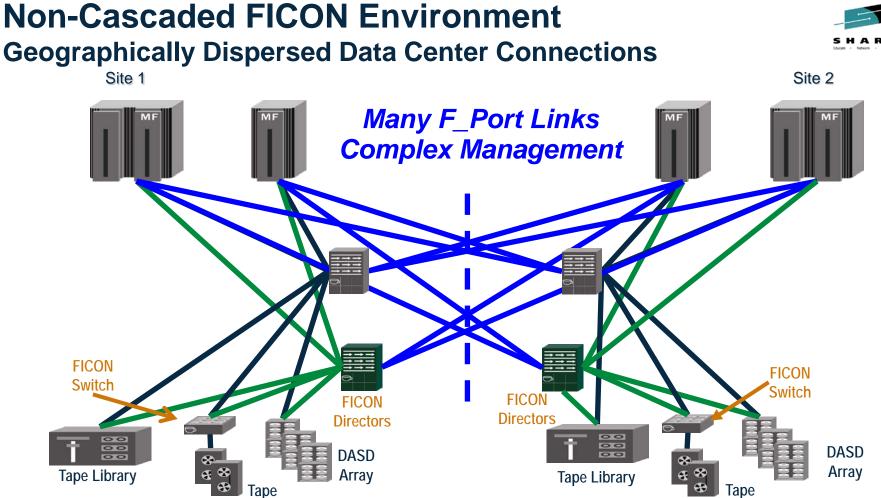
 \odot

Storage: Switch attached

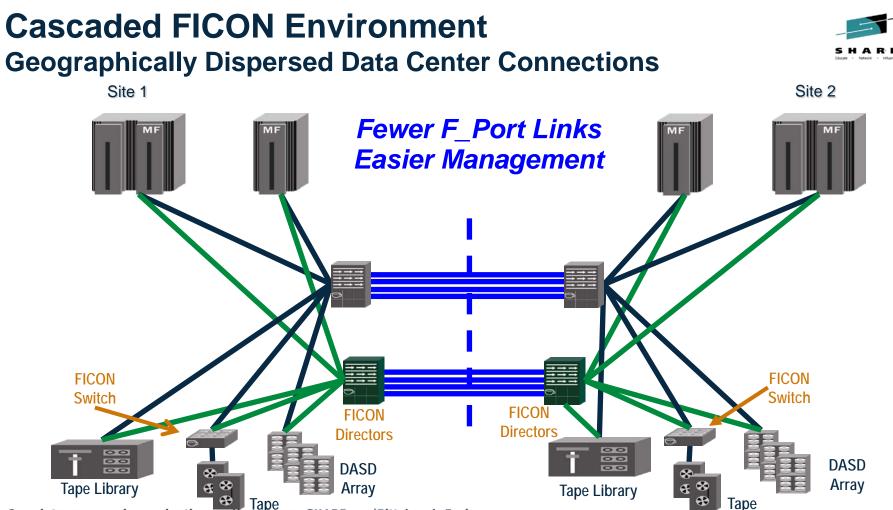
• A dedicated data storage network which can be accessed by multiple servers

Storage: Switched but non-cascaded <10km


Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

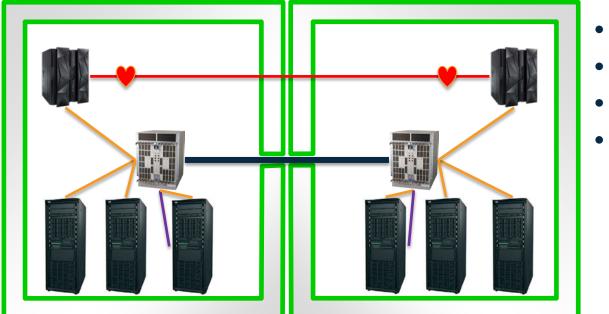

- Scalability ? \bigcirc
- Management? \odot
- Link Utilization ? \bigcirc
- Long Distance ? \bigotimes

PPRC


20

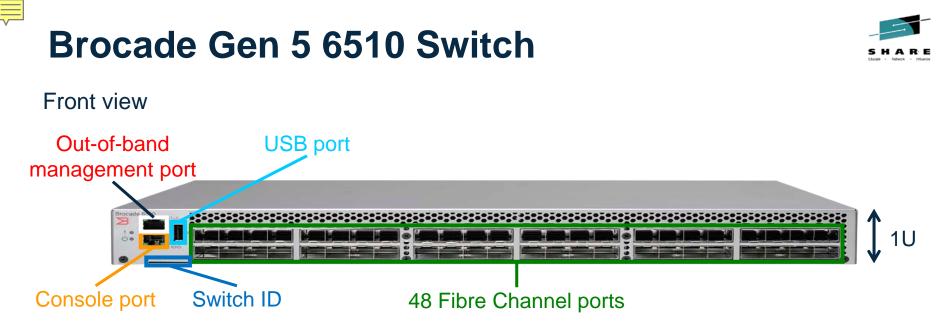
Storage: Switched non-cascaded with WDM

- Scalability ? lacksquare۲ ۲ Coupling **FICON/FC** PPRC
- \odot
 - Management? \odot
 - Link Utilization ? \bigcirc
 - Long Distance ? $\boldsymbol{\bigotimes}$



Storage: Switched – cascaded >10km

- Scalability ?
- Management ?
- Link Utilization ? ☺
- Long Distance ? ☺


23

Storage: Switched – cascaded with WDM >10km

- Scalability ? ۲ ۲ ۲ Coupling FICON/FC PPRC ISL's
 - \odot
 - Management? \odot
 - Link Utilization ? \odot
 - Long Distance? \odot

- 48×16/10/8/4/2 Gbps Fibre Channel ports
- System Ethernet port (RJ45) for out-of-band management
- System RS232 console port (RJ45)
- USB port for firmware upgrades and system log downloads
- Switch ID pull-out tab containing serial number and MAC address
- Small footprint (1U and less than 18 inches deep) for flexible deployments

Brocade Gen 5 8510 Director

Up to 384 ports with 1:1 subscription at 8 Gbps

- FICON: 256 ports 1.0:1 at 16 Gbps (z/OS limitation)
- FCP: 384 ports 1.0:1 at 16 Gbps using local switching

Aggregate Bandwidth:

- 4 Tbps per chassis for central switching
 - 256 user ports * 16 Gb = 4 Tbps/chassis

512 Gbps data rate bandwidth per connectivity s

- 12-slot card cage:
- 8 port and/or special purpose blades (e.g. FCIP)
- 2 control processor blades
- 2 core routing blades
- **Buffer Credits**
- 8,000 per 16-port group on 32-port blades

16Gbps blades are interchangeable between the 8510-4 and 8510-8

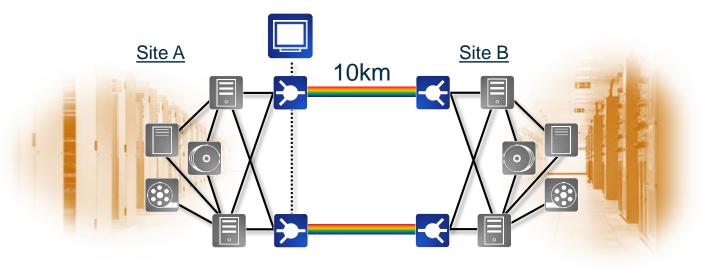
Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

Brocade-branded Optics

[■]ADVA FSP 3000

- State of the art 1G-100G transport platform
- Up to 192 optical channel/19.2Tbps per fiber pair
- Qualified with all SAN/Storage vendors and applications
- Physical Layer inspection vie optical line monitoring and build in OTDR
- Dedicated modules especially for datacenter connectivity
- Ultra low latency (down to 5ns) per link
- Less than 1W per Gbit transport
- Full support of <u>all</u> Brocade features over distance

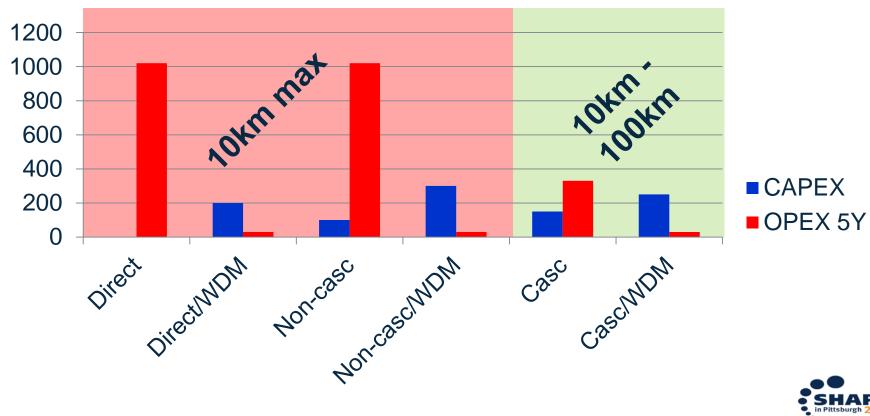
Brocade and ADVA for System z The best of two worlds


- Long distance trunking over WDM System
- 1000+ 16G FC; 2000 8G FC ports per WDM System
- Physical Layer inspection and WDM failover for System z connectivity
- Encryption on Brocade and or ADVA WDM possible
- WDM Encryption fro Ethernet/FC/FICON/Coupling up to 100G

A real world example

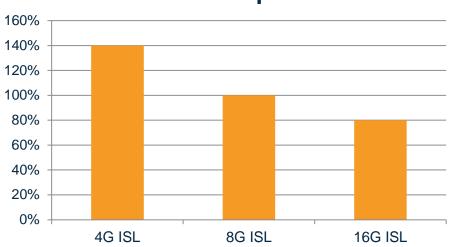
- 10 x 8G FC for PPRC
- 10 x 8G FICON over distance (each Host site to each disk side)
- 4 x Parallel Sysplex InfiniBand (PSIFB) for Coupling
- Only one link used for calcualtions

Model comparision


Different models (one link) vs long distance fiber need

– Direct :	34 x Singlemode cables
– Direct w/ WDM:	1 Singlemode cable, 34 WDM links
- Switched:	34 x Singlemode cables
– Switched w/ WDM:	1 Singlemode cable, 34 WDM links
 Cascaded 	10 x Singlemode long dist. Cables (16G ISL's) + 4 WDM links
– Cascaded w/ WDM:	1 Singlemode cable, 14 WDM links

- Fiber Cost estimated USD 600 per fiber pair, per km and per year
- With cascaded directors, the long distance connection bandwidth was reduced from 30 x 8G to 10 x 16G due to better link utilization using 16G ISL's and trunking



CAPEX/OPEX in 1000USD

WDM Connectivity cost versus ISL Speed

WDM Capex

- 10 x 8G FC/FICON/ISL connectivity over a 50km WDM link
- WDM HW only
- + additional savings on FC director ports
- + better bandwidth utilization on 16G ISL's
- + more upgrade capacity on WDM and FC director

Conclusion

- WDM should not be seen separately, it is part of the SAN/MF architecture to achieve best performance
- Cascaded directors is the #1 choice for longer distances, better performance/utilization
- ISL's should be used at the highest speed possible regardless the local connection speed

- See more on IBM Redbook SG248047:
 - System z End-to-End Extended Distance Guide

Our `Reaction!

- 5 = "Aw shucks. Thanks!"
- 4 = "Mighty kind of you!"
- 3 = "Glad you enjoyed this!"
- 2 = "A Few Good Nuggets!"
- 1 = "You Got a Nice Nap!"

David Lytle, BCAF Principal Engineer <u>dlytle@brocade.com</u>

Uli Schlegel Director BD uschlegel@advaoptical.com

Session 16001

