
Insert
Custom
Session
QR if
Desired.

MQ Workload Balancing in a ‘Plexed World
Session 15998

IBM WSC for WebSphere MQ

Lyn Elkins – elkinsc@us.ibm.com

• What is workload skewing and why is it a problem?

• What can cause or contribute to workload skewing?

– Asymmetrical Sysplex

– Connection Skewing

– Put to Waiting Getter

– ‘Local’ favoritism

• Mitigation Techniques:

– Queue Manager Clustering

– Gateway queue managers

– CICS CPSM options

Agenda

• MQ workload skewing is detected when workload is not close
to being evenly distributed across the queue managers.

– MQ is a ‘data delivery’ system.

• Workload skewing in a QSG is often a result of the efficiencies
of working locally

– z/OS, and all subsystems try to process requests locally to take advantage of CPU
efficiency

• This is often less a technical problem, more of a pricing
problem

– If the MLC ‘rolling average’ is taken from the LPAR that is heavily favored, usage
pricing is not going to reflect reality

– Technical solutions to this problem may prove to be less efficient overall - lower
throughput, slower response

• Can cause increased capacity demands in downstream
workload

– Again this can contort MLC charges

What is MQ Workload Skewing?

• Asymmetric Sysplex

– When the LPARs in the Sysplex are not equally weighted

• Examples include:

– One LPAR is on an EC12, the others on older hardware

– Two LPARs have 12 dedicated engines, two have 12 shared

– One LPAR is co-located with the primary coupling facility, the others are on different CPCs

MQ Workload Skewing Causes

CF

EC12

CICSC

CICSB
Q
M
G
3CICSA

CICS9

EC12

CICS8

CICS7
Q
M
G
2CICS6

CICS5

z10

CICS3

CICS4
Q
M
G
1CICS2

CICS1

z9

CICSG

CICSF
Q
M
G
1CICSE

CICSD

• Slide shows an asymmetric sysplex.

− Each LPAR is configured the same, but two LPARs are on much faster, and newer,

hardware.

− Everything else being equal, work will tend to go to the LPARs on the EC12s, as they are

faster engines.

− This is the ‘natural’ tendency

− Other examples of asymmetry are listed, but not illustrated

− One of the most dramatic examples of this was a situation where the LPAR acting as the

CF was co-located on the CPC as a processing LPAR, and it was on the latest hardware.

The queue manager in the application processing LPAR routinely handled more than 95%
of the workload, because the response time for CF requests was 40% better on that LPAR

than the others in the sysplex.

Notes

• Connection skewing may be historical
– Hard-coded connections to specific queue managers

• Connection skewing may be the result of a queue manager
outage
– Connections to a QSG are routed to available queue managers

Connection Skewing

CF
EC12

CICS8

CICS7
Q
M
G
2CICS6

CICS5

EC12

CICSG

CICSF
Q
M
G
1CICSE

CICSD

QM_WIN1

QM_WIN2

QM_WIN3

QM_WIN4

QM_AIX1

QM_WIN5

• Slide shows connection skewing.

– In some cases this can be due to historical connection definitions. If clients and

queue manager connections are to an individual queue manager and have not

been updated to connect to the QSG, workload skewing can be a result of
connection skewing.

• This can also be the result of copying channel definitions that point to specific queue
managers.

– Connection skewing can also be the result of clients and queue managers

connecting (or reconnecting) during outages.

• In the slide shown if one of the queue managers (or the LPAR) is unavailable due to

any type of outage, all connections are made to the available queue manager.

Connections once made are not re-driven unless the connection is stopped and
restarted. We (the WSC) have seen substantial workload skewing of both

connections and workload as a result of this availability feature.

– In this example, 99% of the workload was processed on the LPAR hosting the

connection queue manager QMG1. The other LPAR essentially sat idle. During
peak periods SLA were not being met due to the overuse of one ‘side’ of the

‘plex.

Notes

• We’ve talked about the MLC impact

• Resource use

– Not every queue manager is sized to absorb the entire
workload

– Log impact of skewing has been seen

• Rapid Log switches due to heavier workload – increasing I/O and

CPU costs

– Bufferpool/Pageset impact

• Filling the bufferpool, forced into I/O

– SMDS impact

• One queue manager in QSG gets all offloaded messages

‘Downstream’ consequences

• Put to waiting getter

– In V6 a performance feature was added called ‘put to waiting getter’

– If a local put, from an application or message channel agent, is done and there is

a getting application waiting the message is moved directly to the getting
applications buffer

• There is no posting to a shared queue

• There is no notification to other available waiting applications

• The CPU savings can be substantial

• This works with connection skewing, and can maximize the effect

MQ Workload Skewing Causes

Putting
Application

Putting
Application

Putting
Application

Getting
Application

Getting
Application

Message Buffer

Message Buffer

• Putting to Waiting Getter

– This was a performance/CPU consumption reduction feature added to WMQ for z/OS V6

– It can be turned off, at the queue manager level

– As the illustration shows, the messages put by the first two applications go directly to the message buffer

available from the getting applications; the third put actually goes to the shared queue because there is

no message buffer available.

Notes

• Local Favoritism

– When a message is posted to a shared queue, the queue
manager where the message is put is typically notified
FIRST about the availability.

– Normal processing by XCF, taking advantage of the

efficiency of local processing.

MQ Workload Skewing Causes

• Local favouritism

– Without application intervention (see the CICS CPSM mitigation) there’s not much of a way to

circumvent this.

Notes

• Queue Manager Clusters

– Clusters provide workload balancing across queue
managers

– Works with shared queues to distribute message ‘puts’
across queue managers in the QSG

• Connection skewing mitigation

– Gateway queue managers

– Re-driving connections

• CPSM mitigation

Skewing Mitigation Techniques

Queue Manager Clustering

CF
EC12

CICS8

CICS7
Q
M
G
3CICS6

CICS5

EC12

CICSG

CICSF
Q
M
G
4CICSE

CICSD

QM_WIN1 QM_WIN2QM_AIX1 QM_AIX2

•When messages are not bound to a specific queue manager (‘bind not fixed’), the
messages are routed evenly across the receiving queue managers

• Black arrows show the first message put to the clustered queue

• Green arrows show the second message

• Queue manager clusters is often the simplest (and least expensive) mitigation
technique for workload skewing.

– Most clusters are use round robin distribution of messages
• This can be changed via definitions

– Messages can be bound to a specific queue manager instance using the open
options:
» Bind not fixed – each message is routed independently
» Bind on open – all messages put will go to the same target queue

manager/queue combination until the queue is closed
» Bind on group – messages that are part of a group will be delivered to

the same target queue manager/queue combination
– Channels may have different weights

• Illustration shows messages being delivered evenly. The first message is the
black arrow, second is in green.

– Even delivery of messages, in most cases, will reduce skewing and allow MQ
and other subsystems to take advantage of local processing!

• Workload imbalance can still occur under some conditions:
– If one queue manager or processing regions is under heavier load
– If queue managers are in an asymmetric sysplex
– If the applications requires binding (as described above)

Queue Manager Clustering - Notes

• The slides that follow outline two mitigation techniques

for connection skewing:

– Gateway queue managers

– Re-driving connections

Connection Skewing Mitigation

• When external queue managers or clients are passing work directly to
application hosting queue managers, every attempt is made to process the
work locally

• Environments that use gateway queue managers into the Queue Sharing
group often eliminate connection skewing.

•

Connection Skewing – No Gateway queue
managers

CF
EC12

CICS8

CICS7
Q
M
G
2CICS6

CICS5

EC12

CICSG

CICSF
Q
M
G
1CICSE

CICSD

QM_WIN1

QM_WIN2

QM_WIN3

QM_WIN4

QM_AIX1

QM_WIN5

• Gateway queue managers

– The picture illustrates the connection imbalance that has been shown before.

– This mitigation technique was discovered almost accidentally, when we were comparing some
large customer environments.

– One high volume customer was experience a great deal of ‘LPAR favouritism’, while another

customer with similar volumes was not. Both customers had very similar hardware and system
software configurations, we first looked to the topology for differences. It became clear very

quickly that the customer that was having problems had about 95% of their connections ‘hard

wired’ to two of their four queue managers.

Notes

Gateway queue managers – the mitigation

CF
EC12

CICS8

CICS7
Q
M
G
3CICS6

CICS5

EC12

CICSG

CICSF
Q
M
G
4CICSE

CICSD

QM_WIN1 QM_WIN2

QM_WIN3

QM_WIN4

QM_AIX1 QM_WIN5

EC12

Q
M
G
A

EC12

Q
M
G
1

• Gateway queue managers

– The picture illustrates the mitigation technique.

– All connections from external systems were made to the gateway queue managers. The
gateway queue managers did not have any application workload running. The customer had

originally set up their topology this way for the following reasons:

• The gateway queue managers were more available (stable) because they were not running any
application work.

• The logging for message PUTs coming in from their distributed queue managers and clients was confined

to these queue managers, reducing the logging load on their application queue managers.

– As the messages are put to the shared queues, each ‘application owning’ queue manager has
about the same chance of processing the requests.

– Even if connections get skewed, the back end workload is distributed more evenly.

– Note that they have experienced some workload skewing when upgrading the hardware
underlying one LPAR, but that is now a known situation.

Notes

• When a queue manager is unavailable, inbound connections can get skewed to the
other queue manager(s) in the group.

– This is normal availability processing!

– Once a connection is live and active, no attempt is made to balance the
connections once all the queue managers are available.

Re-driving Connections

CF
EC12

CICS8

CICS7
Q
M
G
2CICS6

CICS5

EC12

CICSG

CICSF
Q
M
G
1CICSE

CICSD

QM_WIN1

QM_WIN2

QM_WIN3

QM_WIN4

QM_AIX1

QM_WIN5

• Re-driving connections

– The picture illustrates what can happen when connections are made to the QSG and one or

more queue managers are unavailable at connection time.

• This is working as designed, and is a major availability feature

• BUT this can create a workload imbalance because of efforts to process work efficiently (locally)

– Once connections are made, they are not rebalanced.

• The connections are not sent back thru the sysplex distributor as long as the channels are open and

running.

– Channels should not be stopped from the receiving side, as that can lead to synchronization
problems.

– Some customers have experienced real problems during peak processing periods

• Often after a planned outage they find that the first queue manager brought back up has become
‘connection concentrator’ without realizing it

• They want to redistribute the connections without sync problems, if possible

– One customer has created timed jobs for their distributed queue managers to stop and restart all

channels to the queue sharing group.

• They run this periodically to force the connections to be rebalanced.

• This is a simple mitigation technique

Notes

• The slides that follow outline a CPSM solution to the

skewing problem based on the interaction between MQ

triggering (CKTI) and CICS

CICS – CPSM Mitigation

CEC3
z196

CEC2
z196

CEC1
z10

CICS
regions

Queue
manager

Initiation
queue

Application
queue

Configuration for inbound WMQ
work using triggering
(schematic)

� Each CICS region acts as an independent
consumer from the shared queues

� Unbalanced workload distribution

CF (shared
queues)

Trigger
message

Request
message

• Slide illustrates basic elements of triggered WMQ message processing:

− Intention is to show how workload distribution issues can arise

− Assumes multiple CICS regions in multiple CECs

− Assumes use of WMQ shared queue – all CECs in same sysplex

− Assumes trigger (CKTI) starts transactions in the same CICS region

− Many different configurations are used – this is only an example

⦁ Features of the example configuration:

− Heterogeneous CICS regions

� Different CECs have different power, memory, etc

� Different CECs have different numbers of CICS regions

− “Pull” workload distribution from shared WMQ queues

� There is no routing of WMQ messages to CICS regions

� Most aggressive (fastest) consumer gets lion's share of work – some machines over-utilised

� Less aggressive consumers are starved – some machines under-utilised

Many customers want “balanced” or “even” workload distribution:

− Pricing considerations – On/Off Capacity on Demand (CoD)

− Why am I not using equipment that I could be using?

− ... and other reasons

Notes

Start

MQGET
trigger

message

EXEC CICS
START

Start

MQGET
request

message

Business logic

MQPUT
response
message

End

Trigger monitor (CKTI)

Business transaction

Trigger-every (schematic)

� Each business transaction processes few
(~1) request messages

� Fastest CKTIs take lion's share of work

• Slide illustrates typical CICS processing of WMQ messages using trigger-every:

− Trigger monitor (CKTI or similar) is an MQGET-WAIT loop on the initiation queue

� When a request message arrives on shared application queue, trigger-every generates one trigger message1 (not, for example, one for

each queue manager or CKTI instance)

� CKTI starts a business transaction for each trigger message (≈ one for each request message)

− Business transaction processes one message from the application queue

� MQGETs a request message, executes business logic, and MQPUTs a response message

" Other characteristics of trigger-every:

− Each WMQ message is processed by a separate CICS transaction

− Lightweight communication between monitor and business transaction (no message payload)

− CICS region running business logic needs a connection to WMQ

− MQOPEN and MQCLOSE for each message

뇀 Pull, not push, distribution of trigger messages:

− There is no routing of trigger messages to CKTI instances (first come, first served)

− Next MQGET-WAIT in CKTI does not wait for business logic to complete

− CKTI on fastest machine consumes trigger messages fastest (all other things being equal)

 Push distribution of business transaction (EXEC CICS START):

− EXEC CICS START can start the transaction in any CICS region in the sysplex

− Indicated by the green arrow

顜 Opportunity to distribute work (business logic) across regions in the sysplex

Notes

1 This is a simplification. Refer to the WMQ InfoCenter for a definitive description of triggering with shared queues.

CICS
AORs Queue

manager

CEC1
z10

CICS
“TOR”

CEC2
z196

CEC3
z196

Initiation
queue

Application
queue

CF (shared
queues)

Trigger
message

Request
message

Preferred configuration for trigger-
every (schematic)

� “TORs” run CKTI

� Each acts as an independent consumer
from the shared init queue

� Each distributes STARTs across all AORs

� “Balanced” workload distribution

EXEC
CICS

START

• Slide illustrates a preferred CICS configuration for trigger-every:

− Uses front-end routing regions (“TORs”) that run the trigger monitor (CKTI)

− CKTI starts (EXEC CICS START) a business transaction for each trigger message

− CPSM routing directs the start to a suitable back-end region (AOR)

− Indicated by the green arrow

− Business transaction MQGETs a request message, executes business logic, and MQPUTs a response message – all in
the AOR

− Next MQGET-WAIT in CKTI does not wait for business logic to complete

⦁ Preferred technology for CPSM routing:

− Link-neutral goal algorithm for “remote” starts

� Selects target AOR based on AOR load and health

� Does not “prefer” local (= same LPAR) AORs

� Even distribution across AORs, but ...

� … responds to transient load/health variation

− XCF MRO for “remote” starts

� High-performance System z sysplex technology

� Uses coupling facility (CF) instead of TCP/IP stack

− Sysplex-optimised workload routing

� Highly responsive to transient variations

� Uses CF to maintain current status for AORs

Notes

Start

MQGET
trigger

message

EXEC CICS
START

Start

MQGET
request

message

Business logic

MQPUT
response
message

Trigger monitor (CKTI)

Business transaction

Trigger-first/depth (schematic)

� Each business transaction processes
many (~all) request messages

� Fastest CKTI takes lion's share of work

� Corresponding business transaction takes
lion's share of the work

• Slide illustrates typical CICS processing of WMQ messages using trigger-first/depth:

− Trigger monitor (CKTI or similar) is an MQGET-WAIT loop on the initiation queue

� When a new request message arrives on an empty shared-queue (trigger-first) or increases the queue depth to the specified value (trigger-

depth), WMQ generates one trigger message for each queue manager1 (not, for example, one for each CKTI instance).

� CKTI starts a business transaction for each trigger message (≈ one for each request queue)

− Business transaction is an MQGET-WAIT loop on the application queue

� MQGETs a request message, executes business logic, and MQPUTs a response message; then loops back to process the next message.

Other characteristics of trigger-first/depth:

− Many WMQ messages from the same queue processed by the same CICS transaction

− No per-message communication between monitor and business transaction

− One MQOPEN and MQCLOSE for many messages

− CICS region running business logic needs a connection to WMQ

No distribution of messages:

− There is no routing of trigger messages or request messages (first come, first served)

− CKTI can start the business transaction in any CICS region (indicated by the green arrow),

but...

− Business transaction on fastest machine consumes request messages fastest (all other things being equal)

 No opportunity to control distribution of work (business logic) across regions in the sysplex

Notes

1 This is a simplification. Refer to the WMQ InfoCenter for a definitive description of triggering with shared queues.

Start

MQGET
trigger

message

EXEC CICS
START

Start

MQGET
request

message

EXEC CICS
LINK

MQPUT
response
message

Trigger monitor (CKTI)

Staging transaction

Trigger-first/depth
staged (schematic)

� Staging transaction
processes all request
messages

Start

Business logic

Business logic

Return

� Business transaction
processes one request
message

• Slide illustrates typical CICS processing of WMQ messages using trigger-first/depth with staging:

− Trigger monitor (CKTI or similar) is an MQGET-WAIT loop on the initiation queue

� When a new request message arrives on an empty shared-queue (trigger-first) or increases the queue depth to the specified value (trigger-

depth), WMQ generates one trigger message for each queue manager1 (not, for example, one for each CKTI instance).

� CKTI starts a staging transaction for each trigger message (≈ one for each request queue)

− Staging transaction is an MQGET-WAIT loop on the application queue

� MQGETs a request message, links to business logic (passes payload), and MQPUTs a response message (payload returned by business
logic); then loops back to process the next message.

⦁ Other characteristics of trigger-first/depth with staging:

− Many WMQ messages from the same queue processed by the same CICS transaction

− Communication between staging transaction and business logic includes message payloads

− One MQOPEN and MQCLOSE for many messages

− CICS region running business logic does not need a connection to WMQ

㞂 No distribution of messages, push distribution of work (business logic):

− There is no routing of trigger messages or request messages (first come, first served)

− Staging transaction can link to any CICS region in the sysplex (indicated by the green arrow),

 Opportunity to control distribution of work (business logic) across regions in the sysplex

Notes

1 This is a simplification. Refer to the WMQ InfoCenter for a definitive description of triggering with shared queues.

CICS
AORs

Queue
manager

CEC1
z10

CICS
“QOR”

CEC2
z196

CEC3
z196

Initiation
queue

Application
queue

CF (shared
queues)

Trigger
message

Request
message

Preferred configuration for trigger-
first/depth staged (schematic)

� “QORs” run CKTI and staging transaction

� Each acts as an independent consumer
from the shared init queue and shared
application queue

� Each distributes LINKs across all AORs

� “Balanced” workload distribution

EXEC
CICS
LINK

• Slide illustrates a preferred CICS configuration for trigger-first/depth with staging:

− Uses front-end routing queue-owning regions (QORs) to perform WMQ interactions:

− Trigger monitor (CKTI) runs in QOR. Starts a staging transaction for each trigger message

− Staging transaction runs in QOR. Links to business logic for each request message (passes message payload in

container or COMMAREA)

− CPSM routing directs the link to a suitable back-end region (AOR)

− Indicated by the green arrow

− Business logic processes request message payload, executes business logic, and returns response message payload in

container or COMMAREA

− Staging transaction MQPUTs the response, MQGETs the next request, and loops

Preferred technology for CPSM routing:

− Link-neutral goal algorithm for “remote” starts

� Selects target AOR based on AOR load and health

� Does not “prefer” local (= same LPAR) AORs

� Even distribution across AORs, but ...

� … responds to transient load/health variation

− XCF MRO for “remote” starts

� High-performance System z sysplex technology

� Uses coupling facility (CF) instead of TCP/IP stack

− Sysplex-optimised workload routing

� Highly responsive to transient variations

� Uses CF to maintain current status for AORs

Notes

• Solution uses proven technology for CPSM routing:

− Each TOR/QOR uses link-neutral goal algorithm

� Selects target AOR based on AOR load and health

� Does not “prefer” local (= same LPAR) AORs

� Even distribution across AORs, but ...

� … responds to transient load/health variation

− XCF MRO for “remote” STARTs or LINKs

� High-performance System z sysplex technology

� Uses coupling facility (CF) instead of TCP/IP stack

− Sysplex-optimised workload routing

� Highly responsive to transient variations

� Uses CF to maintain current status for AORs

 Continuous operation and high availability through WMQ shared queues:

− “Glitchless” recovery from region/LPAR/CEC outage

− “Instant” redistribution of workload

− In-flight messages backed-out, restart in another CICS region

 High throughput:

− Exploits all available capacity

− Highly responsive to transient spare capacity

Highlights

• MQ is a message delivery system, it does not try to balance
workload

• Balancing the workload is attempting a technical solution for
what is often a pricing problem

– Beware spending a lot of effort for a solution to a temporary
problem as well!

– Turning off performance improvements like put to waiting getter
will impact all applications, not just the skewed ones

• There are some mitigation techniques that can help the overall
environment

– Clustering

– Gateway queue managers

– Using CPSM to make appropriate routing decisions

MQ Workload Balance Summary

• The following links are to additional information about WMQ

– Queue Sharing Groups:
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.explorer.doc/e_qsg.
htm

– Clustering:
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/qc11220_.htm

– Intercommunication
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/zx00011_.htm

– Redbooks:

• IBM WebSphere MQ V7.1 and V7.5 Features and Enhancements
http://www.redbooks.ibm.com/abstracts/sg248087.html?Open

• High Availability in WebSphere Messaging Solutions
http://www.redbooks.ibm.com/abstracts/sg247839.html?Open

• WebSphere MQ Queue Sharing Group in a Parallel Sysplex environment (dated, but
still good basic information)
http://www.redbooks.ibm.com/redpieces/abstracts/redp3636.html?Open

– My first YouTube video:
http://www.youtube.com/playlist?list=PL9N7JP2yU3T8JycrCOvEPM8c-0UdE97VT

Additional Resources

Monday Tuesday Wednesday Thursday Friday

08:30 16203
Application
programming with MQ
verbs
(Chris Leonard)

16202
The Dark Side of
Monitoring MQ - SMF 115
and 116 Record Reading
and Interpretation
(Lyn Elkins)

15998
CICS and MQ - Workloads
Unbalanced!
(Lyn Elkins)

10:00

11:15 16194
Introduction to MQ
(Chris Leonard)

16199
What's New in IBM
Integration Bus &
WebSphere Message
Broker
(David Coles)

15844
MQ – Take Your Pick
Lab
(Ralph Bateman,
Lyn Elkins)

16197
Using IBM WebSphere
Application Server and
IBM WebSphere MQ
Together
(Chris Leonard)

12:15

01:30 16195
All about the new MQ v8
(Mark Taylor)

16192
MQ Security: New v8
features deep dive
(Neil Johnston)

16201
New MQ Chinit
monitoring via SMF
(Mayur Raja)

03:00 16205
MQ Beyond the Basics
(Neil Johnston)

16204
MQ & DB2 – MQ Verbs in
DB2 & InfoSphere Data
Replication (Q Replication)
Performance
(Lyn Elkins)

15503
What's wrong with MQ?
(Lee E. Wheaton)

16200
IIIB - Internals of IBM
Integration Bus
(David Coles)

04:15 16198
First Steps with IBM
Integration Bus:
Application Integration
in the new world
(David Coles)

16193
MQ for z/OS v8 new
features deep dive
(Mayur Raja)

16196
MQ Clustering - The
Basics, Advances and
What's New in v8
(Neil Johnston)

This was session 15998 - The rest of the week ……

You are
HERE!

Further information in real books

And … already available (draft)

https://www.redbooks.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg248218.html

• Many thanks to

– Steve Hobson for the CICS/CPSM expertise and the
wonderful graphics

– Mark Taylor and Gene Kuelhthau for their patience and
guidance on the rest of the foils

– Mark Taylor for providing the excellent editing and recording
studio

MQ Workload Balance - thanks

Thank you!

• Remember this was

session 15998

• And MQ has left the

convention center!

43

