

Rethinking HSM Policies with Automated Storage Tiering

Session ID 15997

Tuesday, August 5, 2014: 03:00 PM - 04:00 PM, DLLCC, Room 305

SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.

AGENDA

- Overview
- Reducing Storage Cost
- Hierarchical Storage Management and Automated Storage Tiering
 - History, Overview of Operations and Design Objectives
 - Values and Benefits
 - Resource Consumption
- Key Resource Measurements
- Numbers for Cost Analysis
- Summary

Abstract

Today's storage arrays offer Automated Storage Tiering features that have the potential of reducing resources involved with HSM migrate and recall activities. This session will look at a methodology to identify resources used by traditional space management activities and how Automated Storage Tiering could be exploited as an <u>alternative</u> for reducing storage costs.

Read the Book or Watch the Movie

Sucking in the Seventies

DFSMShsm – A long history of reducing storage cost

- Leverages several technologies to reach objective
 - non-Cached and Cached DASD
 - Native tape and Virtual tape
 - Mass Storage Systems and optical media
 - Host and/or Control Unit based Data Compression

System z processor and channel resources are used to move the data across the storage hierarchy

HSM - Benefits and added Value

- Automatically places data on storage media with the appropriate cost profile at all points during the data's life cycle
- Ensures data availability through a robust backup and restore capability at the dataset and volume level
- Space management automation to avoid out of space conditions
 - Migration/Recall processing
 - Partial release
 - Extent reduction
 - Small Data Set Packing (SDSP)
- "New" Storage Tiers support Class Transitions within the Primary Hierarchy

Change Happens – mostly Good things

- New application workloads
- New Technologies
- Requirements (RTO/RPO)
- Laws, Regulations
- Disk costs
- System z CPU costs

Hard drive cost per GB 1980-2010

2008-2009 – The Storage Media Shift

Disk	Cost/GB	IOPS/GB	Response Time
15 K RPM	1	1	6 ms
Serial ATA (SATA) 7,200 RPM	1/3	1/6	12 ms
Enterprise Flash Drive (EFD)	8	30	< 1 ms

Automated Storage Tiering

- With information growth trends, all Fibre Channel (FC) configurations will:
 - Cost too much
 - Consume too much energy
 - Take up too much space
- Automated Storage Tiering *leverages* disk drive technologies

Skew: At any given time, only a small address range is active – the smaller the range, the better

Persistence: If an address range is active (or inactive), it remains so for a while - the longer the duration, the better

80% of I/Os on 20% of capacity

Wide striping and short stroking are common practice

The vast majority of online workloads enjoy high cache-hit percentages, but service levels are dictated by readmisses during transitional periods

Automated Storage Tiering Solutions

Automated Storage Tiering – Real Time Performance Analysis

Does not use System z processor or channel resources to move the data across the storage tiers

SHARE, Educate - Network - Influence

Reporting and Analytics

- Peak week of Functional Statistics Records (FSR)
- Corresponding SMF 30-2 Records (Interval Termination)
- IDCAMS DCOLLECT D, M and V Records
- Roll your own or Vendor Management Tool
 SAS (etc.) or CA, BMC (Software Vendor)
- SHARE Sessions
 - ICE-PAK 21st Century -15981: Customer Maximizes ROI Applying data intelligence to storage and backup *SHARE Live*
 - 16128: DFSMShsm CDS Deep Dive Glenn Wilcock IBM
 - 15766: Reinventing How You Maintain DFSMShsm with Tivoli Advanced Tools - Chris Taylor and Steve W. Clar

Resource Consumption - CPU

HSM CPU Minutes by Function

HSM FUNCTION CODES

Migrate to Tape/Disk (Compression) L2 VS Store Data on SATA Tier for Primary Space

Measurements and Calculation Needed

- Eliminate Primary to ML1 migration
 - Potential CPU and channel resource savings, particularly if data is also being compressed.
 - Function code 1 for migration activity
 - Function code 4 for recall activity.
- Increase the amount of time data is allowed to stay on primary (ML0) storage before being eligible for migration to ML2
 - Reducing the frequency of ML2 migration to reduce CPU and channel resources consumed migrating data to ML2.
- Migration and recall activity can be reduced by increasing the number of days data is allowed to stay on primary storage.
 - Determine necessary z/OS Storage space increase (VTOC freespace) which will be added in SATA tier (targeted for inactive extent moves by Automated Storage Tiering Solution)

Potential Reduction in CPU Minutes

HSM CPU Minutes per Day

Cost Analysis – The Numbers

Estimating Financial Benefits of Automated Storage Tiering Solution

- 1. Migration + Recall CPU use in Minutes
- 2. Cost of CPU Minute
 - 1. \$ / CPU Minute
- 3. Cost of SATA capacity
 - 1. Be generous (see slide 12) SATA ~70 IOPS RRM
 - 2. Capacity Based Priced Software
- 4. Analysis Period

Summary

- Storage management in the z/OS environment will clearly be undergoing significant change in the coming years with Automated Storage Tiering
- Achieving benefits described in this session requires a thorough understanding of the environment and how HSM and tape is used for space management
- A study of the existing DFSMShsm environment is an essential first step in gaining this understanding.

QUESTIONS? & EEEBBACK!

#SHAREorg

SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.

Rethinking HSM Policies with Automated Storage Tiering

Session ID 15997 Tuesday, August 5, 2014: 03:00 PM - 04:00 PM, DLLCC, Room 305

SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.