
Anyone remember this old banner ad? (it was for Net Nanny – “Pornography? On
MY Computer? It’s more likely than you think.”)

Mentioned product names may be trademarks and / or copyrighted by their
respective owners.

QR code appears on last slide too.

1

Agile/Scrum: both development speed and code quality are extremely important.
TDD = test-driven development (write the test first).
My experience – insurance / finance, multiple ISVs (ADS / Centura / Compuware
(Xpediter), DSSI (PRO/JCL, JOB/SCAN)), IBM (Enterprise Content Manager), Voltage
Security (SecureData, SecureMail)

2

Improve test coverage: for example, it may be impractical to execute performance
tests “by hand” using large amounts of randomly-generated data.

3

NOTE: Continuous integration is NOT a substitute for unit testing! Developers
shouldn’t be committing code that breaks the builds.

Immediacy depends on how long the tests take to give feedback. Some organizations
choose to have a “sanity-check” level of testing that runs more quickly (and more
often), backed by a “full” build that runs less often. Failures found in the “full” build
wouldn’t be reported as quickly.

4

5

Can anyone identify this episode? “Whom Gods Destroy”. Spock had to know which
Kirk was “evil” (good Kirk told him to kill them both).
Too many continuous integration products to go into detail; see references at end.
Pekka Klarck is still the prime contributor for Robot Framework.

6

(We use Dignus cross-compiler to generate z/OS object code on a Windows machine.
We upload it to the mainframe and link it there. The reason is primarily that we rent
time on an IBM-supplied mainframe, and we don’t want to store our proprietary
source anywhere outside the company’s control, nor do we want to incur the cost of
extra storage and CPU cycles to do the compiles there. If you have your own
mainframe, this probably isn’t an issue for you).

7

8

(Since I found an image of an old clunky desktop for the Windows machine, I thought
I’d keep to that theme for the mainframe image too ).

Note: this is *not* instrumentation of the code with #ifdefs (or equivalent) that stub
things out to make it compile and (sort of) execute on Windows

9

Tests should be understandable in non-technical terms – for example, the product
owner should be able to tell by reading the names of the test cases what is being
tested. Tests can theoretically be written by non-programmers.

“Keywords” in Robot Framework can be thought of as subroutines, methods, or
modules. Do NOT think of them like “keyword=value”! They are really just steps to be
performed.

Some of the libraries provided by Robot Framework include Builtin, OperatingSystem,
Telnet, Collections, String, Dialogs, Remote, Eclipse, Selenium, even Android and iOS
extensions!

10

The z/OS-specific library that we wrote is not publicly available. Is there interest in
making it available?

11

12

Note that even if you’re not using a testing framework like Robot Framework, you can
still take advantage of continuous integration.

You probably don’t want your system being IPL’ed under control of your continuous
integration process – right? 

13

The definition of a “test suite” is a bit odd in Robot Framework. Here we have a single
file, consisting of a “suite” of one test case (“Issue Show Stateless Verify Header Says
ObviouslyProtected”). You can (and typically do) have more than one test case in a
single file (suite), but you can also run an entire directory of files (or a subset thereof)
as a “suite”, each file of which can consist of one or more test cases (and therefore
you can essentially have “suites of suites”). The basic concepts apply, though, no
matter how the suite is implemented.

14

There is some loop control provided directly in Robot Framework, but it’s limited and
hard to use. It can make the test implementations difficult to understand, too, which
goes against one of the main points of using Robot Framework in the first place.

15

Keywords are implemented in terms of other keywords – all the way down until you
get to Robot Framework-provided keywords or python-implemented home-grown
keywords. This keyword starts by cleaning up any leftover file (with “Remove File”),
populating it with JCL lines, including variable substitution (with “Append to File”),
then… [next slide]

16

setting a variable (with “Set Variable” (built in)), merging the SET statements into
existing base JCL, changing the JOB card, submitting the job to z/OS, acquiring the
output from the JES queue, figuring out the highest return code, making sure it is
“0000”, and purging the output from the queue.

17

Here’s an example of a home-grown keyword that we chose to implement in Python,
giving us more control over exception handling and looping to re-try on connection
failures / timeouts from FTP.

18

This is the output from the “libdoc” command, which reads either Python or Robot
Framework keyword definitions and pulls out the formatted documentation to create
html.

19

We recommend using at least 4 spaces to separate keywords from their parameters.
Much easier to see the pieces.
Robot doesn’t have to use multiple spaces to separate parameters from keyword
names. You can use vertical bars. It’s all really tables and cells when you get right
down to it.
Coping with odd ways to break lines into fields and odd continuation should be old
hat for JCL folks!
Important to build in toleration of timeouts and dropped connections with a limited
number of retries to avoid needless restarts.
If Jenkins and subversion clocks drift apart, you can get situations where you commit
something to svn but Jenkins doesn’t notice it and kick off a build.

20

Since our started tasks expose an API anyway, it’s faster for us to just make that API
accessible directly from the client machine than to create a job, submit it, and
download the results. This is done with the XMLRPC server.
For the XMLRPC server, we started with an open source implementation in C. There
was some work required due to code page issues (in some places, for example, it was
checking for certain characters using their putative hexadecimal values – which are of
course different between ASCII and EBCDIC).

Python will probably never be ported to z/OS native: Guido van Rossum (Python’s
“Benevolent Dictator for Life”): “How important is z/OS? I'm very skeptical of the
viability of any OS that uses an encoding that is not a superset of ASCII.” (that’s from
2007!)

21

What I highlighted in yellow above is the actual command that is issued to perform
the Robot Framework test. We wrap a .bat file around it.

22

Kind of an eye test, I know – but in the pdf it’s a little more legible. We just saw this in
the live demo; this is just a screenshot from that.

Before I put up the final slide, are there any questions?

23

24

25

