
1

2

I am CTO of CM First Group, we are focused on helping folks modernize

IBM System i and System z applications. I started my career as a COBOL

and ASM programmer for Kraft

3

I am a long-time performance and capacity techie who is now helping

companies spread their message thru quality writing and messaging.

4

5

6

You may have started with a sturdy foundation, but if you don’t keep building

the same way, you don’t get a good result. These are some of the general

things that spawn debt.

7

Actually Technical Debt was introduced as a metaphor by Ward Cunningham

to help in these kinds of discussions. The idea is that code with a bad quality

is like a financial burden. The total amount of the debt is the effort it would

take to clean up the code base. The interest rate is the reduced productivity

due to the bad code quality. Management is usually familiar with terms of the

financial domain - so it should be easy to talk about software quality using

this metaphor.

8

What journey were we on that got us to this point?

9

Martin Fowler groups types of debt here – in each case, the cost can be high

to the company, but the cause is different

Del-Reck – Crazy deadlines, too much pressure – worst kind

Del-Prudent – Very common – used when competitive pressures exert

themselves – ship it now. Still costly. These two are made by startups all

the time. It’s part of the ‘lean’ mindset.

Inad-Reckless – Where you don’t know enough to do it right – common with

outsourcing

Inad-Prudent – Monday morning quarterbacking – when you figure out what

it should have been.

10

11

Analysis is one category. Everyone likes to document and diagram, right?

The fact is if you don’t have documentation, it is extremely difficult (if not

impossible) to find the problems

12

60% enhancements – 17% bug fixes of costs

13

This is the biggest cost – but hard to quantify. If it takes an extra 6 months to

develop a system to meet a new business opportunity, if that means a new

insurance product

Companies like Caremark that have stated they will be increasing dividends

to shareholders as a result of the affordable care act.

14

In the case of oil and gas companies – fine and imprisonment for 5 years for

violations.

15

Everyone must do the cost calculation for themselves, but often technical

debt is something that can return money back to the company. For example,

Intel had made some public announcements that they had saved

16

SSA convened the Future System Technology Advisor panel (FSTAP) in

2010 to look at modernization challenges. Needed to migrate their customer

database system to DB2. But this spawned the discussion of what else they

needed to modernize. They had some challenges. Their code base was

30+ years old, they had 250 MM lines of code running on over 250 major

systems, 17 of which were mainframes, and 93% of their budget was

dedicated to maintenance. And time was not on their side. They had to

make major changes to Medicare and Medicaid.

17

18

People expect security in computing. In his 2002 Trustworthy Computing

memo to employees and subsidiaries,Gates focused on 3 areas:

Availability: r products should always be available when our customers

need them. System outages should become a thing of the past because of a

software architecture that supports redundancy and automatic recovery.

Self-management should allow for service resumption without user

intervention in almost every case.

Security: The data our software and services store on behalf of our

customers should be protected from harm and used or modified only in

appropriate ways. Security models should be easy for developers to

understand and build into their applications.

Privacy: Users should be in control of how their data is used. Policies for

information use should be clear to the user. Users should be in control of

when and if they receive information to make best use of their time. It should

be easy for users to specify appropriate use of their information including

controlling the use of email they send.

19

ASU – 50K Social Security #’s stolen

Target – 40 MM payment cards – info released

Home Depot – 30K accounts compromised

eBay – 145MM customers compromised

20

You don’t pay interest on security debt if no one saw the exposure before

you fixed it. But the cost goes up with the probability of a breach. The

challenge with this kind of technical debt is it requires more than simply

recoding. You often must change processes and may also have to make

administrative changes. Costs are:

Detection & Escalation, Notification, Ex-Post Response, Lost business

(Chris Wysopal at Veracode)

“Application Security Debt is a ‘loan’ with variable principal which could

range from 0% to 100% of your original project costs. The ‘principal’ is what

you’ll eventually have to pay to fix security bugs or rewrite the code. It also

has varying and uncertain ‘interest costs’, which are the costs of security

breaches due to these vulnerabilities. This includes the possibility of the

mother-of-all balloon payments (i.e. a huge loss event).”

21

Security debt comes from some of the same places as regular tech debt, but

it also has these issues. Which means these are the 3 areas you need to

consider in remediatiaon.

22

Rochford notes that the during the tech and debt bubble, people went nuts

rushing things to market. The complexity and scale were unprecedented.

Then, when the bubble burst, companies cut so deeply they didn’t have the

money or people to fix anything. It’s hard to get budget holders to invest

money in something that doesn’t bring in money or customers. Before, we

didn’t have time to do it right; now we don’t have the money.

23

24

Looping code is a bug, but if it is an area that isn’t hit all the time, it may not

show up, or it may loop only under certain circumstances

I/O is always slower than CPU – so you want to do as little as possible.

Examples of poor coding include reading in the same record multiple times,

using inefficient key mechanisms, poor RDMS design, index problems and

more. One application I know did more than 200 I/Os per txn – and there

were only 16 files!

Memory ramps – misuse of memory affects all txns in the system and can be

hard to detect. Memory pigs cost you more as the business peaks

Coding inefficiencies include poor design of if-then-else, voodoo code

(maintained, but not useful functions), calling functions more than once,

fixing bugs by writing code that overwrites the result of faulty code, and other

problems like JITed code

Poor design from the beginning is another area. Can’t design OLTP if it

comes out like batch.

Performance debt comes about both because of lack of knowledge on how

to write efficient code and also from taking shortcuts that are ‘long-cuts’

when it comes to execution.

25

Poor ability to map a clear/short path from point A to Z

Poor understanding of the language's programming model

Deficient research skills / Chronically poor knowledge of the platform's

features

The concept of pointers enables the creation of complex data structures and

efficient APIs. Managed languages use references instead of pointers, which

are similar but add automatic dereferencing and prohibit pointer arithmetic to

eliminate certain classes of bugs. They are still similar enough, however, that

a failure to grasp the concept will be reflected in poor data-structure design

and bugs that trace back to the difference between pass-by-value and pass-

by-reference in method calls.

Checking and checking again on something

26

You can’t afford bad performance or worse, availability issues. Customers

aren’t loyal anymore. Provide them with sub-optimal service and they will

find someone else to buy from. Your sales will plummet and you can very

well go out of business. It’s that important. And yet, the seeds of your

destruction likely lie mostly in the code you take for granted. The code

written a while back, in a hurry, or by people who didn’t know what they were

doing.

27

Impact of tuning is much less than the impact of fixing code. At least 80% of

performance is baked in by inefficient or simply bad coding.

28

29

SSA saw a solution they liked at CA World 2009. In only 15 months, they

were able to complete a POC which included req analysis, development of

custom features by the vendor, installation, configuration and integration.

Success meant they wanted to continue to work with the vendor on their 10

year modernization plan. Which is good news for all of us hoping to retire

someday.

30

31

There can be many constraint in business. External and External.

People: Lack of skilled people limits the system. Mental models held by

people can cause behavior that becomes a constraint.

Policy: A written or unwritten policy prevents the system from making more.

Equipment: The way equipment (i.e. software) is currently used limits the

ability of the system to produce more salable goods/services.

32

Most rewrites fail – capturing the business rules, and new requirements is

very difficult. Package implementation

Adding more resources – the old

Like painting the bridge – using substandard paint

33

Why can’t we move forward – adages we here –

 it is like finding a needle in a haystack

 Or like finding a needle in a stack of needles

 Or like boiling the ocean

Some of the numbers we come across on from customer projects are

staggering

 45,000 compiliation units

 200 applications of 100 Lines of code

 50 Million lines of COBOL

 It takes about 12 24 hour days to just count to a million

34

You need to look at machinery to do the analysis for you

What if you had a machine to sort and package the facts you are looking for

and package them neatly

35

36

I will submit this as a basic debt management framework that software

development organizations should have in place.

Agile, iterative process

The discovery process works like this

Read your code bases – list off

Extract facts

 Maintainabilty

 Connectivity

 Test Coverage

 Style checking

37

07/06/10

38

One important set of facts is software connectivity. Who talks to who? What files do they access? What platforms?

One of the repositories you can work with is CA Repository, which has a

zOS based component. The main thing is to have a repository for the code

39

Code quality is another key fact to understand. There are metrics to help

understand this.

40

AcipHex 03/05/09 09:46 AM

presentation name.ppt 41

This is another metric showing complexity.

AcipHex 03/05/09 09:46 AM

presentation name.ppt 42

43

But this is the most common thing people do – copy code, making small

changes but basically using old code. If it is good code, that’s fine, but when

the code is sub-optimal, this magnifies the problem.

44

This shows how it can work.

45

AcipHex 03/05/09 09:46 AM

presentation name.ppt 46

AcipHex 03/05/09 09:46 AM

presentation name.ppt 47

Need an explanation here!!!

One challenge is to match arbitrary patterns using data flow. The first is a

simpler program.

One (“simple”) proram obviously contains such a check

(findable also by the SCSE tool) and the other (“complex”) which contains

the check but it is scattered about in a bunch of small pieces,

connected by dataflows (which is why this requires a dataflow

matcher to do it well). In the complex case, the SCSE will

not find the check because there is no obvious complete

idiom; you can’t realistically hunt for all the “<=” in a code

and assume they are bank related, without getting a huge

number of false positives.

You can see the results of the match in the displays;

the matching code is lit up. The matching process and

the display generation are completely automated.

We just fed the tool the data flow pattern and the code.

48

The more complex program.

49

50

Impossible for humans to manually analyze large software systems

Must contain enough of the code base to make a difference

51

Questions to ask in your RFP. You need to know the following things to

decide if the solution will work for you.

52

53

54

55

56

57

Before we conclude, are there any questions?

58

Isn’t it time to wake up and smell the technical debt in your code?

Remediating technical debt while save on spending, improve performance,

reduce security exposures, decrease risk and increase agility. Start next

week!

59

