
Insert
Custom
Session
QR if
Desired.

CICS Connectivity and
Networking

Ian J Mitchell

IBM System Z Middleware CTO

ianj_mitchell@uk.ibm.com

Session 15886, Thursday 7th August 2014

mailto:ianj_mitchell@uk.ibm.com

Disclaimer

IBM’s statements regarding its plans, directions, and intent are subject to
change or withdrawal without notice at IBM’s sole discretion. Information
regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing
decision. The information mentioned regarding potential future products
is not a commitment, promise, or legal obligation to deliver any material,
code or functionality. Information about potential future products may not
be incorporated into any contract. The development, release, and timing
of any future features or functionality described for our products remains
at our sole discretion.

Agenda

● Connectivity landscape review

● IPIC enhancement in CICS TS v5.2

● CICS Transaction Gateway v9.1

● z/OS Connect

● A little “gotcha”

Adding the Web container to the
Connectivity landscape

C
o

re A
p

plica tion
 L a

yer
(TN)3270 BMS TR

Adding the Web container to the
Connectivity landscape

S
ervic e e

na b
lem

e n
t la

ye r

C
o

re A
p

plica tion
 L a

yer

WMQ Triggering
& DPL Bridge

(TN)3270

WMQ

CTG

HTML/REST

BMS

DPL

TR

Adding the Web container to the
Connectivity landscape

S
ervic e e

na b
lem

e n
t la

ye r

C
o

re A
p

plica tion
 L a

yer

Native WS
& Axis2

WMQ Triggering
& DPL Bridge

(TN)3270

WMQ

CTG

WS

REST
HTML/REST

BMS

DPL

TR

Adding the Web container to the
Connectivity landscape

S
ervic e e

na b
lem

e n
t la

ye r

C
o

re A
p

plica tion
 L a

yer

WOLA
TRUE

IPIC &
EXCI

Native WS
& Axis2

WMQ Triggering
& DPL Bridge

(TN)3270

WMQ

CTG

WS

REST

WMQ

CTG

HTML/REST

HTML/REST

BMS

DPL

TR

Adding the Web container to the
Connectivity landscape

S
ervic e e

na b
lem

e n
t la

ye r

C
o

re A
p

plica tion
 L a

yer

Web Container
(built on Liberty)

WOLA
TRUE

IPIC &
EXCI

Native WS
& Axis2

WMQ Triggering
& DPL Bridge

(TN)3270

WMQ

CTG

WS

REST

WMQ

CTG

WOLA

HTML/REST

HTML/REST

HTML/REST

BMS

DPL

TR

Connectivity & Invocation Landscape: (Synchronous) Ways into CICS

C
O

B
O

L/ P
LI/A

sm
 pgm

(co
m

m
a

re
a

 o
r ch

a
n

n
e

l in
te

rfa
ce

)

R
equest ing A

ppl ication

Comms Server
Sockets Feature

Socket-aware
CICS wrapper pgm

HTTP/JSON-aware
CICS wrapper pgm

H
T

T
P

T
C

P
/IP

R
E

S
T

/JS
O

N
S

O
A

P
R

E
S

T
JC

A

C
T

G
(client)

MTOM/
XOP

CICS Web services
(native mapping)

Binding
File

zConnect
(standalone)

WOLA

DataPower

CICS Transaction
Gateway
(distributed or z/OS)

JS
O

N
 sup port

(S
ept 201

4)

DataPower

Liberty in CICS CICS Servlet

HTTP-aware
CICS wrapper pgm

CICS Mobile Featurepack
or zConnect in CICS

CICS Web services
(Java mapping)

High Availability features

 Single entry point

 Removal of single point of failures
 Continuous availability
 Resilience to failures

 Upgrades and maintenance operations do not effect end
users

 Clients unaware of complexities of systems they are
using

IPIC HA Requirements

 Provide single point of access to a cluster of CICS TS regions via an IP network, to
offer high availability by removing single points of failure.

 The solution should not be limited to a single technology and so will support
 TCP/IP port sharing

 IBM Communications Server's Sysplex Distributor function based around the
use of Dynamic Virtual IP Addresses (DVIPA)

 Other non-IBM connection balancing technologies

 Built from extensions to the IP Interconnectivity (IPIC) function that is provided from
CICS TS

 CICS to automatically resolve UOW affinities following the re-establishment of a
failed connection.

 Clients can connects back to the cluster, when they have outstanding UOW
affinities with specific cluster regions when that region is not currently available.
CICS remembers which UOWs are associated with which server and will attempt to
resolve them when a client releases and reacquired its connection to the cluster

Terminology (new ones in blue)

● AIVIPA – Application Instance Virtual IP Address, defines the Specific Entry Point that an HA CICS Region is
using.

● Client CICS Region – CICS region running outside of the HA Cluster, but connecting to regions in it.

● Distributor Stack – stack containing a DVIPA that is used to intercept connection requests and select a CICS
region that is listening on a common PORT on the DVIPA's address.

● DVIPA – Dynamic Virtual IP Address – as provided by Sysplex Distributor, and used as the Generic Entry Point
to an HA Cluster.

● Generic Entry Point – host name and port, defined with a DVIPA, and advertised by a Distributor Stack, or
that used in a Port Sharing environment, as the entry point to an HA Cluster.

● Generic TCPIPSERVICE - one that listens on a DVIPA or a shared port.

● HA Cluster – set of CICS regions, running in a sysplex, listening on a common DVIPA, or on a shared port.

● HA CICS Region – CICS region that is a member of an HA Cluster.

● HOST – host name/IP address that a Stack publishes

● Local Stack – one that is running on the same LPAR as a CICS region

● PORT – TCP/IP port

● Port Sharing – CICS regions running on a single LPAR listening on a common IP address and port number

● Specific Entry Point – the host name and port number, defined with an AIVIPA on the local stack which a CICS
region listens on for connection requests.

● Specific TCPIPSERVICE – one used to listen on the Specific Entry Point of an HA CICS Region.

● Stack – An instance of a TCP/IP stack running on an LPAR

 Sysplex

Coupling
Facility

z/OS LPAR A

CICSA

CICSB

z/OS LPAR B

Target
Stack A

Target
Stack B

xcf

xcf

 192.168.0.1

xcf
192.168.0.2

Advertised IP address Advertised IP address
for cluster address for cluster address
(DRVIPA)(DRVIPA)

 1.2.3.4

1.2.3.4

CICS-CL

Distributin
g Stack

 1.2.3.4

Each TCPIP service Each TCPIP service
binds to the DRVIPA binds to the DRVIPA
1.2.3.41.2.3.4

Components of Sysplex Distributor

LPAR 1

CICS A

CICS 10

CICS 9

CICS 8

Local
stack

All regions run in a single LPAR, and listen on same IP address and port via a common
stack
CICS A connects using this IP address and port and the local stack assigns the request to
region 8
If connectivity is lost then CICS A needs to connect back to CICS 8 to resolve any UOW
affinities.

Solution based on Port Sharing

LPAR 3

LPAR 2

LPAR 1

CICS A

CICS 12

CICS 11
Common

DVIPA

 DVIPA

 AIVIPA 9

CICS 10

CICS 9

CICS 8

CICS 13

CICS 14

Sysplex
A

DVIPA identifies the Generic Entry
Point to the cluster, and resides on
the Distributor Stack.

AIVIPA identifies the Specific Entry
Point of an HA Region, and moves
with that region within the Sysplex. If
no need to move regions between
LPARs then VIPAs can be used.

Solution based around
Sysplex Distributor

Loca
l

Stac
k

ip_add
r

1.2.3.4

CICS 1
APPLID1

CICS A
APPLIDA

Primary CAPEX Request:

Primary CAPEX
Response

Primary CAPEX
Response

Secondary CAPEX
Response

Secondary CAPEX
Response

Secondary CAPEX Request:

Secondary CAPEX Request

Resync
messages

IPCONN

Name -CIC1
Applid - blank
ip_addr
-1.2.3.99
Port - 8999
Tcpipservice –
TCPIPSA
HA - YES

TCPIPSERVIC
E

Name – TCPIPSA
Port – 7890
ip_addr – 5.6.7.8

Loca
l

Stac
k

ip_add
r

5.6.7.8

Distri-
buting
Stack

ip_addr
1.2.3.99

TCPIPSERVIC
E

Name – TCPIPS1
Port – 8888
ip_addr – 1.2.3.4

IPCONN

Name -CIC1
Applid - APPLIDA
ip_addr -5.6.7.8
Port - 7890
Tcpipservice –
TCPIPS1
HA - NO

Primary CAPEX Request:

Cluster Connect Request:

Cluster Connect Response

TCPIPSERVIC
E

Name –
TCPIPSGR
Port – 8999
ip_addr –
1.2.3.99
SEPSERVICE=
TCPIPS1

Loca
l

Stac
k

ip_add
r

1.2.3.4

CICS 1
APPLID1

CICS A
APPLIDA

Primary CAPEX Request:

Primary CAPEX
Response

Primary CAPEX
Response

Secondary CAPEX
Response

Secondary CAPEX
Response

Secondary CAPEX Request:

Secondary CAPEX Request

Resync
messages

IPCONN

Name -CIC1
Applid - blank
ip_addr
-1.2.3.99
Port - 8999
Tcpipservice –
TCPIPSA
HA - YES

TCPIPSERVIC
E

Name – TCPIPSA
Port – 7890
ip_addr – 5.6.7.8

Loca
l

Stac
k

ip_add
r

5.6.7.8

Distri-
buting
Stack

ip_addr
1.2.3.99

TCPIPSERVIC
E

Name – TCPIPS1
Port – 8888
ip_addr – 1.2.3.4

IPCONN

Name -CIC1
Applid - APPLIDA
ip_addr -5.6.7.8
Port - 7890
Tcpipservice –
TCPIPS1
HA - NO

Primary CAPEX Request:
client_applid=APPLIDA,server_applid=APPLID1

Cluster Connect Request:
client_applid=APPLIDA, server_applid=blank,
HA=YES

Cluster Connect Response -
Response= exception, reason= redirection,
ip_addr=1.2.3.4, port=8888,
server_applid=APPLID1

TCPIPSERVIC
E

Name –
TCPIPSGR
Port – 8999
ip_addr –
1.2.3.99
SEPSERVICE=
TCPIPS1

HA solution using TORs to balance workloads

CICS A

TOR 2

TOR 1

Common
DVIPA

 DVIPA

 DVIPA

 AIVIPA 1

 AIVIPA 2

AOR 1

AOR 1

AOR 1

AOR 1

Resynchronisation Affinities

● CICS user tasks uses RM links to indicate that recoverable work has
been done over a connection.

● These links persist on the system log for UOWs that are either in-
doubt or committed and awaiting forget should a network or region
failure occur during syncpointing

● Each region has its own system log that has a unique log name. Log
names are exchanged as part of the CAPEX sequence that takes
place when a connection is being acquired.

● Resync processing takes place once an IPIC connection is
reacquired assuming that the log names of both regions have not
changed since the connection was previously acquired.

● If a client region is unable to reconnect to the same region following
an outage then any UOWs can only have heuristic decisions applied
to them by CICS, or are left for processing later. If left then resource
locks could be held until a resync operation takes place later.

Resync operations based around region re-start

● One region fails, and its partner tries to reconnect to it
● The operation fails and so the partner connects to another region in the cluster
● The failed region restarts, and attempts to reestablish the old connection
● This succeeds and the outstanding work is resynchronised.
● The connection between the original regions is then released.

LPAR 3

LPAR 2

CICS A

CICS 12

CICS 11

CICS 13

CICS 14

X

Agenda

– Introducing CICS TG product suite

– CICS TG for z/OS V9.1 open beta

● Service Enablement
● Secure connectivity
● Modern connectivity

The CICS TG Product Suite

Transactional access to your key business assets

 CICS TS for z/OS CICS TS for z/OS CICS TS for VSE CICS TS for VSE TXSeries TXSeries CICS TS for i CICS TS for i

Capabilities your developers need

C / C++ COBOLJEEJava
Microsoft .NET

Framework
Mobile

Scalable integration with your systems

CICS
TG
for

z/OS

CICS TG for
Multiplatform

s

CICS TG
Desktop
Edition

www.ibm.com/software/htp/cics/openbeta/

CICS TG for z/OS V9.1 open beta - video

http://ibm.biz/cicstg91beta

http://ibm.biz/cicstg91beta

GA April 25th 2014

CICS Transaction Gateway V9.1 open beta
Mobile integration, robust connectivity, and strong security options

ENUS214-105

FoundationFoundation

Secure
connectivity

Secure
connectivity

Modern
connectivity

Modern
connectivity

Service
enablement

Service
enablement

Service
enablement

Service
enablement

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&supplier=897&letternum=ENUS214-105

Service Enablement

Service enablement

Mobile integration with JSON web services

• Dynamic routing of mobile workload

• Shared tech with CICS TS + z/OS connect

• JSON xform from COBOL, C and PL/1

• Full monitoring and statistics

Service enablement

Mobile integration with JSON web services

• Dynamic routing of mobile workload

• Shared tech with CICS TS + z/OS connect

• JSON xform from COBOL, C and PL/1

• Full monitoring and statistics

Systems of Engagement Meet Systems of Record

 API Management API Management

 DataPower DataPower

Cloud and
API Economy

 CICS TG

CICS on
Multi-platforms

zLinuxzLinux

 Worklight Worklight

 WebSphere Application Server WebSphere Application Server

z/OSz/OS

 DB2 DB2

 MQ MQ

 CICS TS CICS TS

Available as Value Unit Editions

z/
O

S

C
on

ne
ct

z/
O

S

C
on

ne
ct IMS IMS

CICS TG for z/OS V9.1 open beta - JSON Web Services

Technology aligned
with z/OS Connect

Interoperable
with Worklight

JSON web services – Overview

Significant new capabilities for CICS TG

● New style of remote client and data representation
– No client-side IBM code required

– Active data transformation within the Gateway daemon

– Service-enablement for any release of CICS server

– Exploit the high availability and instrumentation features of CICS TG

● Top-down style service enablement
– Generate COBOL, C, PL/1 language structures from a JSON schema

– Non-RESTful can be used with COMMAREA of channel programs

– RESTful must use channel programs (and therefore IPIC)

● Bottom-up style service enablement
– Generate JSON schema from COBOL, C, PL/1 language structures

– Target program is not REST-aware, so JSON web service is non-RESTful;
COMMAREA or channel programs supported

JSON web services – Overview

Powered by Liberty, compatible with z/OS Connect and CICS TS JSON
support

● Based upon proven technologies
– Uses a “private” embedded WebSphere Liberty profile within the

Gateway daemon for the HTTP server

– Uses common data transformation components at run-time from
CICS TS for z/OS

– JSON ws-bind files are interoperable with CICS TS, CICS TG for
z/OS V9.1 open beta and z/OS Connect solutions

● The JSON web services assistant is included with CICS TG for z/OS
V9.1 open beta
– Uses common tooling components with a simplified interface for

CICS TG

CICS TG for z/OS – Solution architecture

z/OSApplication machine

CICS

JEE
application

server

JCA Resource
Adapters

Gateway
daemon

Protocol
Handler

IPIC
JCA

Resource
Adapter

EXCI module

IPIC

WebSphere Application Server

Remote clients Local clients

Protocol
Handler
Protocol
Handler
Protocol
Handler
Protocol
Handler

Java clients

ECI v2 C clients

.NET
Framework-based

clients

.NET
Framework-based

clients

JSON
web services

JSON web services – New protocol handlers

New protocol handlers for HTTP and HTTPS

● Define at most ONE each of HTTP and HTTPS protocol handlers

● Both are compatible with TCPIP port sharing capabilities:
– SHAREPORT

– SHAREPORTWLM with Gateway daemon health reporting

– Sysplex Distributor

● New configuration sub-sections HTTP, HTTPS within the GATEWAY section

● No timeout values to define
– Defined at the web service level

● No user security attributes to define
– Common SSL resources, CICS connections define authentication

JSON web services - The new http thread pool

New pool of “listener” threads

● New pool of “listener” threads
– Logically equivalent to Connection Manager threads

– Shared between HTTP and HTTPS protocol handlers

– Defined in the GATEWAY section by maxhttpconnect, e.g.
maxhttpconnect=100

● Define at most ONE each of HTTP and HTTPS protocol handlers

● The HTTP thread pool is shared between the HTTP and HTTPS protocol
handlers
– As Connection Manager threads are shared between the tcp and ssl

protocol handlers, if both are defined

● The Worker thread pool is shared by ALL protocol handlers

Configuring JSON web services - The new protocol handlers

The HTTP protocol handler

● Simpler syntax compared to tcp, ssl protocol handlers, e.g.
SUBSECTION HTTP
 port=2080
 bind=my.server.name
ENDSUBSECTION

● Compatible with TCPIP port sharing capabilities:
– SHAREPORT

– SHAREPORTWLM with Gateway daemon health reporting

– Sysplex Distributor

Configuring JSON web services - The new protocol handlers

The HTTPS protocol handler

● Shared Gateway daemon SSL resources and configuration
– Common key ring with SSL protocol handler, IPIC SSL connections

– Common NIST SP800-131A settings

– Supports secure HTTP connections up to TLS 1.2, hardware crypto

● Common attributes with the HTTP protocol handler, plus
– client authentication, defaults to off

– cipher suite specification, defaults to all available

● Common syntax with the HTTP protocol handler, e.g.
SUBSECTION HTTPS
 port=2080
 bind=my.server.name
 ClientAuth=on
 CipherSuites=CipherSuite1,CipherSuite2
ENDSUBSECTION

JSON web services - Security with Basic Authentication

Authentication and identity assertion for JSON web services

● HTTP(S) client includes an Authorization Request Header

● User name and password details are set on the ECI request

● Authentication then depends upon the target CICS connection protocol:
– IPIC: IPConn defined with USERAUTH=VERIFY or If the target CICS

uses client authentication, defaults to off

– EXCI: Gateway daemon env-var AUTHUSERPASSWORD=YES

● Identity assertion is also possible (i.e. no password required)
– IPIC: IPConn defined with USERAUTH=IDENTIFY

– EXCI: CONNECTION defined with ATTACHSEC=IDENTIFY

● HTTPS combined with Basic Authentication is a likely implementation

The new WEBSERVICE section

 Each JSON Web Service requires a single WEBSERVICE section

–Defined in the CICS TG configuration file, e.g.

SECTION WEBSERVICE = inqcust
 Uri = customers/inquire
 bindfile = LGICUS01.wsbind
 server = CICSAOR1
 timeout = 30
 transactionid = MYMI
 defaultmirror = Y
ENDSECTION

JSON web services – defining a specific service

Symbolic name for WS
HTTP uri mapping
Data transform ws-bind
Target CICS server
Maximum wait time
Mirror EIB TRNID value
Attach default or ‘MYMI’

HTTP client uri mapping

JSON web services - Run-time errors

ECI vs HTTP errors with JSON web services

● JSON Web Services support utilize an internal HTTP server within the
Gateway daemon

● All responses map to standard HTTP return codes, e.g.:

– 200: Everything is OK

– 403: Security error – e.g. authentication failure

– 404: Not found – e.g. bad URI

– 500: Server error – e.g. unknown CICS server

● Possibly a defect if combined with ECI_ERR_SYSTEM_ERROR

– 503: Service unavailable – CICS server unavailable

JSON Web Services Security – Run-time errors

ECI vs HTTP errors with JSON web services

● Further details are encapsulated in the JSON response data as a fault string with
reason codes

● For example, an ECI_ERR_NO_CICS results in an HTTP 503 error (Service
Unavailable), together with:
{

 "Fault":{

 "detail":{

 "Description":"Communication with the target CICS server could
not be established"

 "CICSServer":"<server name>"

 },

 "faultstring":"ECI_ERR_NO_CICS"

 }

}

JSON web services – New statistics

New statistics in the Protocol Handler (PH) resource group

Port numbers

● PH_SPORTHTTP
– HTTP protocol handler port number

● PH_SPORTHTTPS
– HTTPS protocol handler port number

Bind address

● PH_SBINDHTTP
– HTTP protocol handler bind address

● PH_SBINDHTTPS
– HTTPS protocol handler bind address

JSON Web Services – New statistics

The new WebServices (WS) statistics resource group

 WS_SCOUNT, WS_SLIST, WS_ILIST, WS_LLIST
–Number and list of defined web services, lists of active web services

 WS_IALLREQ, WS_LALLREQ
–Total number of web service requests processed

 WS_IAVRESP, WS_LAVRESP
–Average Web Service response times

 WS_IREQDATA, WS_LREQDATA, WS_IRESPDATA, WS_LRESPDATA
–Total amount of web service request and response data transferred

 WS_IREQHI, WS_LREQHI
–High water marks for concurrent Web Service requests

 WS_CREQ, WS_CWAITING
–Web service requests waiting for CICS, waiting for a Worker thread

JSON Web Services – New statistics

The new specific WebServices (WSx) statistics resource group

 WSx_SURI
–The HTTP uri mapping for Web Service “x”

 WSx_SSERVER
–The actual or logical CICS server to call for Web Service “x”

 WSx_SPROGRAM
–The target CICS program associated with Web Service “x”
–Derived from the WS BIND file

 WSx_SEIBTRNID, WSx_SMIRROR
–Mirror transaction attributes for Web Service “x”

JSON Web Services – New statistics

The new specific WebServices (WSx) statistics resource group

 WSx_IALLREQ, WSx_LALLREQ
–Number of requests for web service “x” processed

 WSx_IAVRESP, WSx_LAVRESP
–Average response times for web service “x”

 WSx_IREQDATA, WSx_LREQDATA, WSx_IRESPDATA,
WSx_LRESPDATA

–Amount of request and response data transferred for web service “x”

 WSx_IREQHI, WSx_LREQHI
–High water marks for concurrent requests to web service “x”

 WSx_CREQ
–Web service “x” requests waiting for CICS

JSON web services - New request monitoring attributes

Request monitoring capabilities have been extended to include unique
attributes of JSON web service requests

● The request monitoring exit method, eventFired,receives a Map, with
attributes defined by enumerated data type:
com.ibm.ctg.monitoring.RequestData

● New attributes are provided for JSON web service requests:

HttpPayload – payload of mobile requests

HttpVerb – GET|POST|PUT|DELETE

HttpPath – The URI being invoked

HttpStatusCode – The return code sent to the client

JSON web services - the JSON web services assistant

Proven data transformation technologies and tooling

● JSON web services assistant uses shared components
– CICS TS mobile feature pack

– z/OS Connect

● Generates language structure mappings in ws-bind files, and JSON
schemas

● The ws-bind files are used to transform data between JSON and binary
representations, for COMMAREA and Channel programs

JSON web services - the JSON web services assistant

JCL samples for the web services assistant in the PDS, SCTGSAMP

● CTGLS2JS - Generates a web service binding file and JSON schemas
from a language structure

● CTGJS2LS - Generates a web service binding file and language
structures that you can use in your application programs, from JSON
schemas

● CTGJS2R - Generates a web service binding file and a language
structure that you can use in your RESTful applications, from a JSON
schema

JSON web services - the JSON web services scenario
Get started by following the JSON web service scenario

Exploiting Dynamic Server Selection with JSON web services

Separate JSON web service workload to dedicated regions, and exploit the
Gateway daemon’s high availability features

SECTION WEBSERVICE = inqcust
 Uri = customers/inquire
 bindfile = LGICUS01.wsbind
 server = MOBIAORS
 timeout = 30
 transactionid = MYMI
 defaultmirror = Y
ENDSECTION

SECTION DSSGROUP = MOBIAORS
 Servers = MOBIAOR1,MOBIAOR2
 Algorithm = RoundRobin
ENDSECTION

 Create a DSSGROUP
representing the CICS servers
dedicated to serving the
mobile workload, using
FailOver or RoundRobin
algorithms

 Configure the WEBSERVICE
to use the DSSGROUP

Modern connectivity

Modern connectivity

Connection management

• For 24x7 continuous operation

Exploits IPIC heartbeat support

• Improved availability across larger
TCP/IP networks

Modern connectivity

Connection management

• For 24x7 continuous operation

Exploits IPIC heartbeat support

• Improved availability across larger
TCP/IP networks

IPIC heartbeat exploitation

Pro-active and continuous verification of connectivity status

● Increases reliability of IPIC connections over WANs
– Reduces time to discover network issues

● Avoids problem of connection being silently dropped by firewall

● Communication while connection is idle

● Default setting is to send heartbeat every 30 seconds

● If response not received from target system
– Connection is closed

IPIC connection management

Gateway daemon system management for IPIC connections

● Ability to stop and start IPIC connections
– First time capability for CICS TG on z/OS, not possible with

EXCI

● Selected and controlled quiesce of workload for a specific CICS
server
– Avoids the need to shut down the Gateway daemon

– Carry out planned maintenance on selected CICS regions

● Allows for DSS group resilience
– Take a connection out of use before stopping CICS

– DSS algorithms continue to distribute work to alternative
CICS servers

IPIC connection management – operations

New z/OS console SERVER commands

/F <jobname>,APPL=SERVER,STOP=<SERVER>

– Normal close of connection

– Allows for in-progress transactions to complete

– No new transactions can start

/F <jobname>,APPL=SERVER,STOP=<SERVER>,IMM

– Immediate stop of an IPIC connection

– In-progress transactions receive an error

/F <jobname>,APPL=SERVER,START=<SERVER>

– Start a server connection that was previously stopped

IPIC connection management – status visibility

New statistic for specific IPIC connection status

● CSx_CSTATUS
– Represents the current status of specific IPIC connection “x”

● Possible values for CSx_CSTATUS:
NOTSTARTED: The Initial state of the connection

STARTING: The connection is in the process of being established

AVAILABLE: The connection is established, Gateway accepts requests

UNAVAILABLE: The connection has failed, Gateway rejects requests

STOPPING: The connection is closing, Gateway rejects new requests

STOPPED: The IPIC connection is closed, the Gateway rejects requests

z/OS Connect
(for those who didn't make breakfast!)

WebSphere Liberty Profile – What’s New ?

Extend existing enterprise data and business logic to Web, Mobile or Cloud apps
• Use WebSphere Liberty z/OS Connect for secure enterprise connectivity to easily extend

existing assets to Mobile and Cloud applications using RESTful services and JSON.

• Leverage Websphere Liberty Java Connector Architecture (JCA) feature to connect in
to and extend existing enterprise backend systems

• IBM WebSphere Liberty Optimized Adapters for z/OS (WOLA): a function of WAS
Liberty for z/OS that allows very fast, efficient, and low-latency memory to memory
exchanges between WAS z/OS and CICS, IMS & Batch.

Administer production apps with the WebSphere Liberty Administrative Center
• Flexible, extensible, mobile ready, next generation admin UI to manage Liberty Servers

WebSphere Liberty Repository to pick up new Liberty product features, samples,
and tutorials:
• Easily extend your development and production environments with new features

Different options for using WebSphere Liberty in the Cloud
• Build applications using the Liberty Buildpack and Caching services on IBM BlueMix
• Deploy WAS Liberty patterns using Pure Application Pattern service on SoftLayer
• Bring your own existing entitlement of WAS to SoftLayer or Amazon cloud environments

55

Problem Statement (s)

Customers on the z/OS platform today are increasingly expressing concerns about
their ability to handle large spikes of new requests originating from any number of
almost instantly available clients and systems that have a need for the business
assets available there.

The fast advancing worlds of mobile and cloud computing are putting more and
more pressure on applications and business logic located on z/OS in environments
like CICS, IMS, batch, and others.

Customers have expressed an interest in a common solution that can be used by
cloud, mobile, web and components like API management, that enables simple
discovery and secure access to z/OS business and infrastructure assets using
REST technology.

Infrastructure providers (cloud-based IaaS and SaaS providers) and mobile
services registries (ie: API Management) require a uniform way to interact with z-
based middleware for discovery, provisioning, data transformation, and service
invocation.

z/OS Connect
What is it and what are the benefits for customers?

z/OS Connect is a Liberty based gateway that provides a secure and simple way to
discover and call in to application assets/infrastructure on z/OS from Web/Cloud/Mobile
applications using RESTful services.

The benefits include :
• Fast on-ramp for z/OS customers to discover and reach z/OS applications securely/simply using

RESTful services. Service references can be copied from z/OS Connect and stored in any repository –
cloud based (such as IBM Cloud OE) or mobile based (such as IBM Worklight, API Management) or any
other web technology

• Light-weight and modular providing flexibility to run multiple copies on the same or different z/OS
systems and assign higher/lower priority to specific Liberty servers

• Integrated with z/OS management makes the operations of the environment automated and consistent
with the environments it is exposing

• Provides ability to standardize on security access for calling in to z/OS applications in all major
environments - CICS, IMS, batch, Unix System Services, and ISV software. Supports SAF-based
security integration allowing for individual z/OS Connect services to have unique sets of authorized
users.

• Provides ability to track and prioritize requests from cloud, mobile, web based external requestors
using standard z/OS mechanisms like SMF and WLMA. Fulfills audit/chargeback needs for access to
z/OS applications

WOLA

WOLA

IBM z/OS Connect

WOLA Link Server
Task CICS

Programs

IMS dependent
regions

BlueMix

IMS

VSAM

DB2

DLI

zosConnect
JSON to/from
byte[] (Cobol

copybook)

CICS

WOLA over
OTMA

WOLA direct

Batch

zosConnect
JSON to/from

byte[] (C
structure)

zosConnect
JSON to/from
byte[] (PL/I
structure)

WOLA

WAS Liberty z/OS

RESTful

RESTful

RESTful

z/OS Connect
A service that encapsulate calling z/OS target applications using REST
calls. z/OS Connect will support JSON payloads for calls from external
cloud or mobile-based clients and will enable the conversion of the
payload to the target program's expected format. It will also provide the
response payload conversion from a byte array into JSON format before
returning the response to the caller.

Data binding
conversion/routing

Mobile/
APIM

Mobile/
APIM

Security / Auditing /
Metering

CloudOE
Javascript
CloudOE
Javascript

CloudOE
Java

z/OS Connect Liberty under CICS

CICS
Programs

CloudOE
Javascript
CloudOE
Javascript

CloudOE
Java

BlueMix

VSAM

DB2

zosConnect
JSON to/from
byte[] (Cobol

copybook)

CICS

zosConnect
JSON to/from

byte[] (C
structure)

zosConnect
JSON to/from
byte[] (PL/I
structure)

CICS Liberty/JVMServer

RESTful

RESTful

RESTful

z/OS Connect under CICS Liberty
Same z/OS Connect implementation – the CICS JCICS service provider handles requests targeted to
existing CICS programs. CICS provides interceptors to integrate z/OS Connect with CICS security

Data binding
conversion/routing

Security / Auditing /
Metering

JCICS

Mobile/
APIM

Mobile/
APIM

A little “gotcha”

Common Architectural Pattern

Comms
Server
TCPIP
Stack

TDQ

ECB

1
2 3

45

6

78

9

Business
LogicLong Running

Child Server

TOR AOR

CSMI

CSMI

DPL

START

Remote asynchronous design

Comms
Server
TCPIP
Stack

TDQ

ECB

1
2 3

45

6

78

9

Business
LogicLong Running

Child Server

TOR AOR

CSMI

CSMI

DPL

START

ICE

Remote Asynchronous Design Notes

● EXEC CICS START dispatches asynchronous execution of the
business logic

● Remote START requires the command to be shipped –
incorporating a WLM opportunity, and a queue of ICEs in the
AORs

–WLM selects AOR and synchronously ships the START request

–Queues of requests in the AOR

● WLM selects the AOR before the START is shipped, but execution
is tracked once the business task is attached in the selected AOR
– there is a time gap between decision and when resources are
allocated

● Data is returned via a DPL, a TDQ and posting an ECB

–Queues of responses in the TOR

Resources allocated

Comms
Server
TCPIP
Stack

TDQ

ECB

1
2

45

6

78

9

Business
LogicLong Running

Child Server

TOR AOR

CSMI

(Queue for)
session

(Queue for)
mirror task attach

(Queue for)
business task attach

(Queue for)
session

(Queue for)
mirror attach

CSMI

DPL

3

Resource allocation notes

● Resources consumed in shipping the START include...

1.A session to communicate with the selected AOR

2.A Task to receive the START request and add it to the AOR's Interval
Control chain (ICE chain)

3.A Task to run the business logic

● Resources consumed in shipping the data back...

4.Session to communicate with the TOR

5.Task to run the infrastructure logic to put data on the TDQ and post the
ECB

● Thread may have to queue for each of these resources

● Child server must prioritise reading new work from the socket vs sending
replies from the TDQ – this is flow control

–TOR mirrors vs child server dispatch priority

Remote asynchronous dispatching – improvement opportunities

● Workload classification and separation

– Safeguard critical work

– Route work to dedicated AORs – CPSM may be doing
this automatically

– Simple “High”, “Medium” and “Low” scheme would give
benefits

● Multiple reply TDQs with different priorities

– Single TDQ allows no prioritisation of response
processing

– Use same “High”, “Medium” and “Low” scheme as for
requests

Parallel Work – in a region

Comms
Server
TCPIP
Stack

TDQ

ECB

Business
LogicLong Running

Child Server

TOR AOR

CSMI

Parallel Work – in a plex

Business
Logic

Long Running Child Server

TOR AOR
CSMI

Business
Logic

Long Running Child Server

TOR AOR
CSMI

Business
Logic

Long Running Child Server

CSMI

Comms
Server
TCPIP
Stack

Local START with DPL

Comms
Server
TCPIP
Stack

TDQ
ECB

1

4

5

6

Business
LogicLong Running

Child Server

TOR AOR

CSMI

Queue for
session

Queue for
mirror task attach

Queue for
business task attach

Queue for
session

Queue for
mirror attach

CSMI

DPL

DPL

2 3

Local START notes

● Local START puts small, predictable load in TOR

–Consumes a task in the TOR

● No need for WLM routing decision until DPL

–Z/OS WLM Classification performed in TOR and propagated
to the AOR

● Resources consumed in DPL to AOR

–Session to communicate with AOR

–Task to run business logic

● Three, rather than five, points where resources are consumed

–Two fewer tasks attached (the start-shipping mirror and the
DPL mirror)

	Slide 1
	Disclaimer
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Agenda
	The CICS TG Product Suite
	www.ibm.com/software/htp/cics/openbeta/
	CICS TG for z/OS V9.1 open beta - video
	Slide 25
	Service Enablement
	Systems of Engagement Meet Systems of Record
	CICS TG for z/OS V9.1 open beta - JSON Web Services
	JSON web services – Overview
	Slide 30
	CICS TG for z/OS – Solution architecture
	JSON web services – New protocol handlers
	JSON web services - The new http thread pool
	Configuring JSON web services - The new protocol handlers
	Slide 35
	JSON web services - Security with Basic Authentication
	JSON web services – defining a specific service
	JSON web services - Run-time errors
	JSON Web Services Security – Run-time errors
	JSON web services – New statistics
	JSON Web Services – New statistics
	Slide 42
	Slide 43
	JSON web services - New request monitoring attributes
	JSON web services - the JSON web services assistant
	Slide 46
	JSON web services - the JSON web services scenario Get started by following the JSON web service scenario
	Exploiting Dynamic Server Selection with JSON web services
	Modern connectivity
	IPIC heartbeat exploitation
	IPIC connection management
	IPIC connection management – operations
	IPIC connection management – status visibility
	Slide 54
	Slide 55
	Problem Statement (s)
	z/OS Connect
	IBM z/OS Connect
	z/OS Connect Liberty under CICS
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

