
Insert

Custom

Session

QR if

Desired.

CICS Mobile and JSON

Session 15856

Monday, 4 August 2014, 4:15 pm

Leigh Compton

IBM zGrowth Team

lcompton@us.ibm.com

CICS Integration Options

© 2009, 2013 IBM Corporation2

Topic Abstract

� Enterprise systems offer integrity, rollback,
durability and thousands of other characteristics
that make your business run without error 24/7,
but enterprise systems also have a reputation of
'hiding' their data from the mobile platform. This
session will demonstrate how to integrate
Worklight, IBM's mobile platform for application
development and application management with
CICS allowing your business to expose your
'hidden' data to the mobile platform so that you
can start to exploit its hidden value.

CICS Integration Options

© 2009, 2013 IBM Corporation3

� The following terms are trademarks of the International
Business Machines Corporation or/and Lotus Development
Corporation in the United States, other countries, or both:

– Redbooks(logo)™, AIX®, alphaWorks®, CICS®, DB2®, IBM®,
IMS™, Informix®, MQSeries®, VisualAge®, WebSphere®

� The following terms are trademarks of other companies:

– Microsoft, Windows, Windows NT, and the Windows logo are
trademarks of Microsoft Corporation.

– Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle, Inc.

– CORBA, CORBAServices, and IIOP are trademarks of the Object
Management Group, Inc.

– UNIX is a registered trademark of The Open Group in the United
States and other countries.

– Other company, product, and service names may be trademarks or
service marks of others.

Trademarks

CICS Integration Options

© 2009, 2013 IBM Corporation4

Notices

This information was developed for products and services offered in the U.S.A. IBM may not

offer the products, services, or features discussed in this presentation in other countries.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PRESENTATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILTY OR FITNESS FOR A

PARTICULAR PURPOSE.

This information could include technical inaccuracies or typographical errors. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in this

presentation at any time without notice.

Any references in this presentation to non-IBM Web sites are provided for convenience only

and do not in any manner serve as an endorsement of those Web sites. The materials at

those Web sites are not part of the materials for this IBM product and use of those Web sites

is at your own risk.

CICS Integration Options

© 2009, 2013 IBM Corporation5

Agenda

� Some background

� IBM Worklight

� Introducing JSON

� JSON support in CICS

� CICS and Liberty

� CICS TG and z/OS Connect

CICS Integration Options

© 2009, 2013 IBM Corporation6

Some background

CICS Integration Options

© 2009, 2013 IBM Corporation7

� Best practice in CICS application design is to separate key elements
of the application, in particular:

– Presentation logic - 3270, HTML, XML, JSON, Servlets

– Integration or Aggregation logic - Menu, router, tooling

– Business Rules logic - Reusable component

– Data access logic - VSAM, DB2, IMS, …

� Provides a framework for reuse and facilitates separation of concerns,
clear interfaces, ownership, and optimization

Presentation/

Connectivity:
- 3270 device

- Web browser

- REST service

- Web service

- MQ

CICS TS

Client
Integration

logic

Data

access

Business Function

DIP

Business

Rules

logic

B

CICS Application Architecture

CICS Integration Options

© 2009, 2013 IBM Corporation8

Notes

� There is often some confusion while discussing the various Integration options with CICS as
to the type of CICS program that can be invoked. For most integration options, the interface
to your business logic will be via a COMMAREA or channels and containers.

If you have very old programs where the business logic is locked behind a 3270 Interface, the
Service Flow Feature (SFF) can aggregate (combine) a series of 3270 screen invocations into
what looks like a COMMAREA or channel and container callable program. Additionally, you
could write your own frontend to the 3270-based logic using the Link3270 Bridge or FEPI.

� New for CICS TS V5.1 is Java Servlets and JSPs. This is a CICS Java web container based
on the WAS Liberty profile

� Best practices for CICS application design for several years has been to divide the
presentation from the business function. Often the business function is divided into
integration logic, business rules logic, and data access logic.

� If you have followed this best practice, you can easily reuse your business functions by
adding logic to interface with user in a variety of ways, or by adding logic to connect to a
different client or system.

� The following slides will review the various options to access date from and to CICS, and the
various technologies behind the various options.

CICS Integration Options

© 2009, 2013 IBM Corporation9

CICS Connectivity Techniques

* Events can have different transports or CICS can process its own events

WMQ DPL Bridge

CICS TS

LU 6.2 and Inter-Region
Business Function

DIP B

TCP/IP***

SNA

WMQ
WMQ Attachment Facility
WMQ Web Service Transport

3270 Terminal (LU 2)

CICS TG

Sockets
CICS Java Web Container based on WAS Liberty technology
IPIC Inter-Region

CICS TG (ECI or IPIC)

HTTP (Web services, REST services,

Events
CICS Event Processing (multiple transports) *

ATOM feed, and Web browser interaction)

WOLA
EXCI

Cross Memory

Service Flow Feature (re-purpose 3270-based apps)
Software Component Architecture

SFM
SCA

** Rules
Engine

****Data

** IBM Operational Decision Manager
*** IBM Worklight – can access CICS Data using REST, Web Services, and ATOM feeds

**** VSAM, DB2, and IMS

CICS Integration Options

© 2009, 2013 IBM Corporation10

Notes

� WMQ, SNA, and TCP/IP are the three primary transports used to get information from/to
CICS. There are various options within each transport.

� Events are emitted from CICS using one of the three primary transports, or events may be
directed to CICS facilities like temporary storage. CICS can also trigger a CICS transaction.
Events are listed here as being separate for ease of discussion. Events will be discussed
separate from the other transports.

� The types of processing of the data over each transport is listed.

� SNA and WMQ have been supported for quite some time, so this presentation will mention
them only and not provide details.

� The Cross memory options are EXCI (which has been around for a long time), and WOLA
(WebSphere Optimized Local Adapter) which is cross memory communications to
WebSphere Application Server (which is relatively new).

CICS Integration Options

© 2009, 2013 IBM Corporation11

CICS TCPIP Connectivity Options

� HTTP

– Web browser interfaces

– Web services

– REST services

– ATOM feeds

– Servlets and JSPs

� Sockets

– Provided by Communications Server

� IPIC

– Region-to-Region Communications

– Protocol option with CICS TG

� ECI

– Protocol option with CICS TG

CICS TS V4.1
added support for

IPv6

CICS Integration Options

© 2009, 2013 IBM Corporation12

Notes

� This section of the presentation will discuss connectivity options available via the TCP/IP
transport

� Along with details on the connectivity option, information on the surrounding technologies will
be discussed

� IPv4 is currently the pervasive technique used to assign locations on the Internet. Although it
has served us well for several years, it does have some limitations. IPv4 has 32-bit
addresses which allow for less than 1 billion useable global addresses. Due to the way these
addresses are provisioned large companies are assign huge blocks of addresses.

� IPv6 uses 128-bit addresses which allows for 2128 addresses.

CICS Integration Options

© 2009, 2013 IBM Corporation13

IBM Worklight

CICS Integration Options

© 2009, 2013 IBM Corporation14

61%of CIOs put
mobile as priority

increased productivity
with mobile apps45%

10 Billiondevices
by 2020

Mobile is a mandatory transformation

CICS Integration Options

© 2009, 2013 IBM Corporation15

Business to Consumer

• Improve customer satisfaction

• Deeper customer engagement and loyalty

• Drive increased sales through
Personalized offers

• Customer service

• Competitive differentiator

• Improve brand perception

• Deeper insight into customer buying
behavior for up sell and cross sell

• Improve in store experience with mobile
concierge services

Business to Enterprise

• Increase worker productivity

• Improved claims processing

• Increase revenue with sales engagements

• Extend existing applications to mobile
workers and customers

• Reducing fuel, gas, or fleet maintenance
costs where relevant

• Increase employee and business partner
responsiveness and decision making speed

• Resolve internal IT issues faster

• Reduce personnel cost (utilizing personal
devices instead of corporate devices)

And holds enormous opportunities

CICS Integration Options

© 2009, 2013 IBM Corporation16

From the complexity of many…

•Multiple sets of tools & frameworks

•Four codebases to develop and maintain

To the simplicity of one

• One development environment

• One codebase to develop and maintain

IBM Worklight

Windows
AndroidApple Blackberry

Multi-platform development with a shared codebase

CICS Integration Options

© 2009, 2013 IBM Corporation17

From multiple point-to-point integrations

•Multiple sets of integrations to enterprise resources to build and

maintain

•YOU manage caching, synchronization and end-to-end encryption

To streamlined, transparent access

•Worklight transforms enterprise data into

mobile-friendly, JSON format

•Worklight Server manages caching, data

synchronization and end-to-end encryption

ERP

Engine
App DB

HTTP (REST, SOAP), JMS

SQL SAP

HTTP, CAST IRON

JSON

Worklight Adaptors

WORKLIGHT

SERVER

ERP

Engine
App DB

Cloud
Service

Cloud
Service

BlackberryApple

BlackberryApple

Controlled back-end integration

CICS Integration Options

© 2009, 2013 IBM Corporation18

One App Store for all of your devices

• Efficient deployment of development artifacts to
stakeholders for test and feed-back

• Easier employee enablement for up to date
mobile apps access

• Advanced control via ACL and LDAP support

WORKLIGHT

SERVER

Worklight AppCenter

BlackberryApple

CICS Integration Options

© 2009, 2013 IBM Corporation19

E
n

te
rp

ri
s
e
 B

a
c
k
e
n

d
 S

y
s
te

m
s
 &

E

n
te

rp
ri

s
e
 B

a
c
k
e
n

d
 S

y
s
te

m
s
 &

C
lo

u
d

 S
e
rv

ic
e
s

C
lo

u
d

 S
e
rv

ic
e
s

Worklight Server

User authentication and
mobile trust

Mashups and service
composition

JSON Translation

Adapter Library for
backend connectivity

S
ta

ts
 A

g
g

re
g

a
ti

o
n

Unified Push
Notifications

Client-Side
App Resources

Direct Update

Mobile
Web Apps

Feedback Management

Device Runtime

Cross-Platform
Compatibility Layer

Encrypted and
Syncable Storage

Runtime Skinning

Server Integration
Framework

Reporting for Statistics
and Diagnostics

A
p

p
li

c
a
ti

o
n

 C
o

d
e

A
p

p
li

c
a
ti

o
n

 C
o

d
e

HTML5, Hybrid,

and Native Coding

Optimization

Framework

Integrated Device
SDKs

3rd Party Library
Integration

Worklight Studio

Worklight Console

Push /SMS
Management

Reporting and
Analytics

App Version
Management

Worklight Application
Center

Development Team Provisioning

App Feedback Management

Enterprise App Provisioning
and Governance

Blackberry

Android

iOS

Windows
Phone

Java ME

Windows 8

SDKs

Mobile Web

Desktop Web

11 22 33

44

55

IBM Worklight components overview

CICS Integration Options

© 2009, 2013 IBM Corporation20

WorklightWorklight ServerServer

Authentication

JSON Translation

Server-side Java

App Code -- WAS

Adapter Library

Device RuntimeDevice Runtime

Application Center
Enterprise App Store

Worklight Console

Application Code

Push Notifications

Analytics

z/Linux

z/OS

JSON

from CICS

REST

Requests

to CICS

Worklight Server on System z

CICS Integration Options

© 2009, 2013 IBM Corporation21

Intoducing JSON

CICS Integration Options

© 2009, 2013 IBM Corporation22

What is JSON?

� JSON is the data structure for JavaScript

– Standardized as the data structure for ECMAScript (the name of the JavaScript Standard) in the
late 1990s

• Few associated capabilities – the JSON specification can be read in a few minutes
• That’s a key part of JSON’s appeal and charm

– JavaScript’s use has continued to increase since the mid 1990s

• Can be used with HTML5

� JSON support started appearing in databases in 2005 (CouchDB) and later
MongoDB in 2008

– JSON stores were motivated by the use of JSON as an exchange format for JavaScript
applications

• Necessary to store, query, manipulate, audit the exchanged information with the UI (User Interface)
• Increasing focus on UIs with mobile device explosion

• JSON stores are often used in startups and by Web based companies, increasingly established
corporations are looking at JSON databases

– The “middle tier” Java layers support JSON well

– Database architectures were/are undergoing big changes at the same time as JSON databases
are being introduced, e.g., due to lower storage and memory prices

• JSON databases have adopted new architectural approaches
• JSON database APIs are integrated with Java and JavaScript (Not SQL : hence the term NoSQL) -

programmers are the focus

CICS Integration Options

© 2009, 2013 IBM Corporation23

XML and JSON : Choosing between the Two

System B

JSON

XML

Both XML and JSON:

-Make schema evolution

simple in the database

-Coexist with relational data

JSON is typically used with human interfaces and mobile
applications making it straight-forward to pass data
structures back and forth

XML is typically used for data exchange or
shared between multiple parties, systems or
institutions providing the ability for 3rd parties
to define portions of data structures
independently – e.g., banking, insurance

System A

CICS Integration Options

© 2009, 2013 IBM Corporation24

JSON Support in CICS

CICS Integration Options

© 2009, 2013 IBM Corporation25

Notes:

� This section talks about

– JSON support in CICS

– JSON Web services

– JSON RESTful services

CICS Integration Options

© 2009, 2013 IBM Corporation26

CICS Support for Mobile applications

� JSON/Mobile support

– New JSON assistant programs

• Generate a JSON schema and WSBIND file from a copy
book

• Create a language structure and WSBIND file from a JSON
schema

• COBOL, PLI, C and C++

– New linkable interface

• Equivalent to EXEC CICS XMLTRANSFORM

• Allows application programs to process JSON data

� Liberty enhancements

– Provides support for JAX-RS and JSON class libraries

CICS Integration Options

© 2009, 2013 IBM Corporation27

Notes:

� CICS Transaction Server for z/OS, Version 5 Release 2 provides support for web service
requests with JSON and the conversion between JSON and application data. Support for
JSON greatly simplifies the use of existing CICS services by mobile applications, particularly
those managed by IBM Worklight® Server. You can expose CICS applications as web
services with JavaScript Object Notation (JSON) payloads, create new RESTful applications,
call existing JSON applications, and convert JSON from any source to and from the
application data.

� This support for JSON and REpresentational State Transfer (REST) was previously available
in the CICS TS Feature Pack for Mobile Extensions.

� Also in CICS TS v5.2, the Liberty web container now supports use of the JAX-RS classes

CICS Integration Options

© 2009, 2013 IBM Corporation28

CICS Support for JSON

� New function in CICS TS V5.2

� Available for CICS TS V4.2 and V5.1 via CICS Feature Pack
for Mobile Extensions

� Allows CICS applications to be exposed as JSON based
Services

– Request/Response mode

• Very similar to SOAP Web Services

– RESTful mode

• Classic REST interaction based on HTTP method

– Supports: COBOL, PL/I, C/C++

– Uses a WSBind file, generated by DFHLS2JS or DFHJS2LS

– Hosted in a CICS PIPELINE resource

� Provides programmatic mode for JSON-copybook
transforms

CICS Integration Options

© 2009, 2013 IBM Corporation29

Notes:

� CICS Support for JSON in CICS TS V5.2 and the CICS TS Feature Pack for Mobile
Extensions build on the service-oriented architecture (SOA) capabilities in CICS to work with
JavaScript Object Notation (JSON). You can expose CICS applications as web services with
JSON payloads, create new RESTful applications, call existing JSON applications, and
convert JSON from any source to and from application data.

� The Mobile Extensions Feature Pack version 1.0 requires CICS TS for z/OS®, Version 5.1 or
CICS TS for z/OS, Version 4.2.

� JSON support is fully integrated into CICS TS V5.2

� You can obtain the following benefits:

– You can enable CICS applications to be called as request-response style web services with a

JSON payload.

– You can host new RESTful JSON applications in CICS.

– You can transform JSON from any source to structured application data.

– You can call web services hosted externally using JSON.

– You can broaden the reach of your mobile applications to include CICS data.

– IBM® Worklight® can be used to communicate with existing CICS programs using JSON

CICS Integration Options

© 2009, 2013 IBM Corporation30

JSON Support in CICS

� CICS supports:

– JSON web service – Request/Response

• Bottom-up – where you start with a copybook

• Top-down – where you start with a JSON schema

– Draft 4 of the specification at http://json-schema.org

– JSON RESTful service

• Top-down only

– JSON Transformer Linkable Interface (callable)

• Bottom-up

• Top-down

CICS Integration Options

© 2009, 2013 IBM Corporation31

Notes:

� CICS supports two modes of JSON web service, Request-Response and RESTful. CICS also
supports a programmatic scenario in which applications can transform JSON data to and from
COBOL style data formats themselves.

� The Request-Response JSON pattern is very similar to that of SOAP based web services in
CICS. In this scenario the JSON client must connect to CICS using the HTTP POST method.
A Request-Response mode JSON web service can be developed in either bottom-up mode or
top-down mode. The Request-Response pattern may be used to build JSON Web Services
that target either Commarea or Channel attached CICS PROGRAMs. A Request-Response
JSON web service can be used only in provider mode (where CICS acts as the server).

� RESTful JSON web service implements the architectural principles of the REpresentational
State Transfer (REST) design pattern. This design pattern is unlikely to be relevant for
existing CICS applications, so is available only in top-down mode. CICS implements a pure
style of RESTful application, where the data format for POST (create) GET (inquire) and PUT
(replace) are the same. CICS implements a pure style of RESTful application, where the data
format for POST (create) GET (inquire) and PUT (replace) are the same.

� In the programmatic mode, an application can LINK to a CICS supplied program, DFHJSON,
and ask it to transform application data into JSON data, or JSON data into application data.
CICS has no built-in support for requester mode JSON web services, but an application can
call a remote JSON web service by exploiting the programmatic mode.

CICS Integration Options

© 2009, 2013 IBM Corporation32

Request-Response

� Similar to a SOAP-based web service

– Implemented using a PROGRAM in CICS

• Target either Commarea or Channel attached programs

– CICS only supports provider mode

– HTTP client must use HTTP POST method

– HTTP body must contain JSON data

CICS Integration Options

© 2009, 2013 IBM Corporation33

Notes:

� The Request-Response JSON pattern is very similar to that of SOAP based web
services in CICS. The web service is implemented using a PROGRAM in CICS.
The PROGRAM has input and output data formats, described using language
structures (such as COBOL copybooks), and CICS is responsible for transforming
incoming JSON messages into application data, and linking to the application.
The application returns output data back to CICS, and CICS transforms this into
JSON data to return to the client.

� In this scenario the JSON client must connect to CICS using the HTTP POST
method.

� A Request-Response mode JSON web service can be developed in either
bottom-up mode or top-down mode. In bottom-up mode an existing CICS
PROGRAM is exposed as a JSON web service using the DFHLS2JS JSON
Assistant. In top-down mode a new JSON web service can be developed to
implement an interface described using existing JSON schemas. In top-down
mode, the DFHJS2LS JSON Assistant is used to generate new language
structures, and an application must be created to use them.

� The Request-Response pattern may be used to build JSON Web Services that
target either Commarea or Channel attached CICS PROGRAMs. A Request-
Response JSON web service can be used only in provider mode (where CICS
acts as the server).

CICS Integration Options

© 2009, 2013 IBM Corporation34

RESTful services

� REST is a design pattern for interacting with resources

– Each resource has a identity, a data type, and supports a set of actions

� The URI identifies the resource

� HTTP methods are used to indicate the action

� Classic REST actions

– POST: create a new resource

– GET: retrieve a resource or a list of resources

– PUT: update a resource

– DELETE: destroy a resource

� RESTful APIs may be designed with different uses of HTTP
methods

� Traditional CICS applications are unlikely to match RESTful
architecture

– Use of CICS JSON support for RESTful services will require new programs

– Wrapper programs can be used to expose existing applications

CICS Integration Options

© 2009, 2013 IBM Corporation35

Notes:

� REpresentational State Transfer, or REST, is a design pattern for interacting with resources stored in a
server. Each resource has an identity, a data type, and supports a set of actions.

� The RESTful design pattern is normally used in combination with HTTP, the language of the internet. In this
context the resource's identity is its URI, the data type is its Media Type, and the actions are made up of the
standard HTTP methods (GET, PUT, POST, and DELETE).

� This style of service differs from Request-Response style web services:

– Request-Response services start interaction with an Application, whereas RESTful services typically interact with data (referred
to as 'resources').

– Request-Response services involve application defined 'operations', but RESTful services avoid application specific concepts.

– Request-Response services have different data formats for each message, but RESTful service typically share a data format
across different HTTP methods.

� The four major HTTP methods define the four operations that are commonly implemented by RESTful
Services. The HTTP POST method is used for creating a resource, GET is used to query it, PUT is used to
change it, and DELETE is used to destroy it. The most common RESTful architecture involves a shared data
model that is used across these four operations. This data model defines the input to the POST method
(create), the output for the GET method (inquire) and the input to the PUT method (replace). This simple
design pattern is popular within the RESTful community, but it's not the only RESTful design pattern. Some
RESTful APIs are designed in other ways.

� A fifth HTTP method called 'HEAD' is sometimes supported by RESTful web services. This method is
equivalent to GET, except that it returns only HTTP Headers, and no Body data. It's sometimes used to test
the Existence of a resource. Not all RESTful APIs support use of the HEAD method.

� Traditional CICS® applications are unlikely to match the RESTful architectural pattern. Typical CICS
applications implement multiple operations, each of which will have data models for input and output formats.
These existing operations are unlikely to map directly to the four HTTP methods. For this reason the RESTful
architectural pattern is primarily aimed at new applications in CICS. To expose existing CICS applications as
RESTful Services you might need to wrap them with a new interface that conforms to the RESTful principles.

CICS Integration Options

© 2009, 2013 IBM Corporation36

CICS as a service provider for JSON requests

CICS Integration Options

© 2009, 2013 IBM Corporation37

Resources used by JSON web services

� URIMAP is matched for the URI found in the request.

– URIMAP points to WEBSERVICE and PIPELINE resources.

� WEBSERVICE resource points to WSBind file to be used for

data transformation between JSON and language structures.

� PIPELINE resource defines any handlers that may process

the message.

– Terminal handler is JSON handler; Java program

– Application handler performs mapping of JSON data to/from
copybook format

� JVMSERVER resource defines an AXIS2 execution
environment for processing JSON data

CICS Integration Options

© 2009, 2013 IBM Corporation38

Liberty Web Container
in CICS

CICS Integration Options

© 2009, 2013 IBM Corporation39

Notes:

� These slides discuss CICS’s support of the Java Servlet and JSP specifications

CICS Integration Options

© 2009, 2013 IBM Corporation40

Doing it all Java style

CICS TS V5.1

JVM Server

Web ContainerWeb Container

Servlet/JSPServlet/JSP

COBOL
Application

COBOL
Application

Business DataBusiness Data

RESTful services can now be hosted

within the CICS Web Container, with

new support for the JAX-RS API

RESTful services can now be hosted

within the CICS Web Container, with

new support for the JAX-RS API

Exploit the web container’s servlet/JSP

features to develop rich mobile content,

building on available skills.

Ideal location to develop and host a RESTful

interface to established and tested enterprise

applications and services

Exploit the web container’s servlet/JSP

features to develop rich mobile content,

building on available skills.

Ideal location to develop and host a RESTful

interface to established and tested enterprise

applications and services

Link to existing C/C++, COBOL, PL/I, and

Java applications to exploit existing

enterprise applications and services

Link to existing C/C++, COBOL, PL/I, and

Java applications to exploit existing

enterprise applications and services

CICS Integration Options

© 2009, 2013 IBM Corporation41

� Standard Java APIs (Servlet, JSP, JDBC)

� Supports much of the Liberty Profile

� Can use the JCICS API or EXEC CICS LINK to a program in any language

CICS Servlet and JSP support…

Web Client

CICS V5.1

URIMAP

HttpRequest

HttpResponse

JVM server

Tranid

Liberty

Web

Application

SEC=YES web.xml
<security_constraint>

CICS Integration Options

© 2009, 2013 IBM Corporation42

� For the deployment of lightweight Java servlets and JavaServer
Pages (JSPs)

� CICS’s support built on the WAS Liberty profile technology

� Supports servlets and RESTful clients

� Highly configurable (CICS does not support everything in the
Liberty Profile)

� Can use the JCICS API and can connect to DB2

� Can use Eclipse, Rational Application Developer (RAD), and
Rational Developer for System z to develop servlets and JSPs

� Start Liberty in ASCII JVMServer (JVMProfile already set up for
you)

� Define BUNDLE resource for your application

� Several samples

CICS Servlet and JSP support…

CICS Integration Options

© 2009, 2013 IBM Corporation43

� Uses Java 7 (64-bit)

� If you want to secure the application with CICS security, create a
web.xml in the web project to contain a CICS security constraint

� Can use CICS basic authentication

� Can run under Liberty security, but must supply your own security
roles and basic user registry

� By default runs under the CJSA transaction

� Can add a URIMAP and TRANSACTION resource to a CICS bundle
if you want to run under a specific transaction

CICS Servlet and JSP support

CICS Integration Options

© 2009, 2013 IBM Corporation44

CICS Transaction Gateway
and z/OS Connect

CICS Integration Options

© 2009, 2013 IBM Corporation45

Notes:

� This section talks about

– CICS Transaction Gateway

– z/OS Connect

CICS Integration Options

© 2009, 2013 IBM Corporation46

CICS Transaction Gateway

� Enabler for the Java Connector Architecture (J2C)

� Using C, C++, C#, VB, COBOL on workstation

� COMMAREA or channel and containers

� Supported with any JEE 1.4 or higher compliant application server

� SNA or TCP/IP (ECI, IPIC) to CICS

CICS TS

CICS Program

Business

logic

B

CICS

Transaction

Gateway

CICS TG
Servlet, JSP,

EJB

WAS

J

2

C

Applet, Any

Java Pgm

J

2

C

Many Languages,

Many Platforms

WAS=WebSphere Application Server

CICS Integration Options

© 2009, 2013 IBM Corporation47

JSON services in CICS TG

� Delivered in CICS TG V9.1

– Open beta available now

CICS Integration Options

© 2009, 2013 IBM Corporation48

CICS TG JSON services - overview

� New style of remote client and data representation

– No client-side IBM code required

– Active data transformation within the Gateway daemon

– Service-enablement for any release of CICS server

– Exploit the high availability and instrumentation features of CICS TG

� Top-down style service enablement

– Generate COBOL, C, PL/1 language structures from a JSON schema

– Non-RESTful can be used with COMMAREA of channel programs

– RESTful must use channel programs (and therefore IPIC)

� Bottom-up style service enablement

– Generate JSON schema from COBOL, C, PL/1 language structures

– Target program is not REST-aware, so JSON web service is non-
RESTful; COMMAREA or channel programs supported

CICS Integration Options

© 2009, 2013 IBM Corporation49

CICS TG JSON services - overview

� Powered by Liberty, compatible with z/OS Connect and CICS
TS JSON support

� Based upon proven technologies

– Uses a “private” embedded WebSphere Liberty profile within

the Gateway daemon for the HTTP server

– Uses common data transformation components at run-time
from CICS TS for z/OS

– JSON ws-bind files are interoperable with CICS TS, CICS TG
for z/OS V9.1 open beta and z/OS Connect solutions

� The JSON web services assistant is included with CICS TG
for z/OS V9.1 open beta

– Uses common tooling components with a simplified interface
for CICS TG

CICS Integration Options

© 2009, 2013 IBM Corporation50

Why z/OS Connect?

� Provides a common and
consistent entry point for mobile
access to one or many backend
systems

� Java, so runs on specialty engines

� Shields backend systems from
requiring awareness of RESTful
URIs and JSON data formatting

� Provides point for authorization of
user to invoke backend service

� Provides point for capturing usage
information using SMF

� Simplifies front-end functions by
allowing them to pass RESTful
andJSON rather than be aware of
or involved in data transformation

� z/OS Connect simplifies and
makes the environment more
consistent and manageable

CICS Integration Options

© 2009, 2013 IBM Corporation51

z/OS Connect delivery

� WAS z/OS

– Delivered as function that runs inside Liberty Profile z/OS. Initially will
use WOLA (WebSphere Optimized Local Adapters) to access
backend.

� CICS *

– Delivered as part of Liberty Profile that runs inside of CICS region. Will
use JCICS LINK interface to access CICS programs.

� CICS Transaction Gateway *

– Delivered as part of Liberty Profile to run inside the CICS TG. Will use
ECI/DPL interface to access CICS programs.

� IMS *

– Initially this ends up looking just like the WAS z/OS approach: that is,
Liberty Profile z/OS with z/OS Connect inside. Difference is this z/OS
Connect will be able to talk to IMS Connect for access into IMS

* Statement of direction, not yet available

CICS Integration Options

© 2009, 2013 IBM Corporation52

Data transformation

� Bind files

– Identical to JSON binding files used by JSON feature of

CICS

– Generated with a supplied utility

• z/OS Connect ships utility programs

• Or use CICS-provided utilities

– Provide z/OS Connect with knowledge of how JSON

maps to the target data structure

CICS Integration Options

© 2009, 2013 IBM Corporation53

Summary

� CICS offers multiple ways to integrate CICS
applications with mobile devices

– Newest support is for JSON data formats

• Automatically and programmatically using JSON support

– In CICS TS

– In CICS TG

– In z/OS Connect

• Programmatically using Java Servlets, JSP, or JAX-RS

• Programmatically using CICS Web Support API

CICS Integration Options

© 2009, 2013 IBM Corporation54

REST Architecture

CICS Integration Options

© 2009, 2013 IBM Corporation55

Notes:

� This section of the presentation discusses REST (REpresentational State Transfer).

CICS Integration Options

© 2009, 2013 IBM Corporation56

REST Services
� Defined by Roy Fielding in 1994, documented in his year 2000 doctoral thesis

� Similar in concept to hyperlinked data

� Lightweight data transfer

� Representational State Transfer

– Nouns (URLs) indicate what is being worked on

– Verbs (GET, PUT, POST, DELETE) indicate the action to be performed (List, Create, Read,
Update, Delete)

� Format of results is not defined

– Popular formats of returned data are XML and JSON

� Approaches in CICS

– JSON Service feature of CICS TS V5.2

• Available as CICS Feature Pack for Mobile Extensions for CICS TS V4.2 and V5.1

– Servlet and JSP engine (subset of Liberty) in CICS TS V5.1 and V5.2

– Can use EXEC CICS TRANSFORM for XML parse/create

– CICS Web Support and WEB API

– ATOM Feed (CICS TS V4.1+)

– Dynamic Scripting (CICS TS V4.1 and V4.2, CICS TS V5.1 and V5.2)

CICS Integration Options

© 2009, 2013 IBM Corporation57

Notes:
� REST (REpresentational State Transfer) is an architectural style that applies the approach we use to

access Web pages to access our business data. Just like we use a URL to access the current state of a
Web page, you use a URL to access the current state of business data. We can specify a specific Web
page on a URL, we can also specify a specific account number on a URL.

� We normally need to perform LCRUD (List, Create, Read, Update, and Delete) functions on our business
data. The HTTP ‘methods’ that flow with the request indicate the action to be performed on the data.
Whereas we normally only use a GET or a POST method when accessing a Web page, for data, a GET
method indicates a list or a read, DELETE for a delete, POST for an add, and a PUT for an update.

� REST results in very lightweight interactions with a minimal amount of characters transferred.

� The format of the returned data is not dictated, although most people use XML or JSON (JavaScript Object
Notation.

� REST is documented in Roy Fielding’s year 2000 doctoral thesis. In his thesis, Fielding indicates that
REST started in 1994 and was iteratively redefined. Since many people were not aware of REST, they
think it is a follow-on to Web services, however Web services came after REST.

� For situations where you want interfaces documented with WSDL, transactionality, and more security
options, Web services are great. Where you just need lightweight data access, REST is great.

� One of the primary uses of REST is for requests from Web browsers. JavaScript running in a Web browser
can use AJAX (Asynchronous JavaScript and XML) to make RESTful requests to backend data and
business logic systems such as CICS.

� The easiest ways to expose business data or business logic in CICS as RESTful services is use of the
CICS WEB API, ATOM feeds. These will be discussed in upcoming slides.

CICS Integration Options

© 2009, 2013 IBM Corporation58

The URL - Directing Requests using HTTP

� Scheme – http or https

� Host name or address

� Port (optional)

� Path

� queryString (may or may not see these on URL)

– Name=value pairs separated by an ‘&’

http://demomvs.demopkg.ibm.com:8091/accounthttp://demomvs.demopkg.ibm.com:8091/accounthttp://demomvs.demopkg.ibm.com:8091/accounthttp://demomvs.demopkg.ibm.com:8091/account?name=?name=?name=?name=Dennis&stateDennis&stateDennis&stateDennis&state=TX=TX=TX=TX

scheme://scheme://scheme://scheme://host:port/path?queryStringhost:port/path?queryStringhost:port/path?queryStringhost:port/path?queryString

CICS Integration Options

© 2009, 2013 IBM Corporation59

Notes:

� HTTP requests are routed using a URL. A URL (Uniform Resource Locator) specifies the location of
the server, and optionally, some information that should be passed to the server.

� The URL consists of a scheme, which can be http or https. An ‘http’ specification indicates that the
flows are not to be encrypted, but an ‘https’ specification indicates the flows should be encrypted.

� Next comes the host which is a DNS (Domain Naming Service) name, or a dotted-decimal address. A
DNS name is just a ‘friendly’ name for a dotted-decimal address. When a DNS name is specified, a
DNS server will be contacted to resolve the specified name to dotted-decimal address.

� The (optional) port is separated from the host name by a colon. If no port is specified and the scheme is
http, the port used will be 80. If no port is specified and the scheme is https, the port used will be 443.

� Following the optional port is the path. The path can be from 1 to 255 characters, and its function is to
tell the server what to do with the request.

� Following the path is an optional query string. If a query string is present, it is separated from the path
by a ‘?’ character. The query string is a set of name/value pairs (separated by an ‘&’) that are to be sent
to the server.

CICS Integration Options

© 2009, 2013 IBM Corporation60

REST Service Requests

Member URI, e.g.:

http://xyz.com/prefix/myResource/resourceID

Collection URI, e.g.:

http://xyz.com/prefix/myResource

EventHTTP
Method

Request URI

GET

DELETE

PUT

POST

List

deleteCollection

putCollection

Create

GET

DELETE

PUT

POST

Retrieve

delete

update

postMember

CICS Integration Options

© 2009, 2013 IBM Corporation61

Notes:

� This illustrates the relationship between the URL, the HTTP method, and the action to be
taken on the data.

� For example, if the URL was http://www.books.are.us/JKRowling with a GET method, you
would be asking for a list of books written by J. K. Rowling.

� If the URL was http://www.books.are.us/JKRowling/HarryPotterAndThePhilosophersStone
with a GET method, you would be asking for details on the first book in the Harry Potter
series.

� As you can see, REST style requests are lightweight.

CICS Integration Options

© 2009, 2013 IBM Corporation62

REST Simple Sample

� Request

� Response

GET /mortgage/231677 HTTP/1.1

Host: www.example.com

Accept-Language: en

Charset: UTF-8

HTTP/1.1 200 OK

Language: en_us

Charset: UTF-8

Content-Type: text/xml

<mortgage><principal>238000</principal><rate>3.5</rate><type>5/1 ARM</type></mortgage>

HTTP/1.1 200 OK

Language: en_us

Charset: UTF-8

Content-Type: text/json

{“principal”:”238000”,”rate”:”3.5”, “type”:”5/1 ARM”}

or

CICS Integration Options

© 2009, 2013 IBM Corporation63

Notes:

� This page illustrates the flow of data ‘on the wire’ for a REST request.

� The samples include the HTTP (HyperText Transfer Protocol)

� The request starts with an HTTP request line (“GET /mortgage/231677 HTTP/1.1”) followed
by HTTP headers that define additional characteristics of the transmission.

� The request indicates that we would like the details on mortgage 321677

� Since the most popular way of returning information is via XML or JSON, we have shown an
example of each.

� In both situations there is an HTTP response line indicating the status of the request plus
HTTP headers indicating the type, language, and codepage of the request (you may see
additional header information). In the body of the HTTP transmission is the application data
either in XML or JSON notation.

� Some people feel that JSON has less characters to transfer and is easier to parse so it is a
popular format.

� REST services can be implemented in CICS using the CICS WEB API, using ATOM feeds,
and using Servlets/JSPs.

