

ISPF Editor – Beyond the Basics
Hands-On Lab Parts I & II

Kim Bailey ktekavec@us.ibm.com

Liam Doherty dohertl@au1.ibm.com

QR Code for

session
15803

QR Code for

session
15804

SHARE

Pittsburgh, PA

August, 2014

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 3 of 36

Contents
Getting Started ...3
The ISPF Editor Lab ..5
The Lab Exercises ..5
Lab 1 - The ISPF editor and adding power to edit ...6

Exercise 1 – Edit Recovery/UNDO ..6
Exercise 2 – Edit Settings ...7
Exercise 3 – Edit profiles...7
Exercise 4 – Edit Line Commands ...8
Exercise 4.1 – Bounds/BNDS command ...8
Exercise 4.2 – LC and UC commands ...9
Exercise 4.3 – Mask command...9
Exercise 4.4 – MD (Makedata) Command...10
Exercise 4.5 – Shifting data ..10
Exercise 4.6 – Text Split (TS) and Text Flow (TF) ...11
Exercise 4.7 – Labels ..11
Exercise 4.8 – Tabs ...12
Exercise 4.9 – Hexadecimal ...13
Exercise 5 – Edit Primary Commands ...15
Exercise 5.1 – COLS ...15
Exercise 5.2 – Finding, changing and excluding data ..15
Exercise 5.5 – Hide and Flip ...16
Exercise 5.3 – Cut and Paste ...16
Exercise 5.4 – Edit Compare ..17

Lab 2 – Edit Models ...19
Exercise 1 ...19
Exercise 2 ...20

Lab 3 – Edit Macros...25
Exercise 1 ...25
Exercise 2 ...26
Exercise 3 ...27

Lab 4 – Customizable line commands...29
Appendix A - Code samples ...32

MACRUN ..32
RUNIT ...32
TRAPIT ...32
LINEMACS ...33

Getting Started

You will be logging on to the SHARE z/OS V2R1 system using the ID and password
provided.

To login, follow these steps:

 Double click on the “SHARE LPAR” icon on your desktop.
 At the application prompt, type TSO and press Enter.
 At the prompt, enter your userid (SHARAxx – you will be allocated a number).
 On the TSO/E Logon Panel, enter your password which is FIRSTPW.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 4 of 36

 If you are presented with the ISPF main menu screen presented, enter X to
exit ISPF. If you are already in READY mode continue to the next step.

o If presented with the “Specify Disposition of Log Data Set” screen
select process option 2 and press enter.

 At the READY prompt, enter one of the following commands to setup your
ISPF lab environment:

o If this is your first time logging on for this lab, enter:
ex 'share.rexx(ispfelab)' 'refresh' exec

o If this is not your first time logging on for this lab, enter:
ex 'share.rexx(ispfelab)' exec

You will now be back in ISPF with your student datasets created and allocated so
that you can run your application from them.

Your student datasets are:

userid.ISPFELAB.REXX
userid.ISPFELAB.PANELS
userid.ISPFELAB.SKELS
userid.ISPFELAB.COBOL
userid.ISPFELAB.SAMPLE

 Userid will be equal to your logon userid.

You can use ISPF option 3.4 to display and work with your datasets. Enter 3.4 on
the command line. At the “Dsname” prompt, enter userid.ISPFELAB and press
Enter and all of your lab datasets will be displayed.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 5 of 36

The ISPF Editor Lab

This ISPF Editor lab is split into 3 sessions. You can start at the beginning and work
through or skip over things that you are already familiar with. The 3 main sections
that are covered are:

1. The Edit environment and Adding power to edit
2. Edit Models
3. Edit Macros

For the first section, we will use a member in your COBOL library to demonstrate the
various aspects of the ISPF editor. In the next sections we will create members in
your other ISPF libraries to demonstrate ISPF Models and Edit macros.

If you need more information on the ISPF editor, here is a link to the two manuals
that may be helpful:

ISPF Edit and Edit Macros:
 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ISPZEM90

ISPF Reference Summary:
 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ISPZRS90

The Lab Exercises

General tips for completing the exercises:

 When editing an object, you can use highlighting to help with formatting. On
the command line enter one of:

o HILITE REXX
o HILITE COBOL
o HILITE PANEL
o HILITE SKEL

 The various commands described in the Lab might be in upper, lower or
mixed case. On z/OS case is not important. Commands have been described
in the lab in upper case to make them stand out. You can enter them on the
screens in ISPF in any case.

 When done making a change, save your work either by entering SAVE on the
command line or using F3 which exits the editor and saves your work.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 6 of 36

Lab 1 - The ISPF editor and adding power to edit

We will be doing most of our work in a single member that already exists in your
own COBOL data set. Go to ISPF Edit (option 2 from the main menu) and enter
‘userid.ISPFELAB.COBOL’ in the name field and press enter to bring up a
member list consisting of a single member, IGYTSALE.

Optionally, go to the Data set List utility (Option 3.4 from the main menu) and enter
the data set name of ‘userid.ISPFELAB.COBOL’ in the Dsname Level field and
press enter, then enter an E next to the data set and press enter again.

To start working on a member, enter an E or an S next to the member and press
enter. You are now ready to begin.

Exercise 1 – Edit Recovery/UNDO

In this exercise you will become familiar with the Edit settings for recovery and
Undo.

 As you come into the member the first thing that you will see is the following
message in the message area at the top of the member:

 The same setting “RECOVERY ON” handles edit session recovery and the
UNDO feature. The former is a feature such that if you are in the middle of an
edit session and your machine crashes, when you come back into edit you
will be provided with the option to recover back to the point of failure. This is
difficult to demo in a lab.

 The more useful feature however is the UNDO feature. This allows you to
undo any interactions up to the last save point.

 On the command line type RECOVERY ON and press enter. The warning
message should now have disappeared.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 7 of 36

 Make a number of changes in the file. For example.
o Overtype A. Programmer with your name. Press Enter.
o On the command line type Change IBM SHARE all and press Enter.

 Now on the command line type UNDO and press enter. You should see that
the last change you made has been reversed. If you type UNDO again the
change before that is reversed. Keep undoing until you get the message “No
more to UNDO”.

Exercise 2 – Edit Settings

In this exercise you will become familiar with the Edit settings dialog.

 There are a number of settings that you may wish to change from the default;
these are stored in your ISPF profile data set.

 Before you start, make sure you are at the top of the member.
Hint: Type an M on the command line and press function key F7 to return to
the top. Alternatively type TOP on the command line and press enter.
On the command line type F NONE and you will see that the found line is
positioned at the 2nd line on the screen.

 On the command line enter the EDSET command and press enter, or click on
the Edit_Settings menu bar option, then select Edit Settings.

 The main options to look at are :
o Target line for Find/Change/Exclude string – This determines how

many lines are displayed before the find string. Previously you will
have seen the found line was positioned at line 2. Change this value to
5 and press F3 to go back to the member. Go to the top of the member
again, and then type F NONE again. You will see now that the found
line is positioned at the 5th line on the screen.

o Always position Find/Change/Exclude string to target line – This
will position the cursor on the found line, rather than leaving it on the
command line. Change this if you wish by entering a / in the field.

o Cut default and Paste default – This determines the cut and paste
behaviour. We will talk about Cut and Paste in more detail in a later
lab. Just familiarize yourself with the settings.

Exercise 3 – Edit profiles

In this exercise you will become familiar with the Edit profile.

 ISPF stores information about the type of member you are editing in an Edit
profile. It determines default settings based on the data set LLQ (Low level
qualifier) or other methods

 On the command line type PROFILE and press enter. You should see
something similar to this:

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 8 of 36

 You will see a number of different options. For example it knows that this is a

COBOL type.
 On the command line type HILITE COBOL or HILITE ON and you will see the

option change in the profile area. Plus the program will now be colour coded
for ease of reading

 Press PF3 to leave the member. Then come back in again by selecting the
member. You will see that the edit profile has been saved and used again on
entry.

 On the command line, enter the PROFILE 9 command and press Enter. This
will display all of the profile information including the =TABS>, =MASK>,
=BNDS> and =COLS> all of which will be covered later.

 To turn off the profile information, or to generally “reset” things in your ISPF
edit session type RESET or RES on the command line and press Enter.

Exercise 4 – Edit Line Commands

In this exercise you will become familiar with the various Edit line commands.

All line commands are entered in what is called the prefix area in the editor screen.
This is the area to the left of the display with the 6 digit line number in it. You can
overtype anywhere within this area with the line command you want.

Exercise 4.1 – Bounds/BNDS command

This is the first line command we will look at as many of the other line and primary
commands are affected by it.

 On the first line in the member, in the prefix area, enter the BNDS line command
and press Enter. You will see a line appear which marks the bounds of the line by a
< and > markers. These are in columns 1 and 80.

 All operations, such as many of the line commands we will try, and primary
commands, such as Find, only work within the BNDS.

 Change the bounds by overtyping the existing markers with blanks and entering new
< and > markers somewhere else in the line, for example, columns 10 and 20. Use
the COLS line command see where the columns are by entering COLS in the prefix
area of a line.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 9 of 36

 If you have set the bounds in columns 10 and 20, now try finding the string “IDENT”
by typing F IDENT ALL on the command line. You will see a message saying that it
cannot find that word. Even though you know it is there.

 You can also set the bounds by using the primary command BNDS 10 20 entered on
the command line at the top of the screen

 Reset the bounds now by blanking out the < and > markers you set.
HINT: Whenever you are getting strange inexplicable results try turning BNDS on and
see if you have the bounds set to something you are not expecting.

Exercise 4.2 – LC and UC commands
These line commands are the LowerCase and UpperCase line commands

 Go to the top of the member by placing an M on the command line and pressing F7.

 On the command line type F INTRO to find and positions the screen on the comment
block in the code

 On the line that says “This is a hypothetical…”, in the prefix area, type UC and press
Enter. You will see that the line has been changed to uppercase.

 Now enter LC on the line and press Enter and you will see that the line changes to
lower case.

 Line commands can be entered with a number, to indicate a number of lines or as a
block command. On the same line, in the prefix area, enter UC4. You will see that
the block of text moves to upper case

 On the first line in the block, in the prefix area enter LCC and on the 4th line in the
comment block also enter LCC, then press enter. You will see the block reverts to
lower case.

 LC and UC commands work with the bounds of the line, normally columns 1-80, but
this can be changed with the BNDS command.

Exercise 4.3 – Mask command

The mask command can be used to specify characters that are entered automatically by the
editor when the I (Insert), TS (Text Split) or TE (Text Entry) line commands are used, or
when a new member is created. The mask is saved in the edit profile.

 On the command line type L 522 to locate line 522, the Environment division.

 In the prefix area of line 522 type the word MASK and press enter. You will be
presented with a mask line where you can enter your string.

 In the mask area enter a comment string starting in column 7 that will be used as a
default mask on subsequent inserted lines

 Press Enter.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 10 of 36

 Now on line 523 enter a line command of I3 to Insert 3 lines. You will see that all the
inserted lines now contain the mask data.

 To make a line remain you need to type something in the inserted line.

 Let’s get rid of the mask data, by blanking out the string in the =MASK> line.

Exercise 4.4 – MD (Makedata) Command

One of the things you can do in ISPF edit is make the various notes and message lines
actual data lines in your code. The most useful time for this is when using Edit Model
(covered later in more detail) as the models often provide sample code that you can use.

 In your test program go to the bottom of the code. Do this by entering an M on the
command line and pressing F8 (Max down). Alternatively type BOTTOM on the
command line and press enter.

 We are going to use one of the ISPF models to demonstrate this. Don’t worry too
much for now about what Models do that is covered later. On the command line type
MOD DISPLAY (this is the model command for a display ISPF panel). Before
pressing enter, tab your cursor down to the last line of code and in the prefix area
enter the letter A (After). Press Enter.

 If you scroll down through the inserted code you will see a number of =NOTE= lines.
There are some examples in the =NOTE= lines also.

 On one of the example blocks, overtype the first =NOTE= line with MDD, and the
last =NOTE= line in the block with MDD, and press Enter. This is a block MD
command.

 You will see that the lines now become part of the code.

 On the command line type RES (Reset) and press Enter. You will see that all the
other =NOTE= lines disappear.

 The MD can be used on =NOTE=, ==MSG>, =COLS> or ====== lines. The later
being useful when using Edit COMPARE (covered later).

Exercise 4.5 – Shifting data

There are 2 different ways to shift data in ISPF using different types of brackets. These are
called Column Shift and Data Shift.

 Column shift will move data the required number of characters, but will drop
characters off the end of the “bounds” of the member.

 On any line, in the prefix area, type)50. You will see that the data in the line has
moved to the right 50 characters

 On the same line, in the prefix area, now type (50 to bring the data back. However
you will notice that you have lost the data that went past the bounds of the line
(column 80 in this case).

 On a different line, in the prefix area, type >50. Now if the data on the line is unable
to shift that far you will see an error message “Data shifting incomplete” and the data
is only moved as far as is possible.

 Data shifting works with the bounds of the line, normally columns 1-80, but this can
be changed with the BNDS command.

Note: In COBOL programs any data in the COBOL prefix area, columns 1-7 is not
shifted.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 11 of 36

Exercise 4.6 – Text Split (TS) and Text Flow (TF)

These are useful command that split data at the cursor position or join lines back together.

 On the command line type F IS0875 to position the screen at line 461.

 We are going to split the line so that each parameter is on a different line.

 In the prefix area of line 461, the line that contains Call "CEEDATM" enter the TS
line command, do not press enter yet.

 Move your cursor so that it is under the p of pict-hdr-v and press Enter. You will see
that the pict-hdr-v, string has now moved to the line below in column 1. This is
because it tries to position the split line in the same position as data in the line above
or the line below.

 You can now shift the data across by entering)36 in the prefix area of the split line
and pressing Enter.

 Next on line 463, the line that contains hdr-out-date, shift the data right to line it up
under the previous line. Use an)19 in the prefix area.

 In the prefix area of line 463, the line that contains hdr-out-date enter the TS line
command, do not press enter yet.

 Move your cursor so that it is under the f of fc and press Enter. You will see that the
fc string has now moved to the line below. Let’s now move that so it lines up by
placing a)25 in the prefix area of line 464 and press Enter.

The line should now look like this:

 Of course we may not be happy with this, so we can use the TF (Text Flow) line

command to rejoin lines of data. You can use the TF command by itself, in which
case it is affected by the bounds of the line, or you can enter a column number so
that it does not have any data after a certain column.

 In our example, on line 461 enter, in the prefix area, the line command TF72. This
will rejoin the lines and allow data to flow up to column 72. The rejoined line will look
like this:

Exercise 4.7 – Labels

Labels can be used to place ranges on the data in the member. ISPF has a number of pre
defined labels, namely .ZCSR , .ZFIRST and .ZLAST.

 Go to the top of the program by typing an M in the command line and pressing F7.

 Let us go down to the Procedure Division. Type F Procedure on the command line
and press Enter. This will take you down to line 429.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 12 of 36

 In the prefix area if line 429 enter .A and press Enter. Labels have to begin with a
period. They don’t have to be meaningful names as they are not remembered
between sessions.

 We can now perform some other actions, such as Find or Change and limit the
range so it is between the labels. On the command line type F CALL .A .ZLAST
and press Enter. This will find all occurrences of the word CALL between the label
we created .A and the last line of the member.

 Let’s go back to the Procedure Division. Type L .A (Locate) on the command line
and press Enter. This will position us directly at the label we defined.

 You can try defining another label and try and do a find specifying just your own
label names.

 To remove the labels either just blank them out in the prefix area or type RESET
LABELS on the command line and press Enter.

Note: Labels are used by Find, Change, Exclude, Delete, Locate, Replace, Reset, Sort
and Submit

Exercise 4.8 – Tabs

Tabs can be used to allow you to use the tab key or Enter key to jump to pre-defined
columns in the edit area. They can be useful in COBOL programs to jump to Area A and
Area B. TAB settings are saved in the edit profile for the type of data you are editing.

There are 3 different types of TABs that behave differently. Let’s explore them all.

Software tabs

 Go to the top of the program by typing an M in the command line and pressing F7.

 Let us go down to the Procedure Division. Type F procedure on the command line
and press Enter. This will take you down to line 429.

 On line 429 enter the line command TABS in the prefix area and press Enter.

 Enter a hyphen (-) or underscore in column 8 and another one in column 12. This
defines the start columns for Area A and Area B. Press Enter.

 Insert a new line with an I in the prefix area of any line and press Enter. A new line is
inserted and the cursor is immediately positioned in column 8, the first tab.

 Press the Enter key and your cursor will then jump to column 12. So you can type
data in which area you wish.

 These are software tabs so you are not constrained by the tab markers and can start
in column 8 and just type through column 12. So Software tabs are perfect for this
type of use.

 Blank out the tabs in the =TABS> line

Hardware tabs
 Hardware tabs can be used to limit field size. So we will use them to create a

declaration block in our Data Division.

 Go to the top of the program by typing an M in the command line and pressing F7.

 Let us go down to the Data Division. Type F “Data Division” on the command line
and press Enter. This will take you down to line 186.

 On line 193 (01 start-of-working-storage) enter the line command TABS in the prefix
area and press Enter.

 Enter a * in columns 9, 12 and 43 so that the =TABS> line looks like this:

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 13 of 36

 You now need to activate the tabs. Go to the command line and enter TABS and

press Enter. Tabs are now activated.

 On the =TABS> line (or anywhere as TABS are in effect everywhere) enter the I line
command in the prefix area (overtype the =TABS> if you wish) to insert a new line,
and press Enter. The cursor is immediately positioned on the column after the first
tab position, column 10. You can enter the number 77 here and the cursor will jump
to the next tab position. In column 13 where you can enter the variable name. Enter
Variable1 and press the Tab key. You are now positioned on the final tab position,
column 44. Enter a data format of PIC X(9). and press Enter.

 You will be taken to the next line where you can enter your next declaration.

Logical tabs

 Used by the editor to reposition strings of data.

 Leave your tab positions defined with the * in columns 9, 12 and 43.

 On the command line issue the TAB # command and press Enter. This will set the #
character as the tab skip character.

 Insert a line and in the position where the cursor is enter #1#2#3 and press Enter.
The Editor will reposition the strings that follow the tab character # in the next
available column. So you should see this on the insert line:

 To remove Tabs just blank them out in the =TABS> line.

Exercise 4.9 – Hexadecimal

Sometimes it is necessary to edit hex data. For example if you are changing attribute
characters in an ISPF Panel. Another common use would be to add tab characters to a data
file so that you can download it to your PC and import it into a spreadsheet program such as
Microsoft Excel. The tabs characters will be honored by the import. There are a number of
ways to work with hexadecimal data.

Changing hex data via the change command

 You test program does not have any non-displayable hex characters. However we

can still change normal alpha characters using their hex representation.

 Go to the top of your program. You can enter Top on the command line and press
enter.

 On the command line enter c x’98’ x’d8’ all .zfirst .zfirst and press enter.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 14 of 36

 You will see that the lower-case letter q has been changed to an upper-case letter Q.

Displaying the complete program in HEX mode

 You may want to display a complete data set of member in HEX mode to manually

change characters.

 On the command line type HEX and press enter.

 You will see that each line has now become a 3 lines. The character is on the first
line and the hex representation is shown vertically below it on the next 2 lines:

 You can overtype the hex representation to change the character. For example on

line 2 change the 5C to 6F by overtyping the 5 with a 6 then using your cursor tab
down and change the C to an F. Press enter and the character will change to a ?.

 To turn hex mode off go to the command line and type HEX OFF and press enter.

Displaying a single line in HEX mode

 In ISPF for z/OS 1.11 it became possible to turn hex on just a single line. This is
particularly useful if you want to see the program in context as turning HEX on for the
complete program makes the display very confusing.

 Go to the top of your program and in the prefix area on line 1 type HX and press
enter.

 You will see now that only the first line is in HEX mode, and the rest are displayed
normally.

 Like many other line commands it is possible to turn HEX on for multiple lines. So

you can use the HX2 command in the prefix area to turn HEX on for 2 lines. Also you
can use block commands to turn hex on for a block of code by entering HXX on the
first line and HXX on the last line of the block.

 To turn HEX off just go to the command line and type HEX OFF and press enter.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 15 of 36

Exercise 5 – Edit Primary Commands

In this exercise you will become familiar with the Edit primary commands.

Exercise 5.1 – COLS

We looked at the COLS line command in use through out the examples above. There is also
a COLS primary command that does not move around as the line COLS does.

 On the command line enter COLS and press Enter. A Cols column will appear at the
top of the screen and stay there.

 Enter the COLS command again to turn it off

Exercise 5.2 – Finding, changing and excluding data

There are different ways to find data in a file, there are simple strings, delimited strings,
character strings, picture strings and hexadecimal strings. Let’s try a few of those.

 Go to the top of the program by typing an M in the command line and pressing F7.

 On the command line type f program all and press Enter. This is a simple string
and finds all words program regardless of case or if it is part of another word.

 On the command line type f 'program ' all and press Enter. This is a delimited
string, so we are looking for words where program is followed by a blank.

 On the command like type f C’program’ and press Enter. This is a character string
and finds the next occurrence of the word program where the full word is in lower
case.

 On the command line type f x'F1F9F9F1' and press Enter. This is a hexadecimal
string so will find a delimited string of hex characters, in this case decimal 1991.

 On the command line type f program all word and press Enter. This will find all
occurrences of the full word program. So it will not find it if it is part of another word,
like programmer.

 On the command line type f '80' all suf and press Enter. This will find all
occurrences where the number 80 appear as a suffix to a word.

Hint: It is a good idea when finding numerics to put them in delimiters to avoid ISPF
getting the find string confused with the columns.

 On the command line type f p' ----- ####' all and press Enter. This uses the picture
strings and will find all strings that start with a blank, have 5 non-numeric characters,
another blank and then 4 numeric characters. In this program it only finds 1
occurrence. Have a play around with the other Picture strings:

o P’=‘ – Any character
o P’¬‘ – Any non-blank character
o P’.‘ – Any non-displayable character
o P’#‘ – Any numeric character, 0-9
o P’-‘ – Any non-numeric character
o P’@‘ – Any alphabetic character, upper or lower case
o P’<‘ – Any lowercase alphabetic character
o P’>‘ – Any uppercase alphabetic character
o P’$‘ – Any special character

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 16 of 36

 On the command line type X ALL and press Enter. This will exclude all of the lines
in the program. We can now do some of our find strings again but only see the lines
where they are found.

 You can also use a combination of other options such as labels, columns and the X
(Excluded lines) or NX (Not excluded lines).

 On the command line type RES and press Enter.

 Type F Procedure on the command line and press Enter. This will take you down to
line 429.

 In the prefix area if line 429 enter .A and press Enter to assign a label.

 On the command line type X ALL .ZFIRST .A and press Enter. This will exclude all
the lines from the display from the first to the label we just added.

 On the command line enter f procedure all word .a .zlast 8 17 nx and press Enter.
This will finds all occurrences of the full word procedure between columns 8 and 17
and between labels .a and .zlast but only in non-excluded lines.

Exercise 5.5 – Hide and Flip

You will have noticed in the previous exercise that when you exclude a line there is a marker
line left in its place. These can take up a lot of real estate on a screen for example if you are
checking if your Ends and Dos line up in a program.

 On the command line type X ALL and press Enter. This will exclude all of the lines
in the program.

 On the command line type f program all and press Enter. You will see all the found
lines and the exclude markers telling you how many lines are excluded.

 On the command line type HIDE X and press Enter. You will now see that those
marker lines are hidden and replaced with an underline in the prefix area.

 Now, on the command line type FLIP and press Enter. This command will flip the
excluded lines for the non excluded lines.

 On the command line type RESET HIDE and press Enter. This will revert to the
normal excluded line view with the excluded line indicators.

Exercise 5.3 – Cut and Paste

ISPF provides a cut and paste facility with multiple clipboards.

 Go to the top of the program by typing an M in the command line and pressing F7.

 On line 2, the line containing the IS0100 line, enter C3 in the prefix area as we are
going to cut 3 lines. On the command line, enter CUT and press Enter. You will get a
message “3 lines cut to DEFAULT”.

 Move your cursor to the top of the screen and press F2 to split the screen.
 Go into ISPF Edit in the 2nd screen and edit ‘userid.ISPFELAB.COBOL’ entering a

new member. Call this what you like.
 On the command line of the new member type PASTE and press Enter. The cut

data is now pasted into the new member.
 Swap screens using F9 to go back to the 1st Edit session.
 On line 5, the line containing the IS0120 line, enter C179 in the prefix area as we are

going to cut 179 lines. On the command line, enter CUT IS0120 and press Enter.
You will get a message “179 lines cut to IS0120”.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 17 of 36

 Next, type F IS0250 on the command line. In the prefix area next to the line
containing IS0250 (should be 187) enter C10. Remember to enter a space after C10
or ISPF will think you are only copying 1 line. Then on the command line type CUT
IS0250 and press Enter.

 Swap screens back to your 2nd edit session and place an A in the prefix area of the
last line. On the command line type PASTE IS0120 and press Enter. The clipboard
called IS0120 will be copied after the last line in the member.

 You will remember the edit settings exercise earlier where you set up your defaults
for cut and past. The default for cut is replace. But if you want to append some data
to one of the clipboards you can do that by using the Append keyword. You can try
this is you wish.

 In the 1st edit session do a CC block command around the IS0300 block of code and
type CUT IS0250 APPEND and press Enter to append the data to the IS0250
clipboard. The screen will look like this before your press enter.

 You will get the message “14 lines added to IS0250”.
 You can work with your clipboards, such as edit them, rename them or delete them.

On the command line type CUT DISPLAY and press Enter. You will see a display
with all of your clipboards in that should look like the following:

 Try editing or renaming them, and then try pasting the new clipboards into your 2nd

edit session.

Exercise 5.4 – Edit Compare

Edit has a compare command that is useful in seeing changes you have made in your
current edit session or changes between different files.

 On the command line type COMPARE * and press Enter. This will show you the
changes you have made in this current Edit session since you last saved the
member.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 18 of 36

 If you get the message “Files are the same” make some random changes. Then do
the COMPARE * command again to see the changes. The previous version of the
line is marked with a ===== and the new changed line is identified with .OAAAA. If
there are subsequent changes they are marked .OAAAB and so on.

 For example if I changed the Programmer name to my name and the Date-written
date, then did the COMPARE * command I will get the following results:

 If you have made some changes save the member.
 You can also compare against other external data sets. On the command line type

COMPARE 'IGY.V3R2M0.SIGYSAMP(IGYTSALE)' and press Enter.
 This will show any differences you have made to the original member we copied.

You can scroll down and look at the changes.
 If you wish to revert any changes back to the original, put a D in the prefix area of

the lines that begin .OAAA (You also need to blank the rest of the prefix area out).
Now you can use the MD (Make Data) line command we looked at earlier in the
prefix area of the ====== lines you want to restore. For example:

 You may also only be interested in seeing the changes and a few lines around the

change. On the command line type COMPARE
'IGY.V3R2M0.SIGYSAMP(IGYTSALE)' X and press Enter. You will see 5 lines
around the changed lines shown.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 19 of 36

Lab 2 – Edit Models

In this Lab we will be looking at Edit Models, what they are used for and how to
create our own edit models.

Edit models are predefined templates that can be included in the member being
edited. ISPF ships Edit models for all of its APIs to make it easier to include the
required code in the language that you are working in. For example, REXX, COBOL
or PLI.

The model has 2 parts, the actual data that will be included in the member and
notes line that provide instructions or other information such as example code.

Exercise 1

In this exercise learn how to use the provided ISPF models. We will work with some
REXX members to show how models can be included.

Go to ISPF (option3. 4 from the main menu) and edit (create)
‘userid.ISPFELAB.REXX(SHARE120)’ in the name field to begin editing the
member SHARE120.

 ISPF works out the correct type of model type, or class, based on the
low level qualifier (LLQ) of the data set. However it is possible to
chose a class, and switch the class if you for example store a COBOL
member in a data set that has a LLQ of SOURCE.

 On the command line type MOD CLASS and press Enter. You will see
a list of available classes that contain models.

 Select one of them by entering the number in the command line, for
example SKELS.

 You will be returned to the edit session with the message “Model
class changed”.

 Now if you type MOD on the command line and press enter you will be
presented with a list of ISPF Skeleton models. You can select one and
the skeleton code will be copied into your REXX member. For example
ITERATE.

 As we are in a REXX member lets switch the class to REXX. If you
know the name of the class you can just type MOD CLASS REXX on
the command line and press Enter. The class will have been changed
to REXX.

 Delete the already modelled lines so that the member is empty again.
 Now when you type MOD on the command line and press Enter you

will be presented with a list of REXX models.
 Select D1 to select the model for the ISPF DISPLAY service and press

Enter. You will see that the format of the service API is displayed,
along with notes that describe all of the options. If you scroll down you
will see there is some example code and a return code block.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 20 of 36

 If you want to use the example code you can change the =NOTE=
lines to MD by overtyping them thus turning them into data lines.

 By typing RES on the command line the rest of the =NOTE= lines will
disappear.

 You can now modify the code as you like.
 If you know the name of the model you are interested in you can enter

it directly from the edit session. Place an A in the prefix are of the line
where you want the model code to be inserted.

 On the command line type MOD LMINIT and press Enter. You will see
the different types of format the LMINIT API can take plus =NOTE=
lines explaining everything.

 Play around with different models, don’t worry about where you insert
them as we are not going to be running the REXX code.

Exercise 2

One of the things many development sites do not realize is the fact that you can
easily create your own models. This can be useful to provide developers with
sample code, JCL procs, etc, that they can use. They don’t have to be ISPF related
models. For example there are already models provided to SCLM Architecture
definition members.

In this exercise you will create your own model and make it available in the list of
available models.

The steps we need to perform are:

1. Create the model source and save it in an ISPF skeleton library that is
allocated to the ISPSLIB DD.

2. Make the model accessible from a model selection panel
3. Make your model selection panel available as a class in the model class list

So let’s get started!

 Go to ISPF Edit (option 2 from the main menu) and enter
‘userid.ISPFELAB.SKELS(IEFBR14)’ in the name field to begin editing the
member IEFBR14.

 If the member is empty, on the command line type copy
'SHARE.ISPFELAB.SKELS(IEFBR14)' to copy in a sample JCL. (The
member may already exist from a previous running of the lab).

 We will now add some model comments that will appear as NOTE lines when
the model is displayed.

 Insert a line at the top of the member and insert the following data on the
inserted line :
)N THIS IS A SAMPLE IEFBR14 JCL

 Save the member

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 21 of 36

 Go to ISPF Edit (option 2 from the main menu) and enter
‘userid.ISPFELAB.PANELS’ in the name field and enter a member name of
ISREMCLS to begin editing the member. The member name is important as
we are going to allocate our version of this member higher in the ISPPLIB
concatenation than the system one.

 We now need to go and find the version of this panel that the system is
using. On the command line type DDLIST and press Enter. This will start
ISRDDN.

 On the command line in ISRDDN type M ISREMCLS ISPPLIB and press
Enter. This will find the data set that contains the member as shown below:

 Make a note where the member comes from, in this case

‘ISP.SISPPENU(ISREMCLS)’
 Press F3 to come out of View on the member and then F3 to come out of

ISRDDN so that you are back in your empty member. On the command line
type COPY ‘ISP.SISPPENU(ISREMCLS)’ and press Enter.

 On line 33 (the line with 14 ARCHDEF) repeat this line with the R line
command and over type to 15 PERSONAL – My personal templates such
that it looks like this:

 Change line 46 to add 15,USER between 14,ARCHDEF and *,* such that

the line looks like this:

 At line 58 we need to add the new option to the TRANS. You may need to

modify the line to add USER,15 after ARCHDEF,14. You may need to drop
some of the existing data to the next line such that it looks like the following:

 At line 84 (the line with 14,'PANEL(ISREMARC)') insert a new line after this

line and enter 15,'PANEL(USERMODL)' such that it looks like this:

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 22 of 36

 That’s all the changes for this member. So press F3 to save it.

 We now need to create our own model selection panel. You will have one of

these for each selection of models. We are only creating a single selection
list with a single model in it.

 Go to ISPF Edit (option 2 from the main menu) and enter
‘userid.ISPFELAB.PANELS’ in the name field and enter a member name of
USERMODL to begin editing the member. The member name is the member
we entered as a selection in panel ISREMCLS.

 We can use an existing ISPF panel to base our example on. So once again
we have to go find the ISPF example. On the command line type DDLIST and
press Enter. This will start ISRDDN.

 On the command line in ISRDDN type M ISREMASG ISPPLIB and press
Enter. This will find the data set that contains the member as shown below:

 Make a note where the member comes from, in this case

‘ISP.SISPPENU(ISREMASG)’
 Press F3 to come out of View on the member and then F3 to come out of

ISRDDN so that you are back in your empty member. On the command line
type COPY ‘ISP.SISPPENU(ISREMASG)’ and press Enter.

 On line 13 change the literal Assignment Statements to My SHARE
models.

 On line 20 next to the A1, change the option and description to IEFBR14 -
Simple IEFBR14 job. Then delete the lines with A2 through A9. Such that
the)AREA SAREA40 looks like this:

 We now need to change the TRANS statement, so on line 43 change

SIMPLE,A1 to IEFBR14,A1 and remove the superfluous options, such that
the line looks like this:

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 23 of 36

 Next we need to pass our skeleton name through to the ISPF program
ISRECMBR. On line 47 change ISREMAS1 to IEFBR14 which is the name
of the member we saved in the SKELS library. Also remove options A2
through A9, such that the &ZSEL assignment looks like this:

 Finally we need to also modify the point and shoot field assignments by
removing the ones we no longer require. Remove the point and shoot
assignments for A2 through A9 such that the)PNTS area looks like this:

 Press F3 to save the member. That’s all the changes that were required. So

now we can test our changes.
 At this point it might be a good idea to come out of ISPF and come back in

again to pick up the new panels and skeletons
 Go into edit on your REXX member SHARE120. Delete all the lines in the

member so you are starting with an empty member. On the command line
type MOD CLASS. This will bring up a list of the model classes, except this
time you should see your “Personal” class at the bottom, like this:

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 24 of 36

 Select 15 to make your personal class the active one, and press Enter.
 Now when you enter MOD on the command line and press Enter you will see

a list of your created models, in this case just the one for now:

 Select A1 to use the IEFBR14 model and press Enter. You will see your

sample IERBR14 code with the comment you added:

 If you have time you can now try and add another model to your model

selection panel following the instructions above. Remember you will only now
have to create the SKELS members and then modify your USERMODL panel
to point to them.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 25 of 36

Lab 3 – Edit Macros

In this Lab we will be looking at Edit Macros, what they are used for and how to
create our own edit macros.

Edit macros are executable modules that can mimic the actions of the ISPF editor, in
conjunction with other more complex code. They can be written in a number of
different languages but are most commonly written in REXX these days. There are a
number of examples in the ISPF Edit and Edit Macros guide :
 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ISPZEM80

We will go through a couple of exercises to step through some simple edit macros
and look at different ways of invoking them.

In order for edit macros to be invoked they must be in a data set that is allocated to
either the SYSPROC or SYSEXEC allocation. This was done for you when we
created your REXX libraries and started the lab. So we will be creating members in
your userid.ISPFELAB.REXX library.

Exercise 1

In this exercise we will look at an edit macro that has been created for you to directly
run a REXX exec whilst you are editing it.

Let’s take a look at the first edit macro

 Go to ISPF Data set List (option 3.4 from the main menu) and enter
userid.ISPFELAB.REXX in the Dsname level field to list your REXX library.

 Next to the data set enter an E to begin editing it and press Enter.
 You should see 3 members in the data set that have been created for you

 Let’s enter a V next to the RUNIT member and press enter to look through it.
 The first thing to point out is line 3 which says ‘ISREDIT MACRO’. This is

required for Edit macros so that ISPF knows this is a macro rather than a
normal exec.

 This exec will get the data set name and member, if a member exists, and
then build up an execute command for that exec to run it.

 Line 8 calls the edit macro command to get the current data set name.
 Line 9 calls the edit macro command to get the current member name if it

exists.
 Lines 11 and 12 check if the High Level Qualifier is your userid, if it is then it

issues a SAVE of the current member.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 26 of 36

 Lines 14 and 16 then build up the execute command, depending on if the file
we are in is a PDS member or a sequential data set.

 Finally line 22 runs the exec.

Let’s try running the macro to see what happens

 Come out of View on the RUNIT member by pressing PF3
 On the command line enter S TESTIT to create a new member and press

enter.
 You should be presented with an empty member.
 On line 1 type /* REXX */
 On Line 2 type Say ‘Hello world from SHARE’
 You should have 2 lines that look like this:

 So let’s invoke our edit macro. On the command line enter RUNIT and press

enter.
 On the resulting screen you should see the result of your Say command.

Exercise 2

In this exercise we will look at an edit macro that has been created for you to trap
the contents of a TSO command into a member. This is useful if for example you
want to capture a list of member names in a certain data set.

Let’s take a look at the next edit macro

 Come out of edit on the exec you just wrote in Exercise 1, at this point you
should be back in the member list.

 Let’s enter a V next to the TRAPIT member and press enter to look through it.
 Again, at the top, in line 2, we see the ISREDIT MACRO statement at the top.

However this time we are going to be passing a parameter to it. So you can
see the (PARM) next to the MACRO statement.

 We are going to be using the REXX outtrap command to trap SYSOUT
output into a stem variable, called STEM. In line 3.

 In line 4 we then run the TSO command that has been passed as a
parameter and then we turn output trapping off.

 We now have some edit macro commands. The first, in line 6, excludes all
lines between the system labels .ZFIRST and .ZLAST.

 We then process a loop, going through each element in the stem array and
use the edit macro LINE_AFTER command to create a new line in the
member, after the last line, with the contents of the stem element.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 27 of 36

 One finished we issue the RESET command to display all the lines again,
then locate the first line and finally page up 1 page to get the cursor onto the
command line at the top.

Let’s try running the macro to see what happens

 Come out of View on the TRAPIT member by pressing PF3
 On the command line enter S memlist to create a new member and press

enter.
 You should be presented with an empty member.
 On the command line type trapit listd ‘HLA.SASMMOD1’ m and press enter.
 You will see that the TSO LISTD command is run for the specified data set

and the contents of the command are trapped into your member.

Exercise 3

In this exercise we will look at invoking an edit macro against a number of different
members in a data set. This is useful if you have a lot of boring edit changes to
make to a lot of members in a data set. You can create the edit change commands
in an edit macro and then run it against every member in a data set.

In the exercise, we will write a macro to change the copyright date in all members in
a sample data set. Alternatively, if you are tired of typing then you can copy the the
edit macro from ‘LXD1.EXEC(SHAREMAC)’ rather than following the following
instructions.

Let’s create the edit macro

 Come out of edit on the member you created in Exercise 2, at this point you
should be back in the member list.

 On the command line enter s sharemac to create a member in our REXX
data set.

 On the first line enter /* REXX */ so that ISPF knows this is a REXX exec.
 On line 2 we are going to tell ISPF that this is an edit macro so enter

"ISREDIT MACRO"
 We now need to find the line with the copyright statement, so let’s issue an

edit find command. Type the following on the next blank line: "ISREDIT Find
‘Copyright IBM Corporation' First"

 Based on the return code of the find we will now perform a change command.
So check the return code and add a Do block with the following code : If RC =
0 Then Do

 We now have some macro commands. The first is to get the cursor position
to give us the current line. So enter the command "ISREDIT (Line,Col) =
CURSOR"

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 28 of 36

 On the next line we now set a label against the current line with the command
: "ISREDIT LABEL "Line" = .a"

 Finally we perform the change command with the command : "ISREDIT
CHANGE '2008' '2011' .A .A ALL"

 Finish the do block off with an End statement.
 Finally add the "ISREDIT END" command to leave the member once the

macro runs.
 To put that all into context you should have a member that looks like this:

/* REXX */

"ISREDIT MACRO"

"ISREDIT Find 'Copyright IBM Corporation' First"

If RC = 0 Then

Do

 "ISREDIT (Line,Col) = CURSOR"

 "ISREDIT LABEL "Line" = .a"

 "ISREDIT CHANGE '2008' '2011' .A .A ALL"

End

"ISREDIT END"

 Press PF3 to save the member.

Let’s take a look at the REXX exec that will run the macro and run it

 Come out of edit on the exec you just created, at this point you should be
back in the member list.

 Let’s enter a E next to the MACRUN member
 We won’t go into too much detail as to what is happening as this is not an

ISPF developers lab. But the MACRUN exec uses the ISPF LM* services to
allocate a dataset, then loop through the members, and then call the EDIT
service with a macro for each member in the data set.

 On line 3 change the Dataset specified from SHARxxx.ISPFELAB.SAMPLE
to the userid you are using, <userid>.ISPFELAB.SAMPLE.

 We can now use the RUNIT exec we looked at in Exercise 1 to execute this.
So on the command line enter RUNIT and press enter.

 You should now see the exec looping though the members as it runs the
macro against them.

 You can go to ISPF 3.4 and take a look in <userid>.ISPFELAB.SAMPLE to
see that the changes were made.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 29 of 36

Lab 4 – Customizable line commands

In this Lab we will be looking at a feature added in ISPF 6.3 (z/OS 1.13) where the
ability to create your own line commands for the ISPF Editor was provided. The
facility was provided through a combination of ISPF table configuration and edit
macros, which you will have learned about in Lab 3. This lab will talk you through
the set-up to enable you to run your own line commands and will provide a sample
line command edit macro that you can use as a model to get ideas from.

Let’s take a look at how ISPF knows about the commands

 From the ISPF primary options menu go into option 3.16, the ISPF Table
Utility

 In the Table Data Set entry field enter the name of your ISPF profile data set.
This will be called 'SHARxxx.SPF.ISPPROF' where SHARExxx is the userid
you are logged onto TSO with.

 Next in the Table Name entry field enter the name of a new ISPF table that
will contain the new line commands you are going to create. For this lab you
can use LINECMDS.

 Next, enter a / next to the option "Table is an EDIT line command table"
 Finally, enter E on the command line and press enter.

 You will be presented with an empty table

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 30 of 36

 The edit macro has already been written for you, so we are just going to
associate the various line commands to the macro that processes them. In
this example we have a single edit macro that processes all of our
commands, but it is possible to have separate macros for each command if
you wish.

 Add the User Command of ED to the list with the MACRO set to LINEMACS
and all 4 options on the screen set to N.

 Do the same for the BD, COM, CD and / User commands. To insert a new
line enter an I in the prefix area on the left and press enter.

 Press PF3 to leave the table editor and then PF3 again to leave option 3.16.
 Next go to ISPF Edit, option 2. You need to tell the editor the name of your

line commands table. There is a new field in the ISPF editor panel. So in the
Line Command Table entry field on the editor panel enter the name of the
ISPF table you just created, LINECMDS in this example.

 Enter the name of a data set that you are going to edit. For the purposes of
this lab enter 'SHARxxx.ISPFELAB.SAMPLE' in the other data set entry
field. Where SHARxxx is the userid you are logged onto TSO with.

 Select member JCLSAMP for edit. First of all change the string SHARE.ISPF
to SHARxxx.ISPF, where SHARxxx is your userid that you are logged on
with. This way we will have no conflicts when testing the line commands out.

 In the prefix area next to //DD01 you can now try out your new line
commands. Enter CD and you will be told the data set exists. Enter BD and
you will be taken into browse on the member. Enter ED and you will be taken
into edit. Enter COM and the line will be commented out.

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 31 of 36

 Let's go take a look at the ISPF Edit Macro that processes these commands.
There is a copy in your SHARxxx.ISPFELABS.REXX so just enter ED on the
line next to //DD02 to go into edit on the LINEMACS REXX exec.

 You will see from the top of the exec that ISPF just passes in the command
that is being processed. The exec then works out what it needs to do to each
line for the particular commands.

 Take a look through the exec so that you understand how it works out what to
do.

Congratulations!
You have successfully completed the ISPF Editor Lab!

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 32 of 36

 Appendix A - Code samples

MACRUN

/* REXX */
 Dataset = 'SHARxxx.ISPFELAB.SAMPLE'
 Macro = 'SHAREMAC'
 MEMBER = ''

 Address ISPEXEC "LMINIT DATAID(DID) DATASET('"dataset"') ENQ(SHR)"
 Address ISPEXEC "LMOPEN DATAID("DID") OPTION(INPUT)"
 Address ISPEXEC "LMMLIST DATAID("DID") OPTION(LIST) MEMBER(MEMBER)"
 Do while (RC = 0)
 Say 'Processing member' member
 Address ISPEXEC "EDIT DATAID("DID") MEMBER("MEMBER") MACRO("MACRO")"
 Address ISPEXEC "LMMLIST DATAID("DID") OPTION(LIST) MEMBER(MEMBER)"
 End
 Address ISPEXEC "LMCLOSE DATAID("DID")"
 Address ISPEXEC "LMFREE DATAID("DID")"

Return

RUNIT

/* REXX */
 Address ISPEXEC
 'ISREDIT MACRO'
 If rc = 0 Then
 Do
 'ISPEXEC CONTROL ERRORS RETURN'
 did = ''
 'ISREDIT (DID) = DATASET'
 'ISREDIT (MEM) = MEMBER'
 Parse Var did hlq '.' .
 If hlq = Userid() Then
 'ISREDIT SAVE'
 If mem = '' Then
 exe = "'" || did || "'"
 Else
 exe = "'" || did || '(' || mem || ")'"
 End
 Else
 Do
 Arg exe
 End
 Address TSO 'EX' exe
Exit

TRAPIT

/* REXX */
 Address ISREDIT 'MACRO (PARM)'
 xx = outtrap('STEM.')
 Address tso parm
 xx = outtrap('OFF')

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 33 of 36

 Address ISREDIT 'X ALL .ZF .ZL'
 Do p = 1 to stem.0
 line = stem.p
 Address ISREDIT 'LINE_AFTER .ZL = (LINE)'
 End
 Address ISREDIT 'RESET'
 Address ISREDIT 'LOCATE 1'
 Address ISREDIT 'UP PAGE'

LINEMACS

/* REXX --*/
/* */
/* Simple ISPF EDIT user line command processor. Valid line commands */
/* are setup using option 3.16 with the resulting table name being */
/* specified in the "Line Command Table . ." field of the Edit panel. */
/* */
/* Commands processed by this EXEC are */
/* */
/* / - reposition current line */
/* CD - Check if data set exists */
/* BD - Browse data set */
/* ED - Edit data set */
/* COM - Comment out line based on Data set type. */
/* */
/*--*/
 ValidCommands = ' CD / COM BD ED ? Q '

 Address ISREDIT
 "MACRO (PARM) NOPROCESS" /* Get line command */
 Address ISPEXEC "CONTROL ERRORS RETURN" /* Return ISPF errors */
 If Wordpos(PARM,ValidCommands) = 0 Then
 Do /* Only process valid */
 ZINFO=PARM /* commands.... */
 Address ISPEXEC "SETMSG MSG(ISRE041)"
 Exit 8
 End

 "PROCESS RANGE" PARM /* Get range for command */
 If RC > 0 Then
 Do
 Address ISPEXEC "SETMSG MSG(ISRZ002)"
 Exit 8
 End

 "(THISDS) = DATASET"

 RepositionLine = 0

 "(START) = LINENUM .ZFRANGE" /* Start line number in range */
 "(STOP) = LINENUM .ZLRANGE" /* End line number in range */
 "(DW) = DATA_WIDTH" /* Width of the editable data */

 Do a = START TO STOP /* Loop through the lines */
 "(LINE) = LINE "a /* get existing line contents */
 Select /* Process this line */
 When(PARM = "/") Then /* Make this line the current */
 RepositionLine = a /* Line. */
 When(PARM = "CD") Then /* Check if Data set exists */
 Call CheckDSN(line)
 When(PARM = "BD") Then /* Browse Data set */
 Call BrowseDSN(line)
 When(PARM = "ED") Then /* Edit Data set */

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 34 of 36

 Call EditDSN(line)
 When(PARM = "COM") Then /* Comment out this line */
 line = Comment(line)
 When(PARM = "?" | PARM = 'Q') Then
 Do
 Say '/ - reposition current line'
 Say 'CD - Check if data set exists'
 Say 'BD - Browse data set'
 Say 'ED - Edit data set'
 Say 'COM - Comment out line'
 End
 Otherwise
 Nop
 End
 "LINE "A" = (LINE)" /* replace line contents */
 End

 IF RepositionLine <> 0 Then
 Do
 'UP MAX'
 'DOWN' RepositionLine
 End

Exit 0

/*--*/
/* Check if the dataset on a DSN=nnnnnn exists or not */
/*--*/
CheckDSN: Procedure

 Arg Inline
 Parse Var Inline . 'DSN=' dsn .
 If dsn <> '' Then
 Do
 Parse Var dsn dsn ',' .
 dsn = "'" || Strip(dsn) || "'"
 Exists = Sysdsn(dsn);
 If Exists <> 'OK' Then
 Say 'Dataset' dsn 'does not exist.'
 Else
 Say 'Dataset' dsn 'exists.'
 End
 Else
 Say 'No DSN= on current line...'

Return

/*--*/
/* Browse data set listed on the selected line */
/*--*/
BrowseDSN: Procedure

 Arg Inline
 Parse Var Inline . 'DSN=' dsn .
 If dsn <> '' Then
 Do
 Parse Var dsn dsn ',' .
 dsn = "'" || Strip(dsn) || "'"
 Exists = Sysdsn(dsn);
 If Exists = 'OK' Then
 Address ISPEXEC "BROWSE DATASET("dsn")"
 Else
 Say 'Dataset' dsn 'does not exist.'
 End

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 35 of 36

 Else
 Say 'No DSN= on current line...'

Return

/*--*/
/* Edit data set listed on the selected line */
/*--*/
EditDSN: Procedure

 Arg Inline
 Parse Var Inline . 'DSN=' dsn .
 If dsn <> '' Then
 Do
 Parse Var dsn dsn ',' .
 dsn = "'" || Strip(dsn) || "'"
 Exists = Sysdsn(dsn);
 If Exists = 'OK' Then
 Address ISPEXEC "EDIT DATASET("dsn")"
 Else
 Say 'Dataset' dsn 'does not exist.'
 End
 Else
 Say 'No DSN= on current line...'

Return

/*--*/
/* Comment out the selected line */
/*--*/
Comment: Procedure Expose THISDS

 Parse Arg Inline
 ds = Reverse(THISDS)
 Parse Var ds lq '.' .
 lq = Reverse(lq)

 Select
 When Pos('JCL',lq) > 0 |,
 Pos('JOBS',lq) > 0 |,
 Pos('SAMPLE',lq) > 0 Then
 If Left(Inline,3) = '//*' Then
 Inline = Substr(Inline,4)
 Else
 Inline = '//*' || Inline

 When Pos('COB',lq) > 0 Then
 If Substr(Inline,7,1) = '*' Then
 Inline = Left(Inline,6) || ' ' || Substr(Inline,8)
 Else
 Inline = Left(Inline,6) || '*' || Substr(Inline,8)

 Otherwise
 Do
 Tline = Strip(Inline)
 If Left(Tline,2) = '/*' Then
 Do /* line is already commented */
 Parse Var Inline b1 '/*' b2 '*/' .
 Inline = b1 || ' ' || b2
 End
 Else
 Do
 Inline = Strip(Inline,'T')
 If Left(Inline,2) = ' ' Then

ISPF LAB - Session 15045/15046 SHARE 122, Anaheim, March 2014

 Page 36 of 36

 Inline = '/*' || Substr(Inline,3)|| '*/'
 Else
 Inline = '/*' || Strip(Inline) || '*/'
 End
 End
 End
Return(Inline)

