

# The Next Generation Storage Technology Today

William Smith
Enterprise Storage Product Manager
Hitachi Data Systems





August 6, 2014 Session # 15796







# **Agenda**

- Hardware Architecture for VSP G1000
- Features for Mainframe and OPEN
- Mainframe Specific
- OPEN Specific
- Summary



# **Continuous Innovation In Enterprise Storage**







Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

#### **Hardware Architecture Overview**





#### 1 Side of Controller Shown for Simplicity



## **VSP G1000: Data Center Planning**



Traditional System Layout



- Increase floor-space efficiency
- Eliminate data center hotspots

Today:
VSP G1000
Flexible
Deployment



# Coming Soon: Ultimate Deployment Flexibility

Separate Controller Racks and Disks Racks



#### **Drive Chassis Information**





|                                           | Front view | Rear view | Details                               |
|-------------------------------------------|------------|-----------|---------------------------------------|
| SFF Drive<br>Chassis<br>DKC-F810-<br>SBX  |            |           | Maximum of 192 SFF drives Height: 16U |
| LFF Drive<br>Chassis<br>DKC-F810I-<br>UBX |            |           | Maximum of 96 LFF drives Height: 16U  |
| FMD Chassis<br>DKC-F810I-<br>FBX          |            |           | Maximum of<br>48 FMDs<br>Height: 8U   |

## **VSP G1000: Media Options**



| Hitachi<br>Flash<br>Module<br>Drive | SSD SFF<br>(2.5-inch) | HDD SFF<br>(2.5-inch) | HDD LFF<br>(3.5-inch) |
|-------------------------------------|-----------------------|-----------------------|-----------------------|
| 1.6TB                               | 400GB                 | 300GB 15K             | 4TB 7.2K              |
| 3.2TB                               | 800GB                 | 600GB 10K             |                       |
|                                     | 800GB (3.5")          | 900GB 10K             |                       |
|                                     |                       | 1.2TB 10K             |                       |



#### Hitachi Accelerated Flash Controller ASIC



#### HIGHLY PARALLELIZED ARCHITECTURE

- 8 Lanes of PCIe 2.0
- PCIe Root Complex
- 4 Core 1.0GHz ARM9
   CPU
- Integrated DDR-3
   Interface
- Integrated Flash
   Controller logic
- Support for 32 paths to the Flash Array



## VSP G1000 to VSP Compared



|                                                  |                                                |                                            | Educate - Network                         |  |
|--------------------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------|--|
|                                                  | VSP G1000<br>1-Controller Chassis              | VSP G1000<br>2-Controller Chassis          | VSP Two-Controller Chassis                |  |
| Maximum flash devices                            | 96 Hitachi FMD<br>192 SSD                      | 192 Hitachi FMD<br>384 SSD                 | 192 Hitachi FMD<br>256 SSD                |  |
| Maximum internal disks                           | 1152 2.5-inch HDD<br>576 3.5-inch HDD          | 2304 2.5-inch HDD<br>1152 3.5-inch HDD     | 2048 2.5-inch HDD<br>1280 3.5-inch HDD    |  |
| Maximum cache path bandwidth (GB/sec)            | 420                                            | 840                                        | 128                                       |  |
| Maximum virtual storage director pairs           | 4 (64)                                         | 8 (128)                                    | 4 (32)                                    |  |
| Maximum host ports                               | 96 Fibre Channel<br>80 IBM® FICON®<br>80 FCoE* | 192 Fibre Channel<br>176 FICON<br>176 FCoE | 192 Fibre Channel<br>176 FICON<br>88 FCoE |  |
| Maximum cache                                    | 1TB                                            | 2TB                                        | 1TB                                       |  |
| Fully configured power consumption (2.5" drives) | 18.5 KVA                                       | 37 KVA                                     | 41.4 KVA                                  |  |
| Maximum local copy pairs                         | 32K                                            | 32K                                        | 16K                                       |  |
| Maximum remote copy pairs                        | 64K                                            | 64K                                        | 32K                                       |  |



# **Agenda**

- Hardware Architecture for VSP G1000
- Features for Mainframe and OPEN
- Mainframe Specific
- OPEN Specific
- Summary



#### **Hitachi Storage Virtualization Operating System**

Virtualizes Externally Attached Storage











### **Automated Data Mobility with Dynamic Tiering**



#### AUTOMATED

- Automated page-based data movement for performance and cost efficiency
- 38MB page for Mainframe (42MB for Open)
- Frees users from hands-on tier management and data layout

#### **Large Financial Services Customer**





#### **Dynamic Tiering Goals**

- Reduce costs with self-managed and selfoptimized storage tiers
- Most efficient use of flash ensures that investments are fully utilized



## VSP G1000 Data-at-Rest Encryption

- Optional back-end director
- Third generation of controller based encryption
- Encryption is performed in hardware with no degradation in throughput
- Unique encryption key per piece of media. Associated key is deleted when media is removed
- Full KMIP support





## **Key Management Partners**

- Key Management Interoperability Protocol
- Centralized Key Management
- OASIS Interoperability Protocol













# Hitachi Virtual Storage Platform G1000 Performance Comparison: Backend 8kB [IOPS]

#### Reads



#### Writes



Preliminary internal testing



# Hitachi Virtual Storage Platform G1000 Performance Comparison: Sequential 256kB [MB/sec]



#### Reads



#### Writes



Preliminary internal testing





## Agenda

- Hardware Architecture for VSP G1000
- Features for Mainframe and OPEN
- Mainframe Specific
- OPEN Specific
- Summary



## Hitachi Mainframe Storage Strategy



#### ESSENTIAL COMPATIBILITY— LEVERAGING IBM COMPATIBILITY WITH HITACHI VALUE-ADD

Middleware and IMS<sup>™</sup>, CICS<sup>®</sup>, DB2<sup>®</sup>, MQSeries<sup>®</sup>, etc. **Application Level** IBM portfolio - Global Mirror, PPRC BC/DR Solution HITACHI Portfolio - HyperSwap® Manager, GDPS, Level - HUR, BCM, FDM Basic HyperSwap, TPC-R - FC UVM, HDP, HDT, HTSM Storage-Compatible Concurrent Copy, FlashCopy<sup>®</sup>, FlashCopy SE, **Functions** Metro Mirror (PPRC), Global Copy (PPRC-XD)<sup>1</sup> Operating Systems z/OS® + DFSMSdfp, Linux for System z®, Compatibility z/VM®, zVSE®, zTPF Hardware Interface FICON®, zHPF, FCP, MA, PAV, HyperPAV Compatibility

#### HITACHI STRATEGY

(Tivoli®-compatible, DB2 performance extensions)

**IBM Compatibility** 

COMPLIMENTED BY
HITACHI VALUE-ADDED
SOLUTIONS





| FEATURE                                                       | DESCRIPTION                                                                                                                                                                                               |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| FLASHCOPY<br>PERFORMANCE<br>IMPROVEMENTS                      | FlashCopy and related TrueCopy and HUR performance improvements.                                                                                                                                          |  |  |
| TPC-R AND BASIC<br>HYPERSWAP                                  | The ability to configure 2 and 3 data center environments using Tivoli Storage Productivity Center for Replication (TPC-R) and automate HyperSwap between sites and control units within the same center. |  |  |
| TPC-R SUPPORT<br>FOR METRO<br>MIRROR<br>FAILOVER<br>/FAILBACK | Enable Hitachi storage devices to participate in the automation of HyperSwaps between local sites (synchronous distances) and within the same data center.                                                |  |  |





| FEATURE                           | DESCRIPTION                                                                                                                                                                                                                 |  |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| HTSM Support                      | Microcode release adds support for HTSM                                                                                                                                                                                     |  |  |  |
| Hierarchical<br>Memory (VMA)      | Enables larger number of bitmaps as well as support larger volumes and LUNs by using a new hierarchical approach. Bitmap information will spread across local processor memory, (traditional share memory), and disk drives |  |  |  |
| 1TB (EAV) EXTENDED ADDRESS VOLUME | 1TB EAV is a volume with more than 65,520 cylinders.<br>EAV increases the amount of addressable DASD storage per volume beyond 65,520 cylinders by changing how tracks on ECKD volumes are addressed                        |  |  |  |





| FEATURE                  | DESCRIPTION                                                                                                                                                                                                                                            |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z/HPF<br>BSAM QSAM       | System z High-Performance FICON (zHPF) supports additional workloads using QSAM and BSAM access methods.                                                                                                                                               |
| Z/HPF<br>FORMAT<br>WRITE | zHPF format writes – this function speeds DB2 loads, reorganizations, index rebuilds, and database restores. Additionally, DB2 load throughput with DB2 9 and 10 increases as much as 52 percent using 4K pages.                                       |
| Z/HPF AND<br>DB2 I/O     | All DB2 I/O can convert to zHPF. When z/OS preformats DB2 data sets, zHPF enables a 15-to-2 reduction in the number of I/Os—an especially signification reduction when used with synchronous replication technologies such as peer-to-peer remote copy |





| FEATURE                                        | DESCRIPTION                                                                                                                                                                 |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Z/HPF<br>DB2 LIST<br>PREFETCH                  | With FICON Express8S, zHPF DB2 list prefetch reduces channel connect time by up to 2.5 times. DB2 10 uses list prefetch for disorganized index scans.                       |  |  |  |  |
| Z/HPF BI-<br>DIRECTIONAL<br>CHANNEL<br>PROGRAM | DB2 exploitation of zHPF will improve performance by allowing Media Manager to exploit bidirection zHPF I/O support                                                         |  |  |  |  |
| Z/HPF<br>LIST<br>PREFETCH<br>OPTIMIZER         | zHPF List Prefetch Optimizer is used by DB2 technology to exploit the ability of the System z I/O architecture to read discontinuous disk segments in single I/O operations |  |  |  |  |





| FEATURE                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GDPS -<br>PPRCSUM                             | When compared to reporting suspensions on a per-devices basis, the Summary Event Notification for PPRC Suspends (PPRCSUM) dramatically reduces the message traffic and extraneous processing associated with PPRC suspension events and freeze processing                                                                                                                                   |
| GDPS HYPERSWAP Storage Control Health Message | This new attention message will be generated from the hardware, 1 per corresponding logical storage system, to alert the operating system of a condition that in the past would have surfaced as a general equipment check. This message will give more details and is intended to reduce the number of false HyperSwap events that have occurred with the less descriptive equipment check |





| FEATURE                           | DESCRIPTION                                                                                                                                                                 |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| GDPS/HYPERSWAP                    | Hitachi works with IBM to perform  •Qualify GDPS/HyperSwap with PPRC with Global Mirror (XRC) with Hitachi compatible FlashCopy and FlashCopy Space Efficient, HDP, and HDT |  |  |
| QUALIFICATION<br>TESTING WITH IBM | <ul> <li>Qualify GDPS/HyperSwap with 3 Data Center with<br/>Delta Resync and BCM along FlashCopy and<br/>FlashCopy Space Efficient, HDP, and HDT</li> </ul>                 |  |  |



# Hitachi Tiered Storage Manager for Mainframe – Z/OS HDT management





# Host-based software that provides:

- Centralized and unified mainframe management of Hitachi Dynamic Tiering
  - Automation
  - Integration with DFSMS and storage groups
- Online storage service level controls
  - Increase application performance
  - Improves problem avoidance
- Single, consistent interface
  - Command based, script driven
  - ISPF interface
- Auto-discovery eliminates errors
  - Accelerates deployment
- Enables reporting and automatic notifications



#### ISPF ease of use with Point and Shoot



```
Command ===>
                                Scroll ===> PAGE
                              2014/01/29 16:47:35
Install Defaults Storage Policy TPG Exit
Configuration file prefix . . : VAREND.HTSM80
Pool usage threshold . . . . : 80 %
Capacity unit . . . . . . . . Page
(Scan)
 AC SN
      Status
(Create)
 AC PolicuID Status
   DB2PROD
   DB2TEST
CUMMAND
                Status
       TPGID
       DB2PR0D
       DB2TEST
All Rights Reserved. Copyright (c) 2013, 2014, Hitachi, Ltd.
Copyright (c) 2013-2014 Hitachi Data Systems Corporation. All rights reserved.
                          Version 8.0.0-00
```

#### TPG QUERY STATISTICS Sample Output



## **HTSM Mainframe Reporting**

| Tiering Policy ID: PROD Date: 10 Jul 2013 Time: 00:07:23                   |                                               |                                               |                                               |                                   |       |
|----------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------|-------|
| *******                                                                    | *** Query                                     | TPG Tier M                                    | etrics ***                                    | ******                            | ***** |
| TPG Total or<br>SN:PoolID or<br>*StorGrp* or<br>Volser or<br>Volser Prefix | Tier1<br>Used<br>Pages<br>/ UsedGB<br>/ Used% | Tier2<br>Used<br>Pages<br>/ UsedGB<br>/ Used% | Tier3<br>Used<br>Pages<br>/ UsedGB<br>/ Used% | Total Used Pages / UsedGB / Used% |       |
| TPG Total                                                                  | 340<br>12.96B<br>100%                         | 0<br>0 G B<br>0 %                             | 0<br>0 G B<br>0 %                             | 340<br>12.96B<br>100%             |       |
| SN53004:81                                                                 | 340<br>12.96B<br>100%                         | 0<br>0 G B<br>0 %                             | 0<br>0 G B<br>0 %                             | 340<br>12.96B<br>100%             |       |
| Used% of Pool                                                              | 25.4%                                         | 0.2                                           | 0.2                                           | 8.67%                             |       |
| Pool Pages<br>Pool GB<br>Tier% of Pool                                     | 1340<br>50.968<br>34.2%                       | 1240<br>47.16B<br>31.6%                       | 1340<br>50.968<br>34.2%                       | 3920<br>1496B<br>100%             |       |
| *ALPHA*                                                                    | 340<br>12.96B<br>100%                         | 0<br>0 G B<br>0 %                             | 0<br>0 G B<br>0 %                             | 340<br>12.96B<br>100%             |       |
| GSE*                                                                       | 340<br>12.96B<br>100%                         | 0<br>0 G B<br>0 %                             | 0<br>0GB<br>0%                                | 340<br>12.96B<br>100%             |       |
| 10 Jul 2013 00:07:23 *** Action TPG_QUERY_TIERS Successful                 |                                               |                                               |                                               |                                   |       |





## Agenda

- Hardware Architecture for VSP G1000
- Features for Mainframe and OPEN
- Mainframe Specific
- OPEN Specific
- Summary



#### **Hitachi Storage Virtualization Operating System:**

Introducing Global Storage Virtualization



Virtual Server Machines FOREVER
CHANGED the way we see
DATACENTERS

# VIRTUAL STORAGE MACHINES will do the SAME





### **Hitachi Global Storage Virtualization**

Clustered Active-Active Systems





Complete your session evaluations online at www.SHARE.org/Pittsburgh-Eval

# Global-Active Device Supported Configurations









#### 3 Sites

- Each DKC is located on a separate site
- Provides maximum level of business continuity for any type of DKC failures, or site failures (Primary site, Alternate site, Quorum site)
- Quorum disk can reside on a HUR target DKC connected via UVM and FCIP

#### 2 Sites

- Reserve and quorum DKC is located on the primary site
- Provides moderate level of business continuity for any type of DKC failures, or alternate site failure

#### Single data center

- All the DKCs are located on the same site
- Provides business continuity for DKC failures, but cannot maintain the business for a site failure



## **Nondisruptive Migration**

Through Global Storage Virtualization



#### AVAILABLE

#### Move Data and Refresh Systems as Needed



Migrates virtualized storage capacity and identity

Simplifies migration of systems and paired devices (HDS source and target)

Reduces migration exposure





# Agenda

- Hardware Architecture for VSP G1000
- Features for Mainframe and OPEN
- Mainframe Specific
- OPEN Specific
- Summary



## Where Might We Go Together?







#### **Potential Future Capabilities**





### **Thank You**



Insert Custom Session QR if Desired.



