
Version 2014.d.1

1

3

Welcome to the Introduction to Rexx Workshop. This workshop will cover a series of

topics about the Rexx language. At the end of each topic, there will be exercises that use

the concepts covered in the charts and text for that topic.

The solutions for the exercises are in Appendix A. This is not a graded class or lab so

you are free to refer to the solutions if you would like or if you need help with any of

the exercises.

Also, if you need assistance with any of the lab material or exercises, please raise your

hand and someone will come to assist you.

4

These are the exercises that you will be doing today.

There are 2 PDF files on your desktop that you might find helpful as you work on the

exercises:

• REXX Reference will help you with statement syntax and usage

• Appendix H is a summary of XEDIT commands that might be helpful when

you are writing and updating your Rexx programs

This next section introduces the Rexx Language and explains how to create and execute

Rexx programs on z/VM and TSO systems. It also includes some z/VM hints to help

you with today's exercises.

5

6

REXX is a nickname for Restructured eXtended eXecutor. The Rexx language was

designed to be intuitive, easy to read, and easy to follow a program's logic.

Rexx programs can be very simple, ranging from personal tools and utilities such as

"scripts" of commands that you might run every day to set up your system or run test

cases, to very complex programs that might be part of a licensed product. Rexx is

available on many different IBM and non-IBM platforms.

The Rexx language is designed so that programs can be interpreted ; this means that

each statement is translated and executed as a Rexx program runs. Rexx programs may

also be compiled to improve performance and security, as well as to prevent changes to

source code. The Rexx Compiler is a Licensed Program. The programs for your lab

exercises will be interpreted, not compiled.

7

Of course, like any language, Rexx has syntax rules. However, Rexx is very flexible

regarding the formatting of your programs:

• You may indent statements or groups of statements however you would like to; there

are no column restrictions for Rexx program statements.

• You may include multiple statement clauses on a single line.

• Comments can be placed anywhere in a Rexx program, and can be any length. You can

place comments at the end of a Rexx statement line, or on lines all by themselves. You

can also create comments that span multiple lines. Remember to always close your

comment with a '*/' . If you forget to do this, you will get a surprise when you execute

the program because most of the Rexx statements will appear to be part of one very very

long comment!

• There is no need to delimit Rexx statements or lines in your program. Rexx places an

"implied" semicolon at the end of each line.

• Sometimes a statement in a Rexx program will not fit on one line. When this happens,

you may use a comma (',') to indicate that the statement continues on the next line.

• In Rexx, variables and data areas do not need to be declared. They are declared

implicitly based on their usage during program execution.

8

As mentioned earlier, Rexx is available on many different platforms.

9

Rexx programs are contained in files on a z/VM users disk, known as a minidisk. To

create a Rexx program on z/VM, you use the z/VM – CMS editor called XEDIT. If you

invoke the editor for a file that does not exist, XEDIT will create a new file on the

designated disk.

Files on a z/VM disk are identified by their:

• name (filename or fn)

• This is the name of your Rexx program (in the example on the chart,

the name of the program is MYREXX)

• type (filetype or ft)

• A filetype of EXEC indicates that this file contains a Rexx program

• mode (filemode or fm)

• Indicates the disk that the file resides on. A z/VM user will typically

have several disks with file modes a-z. Usually, and for this lab, the

'A' disk is the working disk to create and edit files and programs.

The first line of a Rexx program must be a comment. The comment may be blank or

contain any text that you choose. This is a good place to include a description of what

the Rexx program does.

10

z/VM uses a defined search order to execute commands and programs. When a

command is issued, if a Rexx program with a name (the filename) that matches the

command is found on any disk that the user has accessed, the Rexx program will be

executed. The disks are searched in alphabetical order of their filemodes, starting with

'A'. If a matching program is not found on an accessed disk, the command will be

treated and executed as a system command.

You may invoke a Rexx program by simply typing its name on the command line. If

you want to explicitly tell z/VM that the command you are issuing is the name of a

program, you can preface the program name with the keyword EXEC.

11

In TSO/E, the EXEC command is used to invoke a Rexx program or a CLIST. This may

be done explicitly, or implicitly as shown in the above chart.

12

The exercises will be done on a z/VM system. This chart offers some hints in case you

are not familiar with z/VM. We will be happy to help you with any questions.

13

When you log on to z/VM, you will always see one of these "status" indicators in the

lower right hand corner of your session.

14

Logon details will be provided in the lab room during the session.

Now it is time for our first Exercise. This exercise will demonstrate how to run a Rexx

program and observe the changes that result.

You will not be writing a Rexx program (yet), but you will running a program that is

already on your A-disk. This will also familiarize you with the z/VM environment that

you will be using throughout this lab.

Follow the steps listed above. mode described in Step 3 is a filemode, as was discussed

on previous charts. You specify mode as input to the Rexx program named GETTEMP.

The first time you run GETTEMP, use a mode other than a. The second time, you will

specify mode a and observe the differences in the output.

When you complete this exercise, please LOGOFF. When you log back on, your userid's

configuration will be reset for the rest of the lab exercises.

15

16

This is the result from Steps 2-4:

• Issue command QUERY DISK on the command line. Here you see the disks that your

userid has accessed (your actual result may be a little bit different).

• Issue GETTEMP Z to run program GETTEMP with an input mode of Z. What you

see are messages indicating the results of the commands that were issued from the

program. A new disk must be formatted when it is created; the FORMAT command

issued by the program prompts for input; the responses to the prompts are included in

the program (see the actual program in Appendix A).

•After running GETTEMP, you see new disk TMP555 at file mode Z. Remember, Z is

what was specified as the input mode for the new disk.

We don't show the output for step 5, but if you issued the FILELIST * * Z command

(or whatever mode you specified to GETTEMP), you saw a group of files with filetype

EXEC on the new temporary disk that was created.

17

This is the output from Steps 6-8:

• When GETTEMP is re-issued with mode A, it checks to see if there is already a disk

defined at the address of the new disk. If so, it DETACHes (removes) the disk from the

userid's configuration and defines a new disk. We also see the current A-disk moved to

mode B. Even though we are creating a new disk at mode A, we still need the files that

are on the current A-disk so we preserve access to them at mode B.

• After running GETTEMP, QUERY DISK shows us the new disk defined at mode A,

and the disk that was previously at mode A re-accessed at mode B.

Step 8 is to LOGOFF. This will remove the new temporary disk that we created with

GETTEMP as well as the files that were copied to it. When you log back on for the next

exercise, your A-disk will be back at mode A and will still have all of the files that it

previously had.

This next section explains about Rexx syntax – about strings, operators, numbers,

variables, and the keywords for input and output.

18

19

Rexx was developed to be a very "forgiving" language. In contrast to Assembly

Language, where the case and placement of every character is very precise, Rexx's

format is easy. The biggest requirement, in fact, is that the program begin with a

comment string. An example of a comment is shown in the middle of this slide,

beginning with "/*" and ending with "*/".

Names of constants and variables in Rexx are not case sensitive. As shown above,

variable Budapest is logically equivalent to variable budapest. Case is automatically

respected when text is inside quoted strings ".." or '..' – although this setting can be

changed.

Long lines are common in Rexx. If a line is going to go past the end of your terminal

window, use the comma ',' to continue the line of code on the next line of your text

editor.

20

Strings in Rexx may be contained in either single quotes '..' or double-quotes ".." – the

only rule is that you must end a string with the same quote type as that with which you

began the string. A string opened with " and closed with ' will produce an error.

If you want to use quote characters inside a string opened and closed by that same quote

character, use two of that character in a row to do so.

Hexadecimal and binary strings are automatically grouped in Rexx. This allows for

some forgiveness in data entry.

21

Strings may be combined in multiple ways. Two strings next to each other, separated

only by a space character, are logically equivalent to a single string with a space

character in the middle of it.

The concatenation operator || can be used to combine two or more strings, as shown in

the second example above.

This applies when using literal strings as well as variables. In the third example, we see

a variable abc defined with the first half of the name of a famous Budapest avenue. We

see that this is then combined with the literal string that completes its name.

Rexx follows the Order of Operations when processing math, and the operator symbols

it uses are constant with most other high-order languages. Distinct to Rexx is using %

for integer division, // for remainders, and two asterisks ** for exponents.

22

Output in Rexx is easy. The say keyword will print the rest of that line of code onto the

terminal screen. Say can be used with literal strings, numbers, variables, or even

mathematical operations.

There are two ways to collect input to a program. The first is the keyword pull. This

keyword stops your Rexx program and waits for a user at a keyboard to enter data.

The other means is via the command line. You used this in Exercise 1 with GETTEMP.

Parse arg is a pair of keywords which, when used together, will collect information

from the command-line invocation of the program. In the example above, we provide

three strings after we type in a program named EXAMP. These are assigned the values

starting with A1 via the parse arg keywords.

23

Comparisons between numbers, variables, or literal strings can be done either in a

"normal" or "strict" format. In both instances, the comparison is case-sensitive. With a

normal compare, leading and trailing blanks are removed, and shorter strings are padded

on the right for the comparison only. For a strict compare, the data is compared

precisely as presented, with no padding or removal of blanks.

There are four logical expressions in Rexx: the ampersand character & represents AND

(a & b), the single vertical bar | represents OR (a | b), and two ampersands &&

represent XOR (a && b). A NOT or negation character can be represented by either the

backslash \ or the "not" sign ¬

24

Because Rexx does not do data typing, all numbers are automatically strings. Rexx

thinks a string is a number when that number starts with a digit or + or – sign. It may or

may not contain a decimal point. If using exponential notation, the uppercase E

represents this. This can cause confusion with certain z/VM device addresses (for

example 1E00), so exercise caution in manipulating fields like that.

Math precision in Rexx is controlled by a NUMERIC DIGITS instruction. By default,

mathematical operations are calculated out to 9 decimal places. There is no hard coded

upper bound; it is constrained only by the size of your virtual machine or address space.

25

A variable in Rexx is the same as a variable in other high-order programming

languages: it is a unique name and storage space for data that may change over time.

Variable names are NOT case sensitive, and they cannot begin with a number.

Variable typing in Rexx is done by assignment; there is no need to declare a variable as

an integer or character.

If you use a variable in Rexx before you have actually assigned a value to it, its default

value will be its own name uppercased. So in the slide above, the variable population,

before assigning it a value of 184627, would have a value of "POPULATION".

There are a few special variables in Rexx: rc, result, sigl. These variables are set based

upon programmatic operations and events inside your Rexx program or your virtual

machine. This means that any data you have stored in these variables may be

overwritten. Exercise caution if using these special variable names in your program.

26

We previously saw the PARSE instruction as part of parse arg, our keywords for

pulling input from EXEC command-line invocation. PARSE has a few different

keywords, in fact, as we see on this slide. Parse Pull, for example, is the expanded

form of the keyword pull – they mean the same thing. Parse Var will parse an existing

variable into one or more variables – this is useful for manipulating longer strings of

data. We will see examples of this on the next few slides.

Parse Value takes an expression and stores it into one or more variables. We will see

examples of this near the end of the presentation.

Finally, any PARSE keyword can also be a PARSE UPPER – for example, parse

upper arg. This will automatically convert inputted text into upper-case value.

27

Here are three examples of parsing a single string, called str1.

In the first example, we use PARSE VAR to break a longer string into three smaller

strings, and we place the results in three variables: w1, w2, and w3. Because our

processing is blank-delimited, we take all text in a token and insert it into one of the

target variables. This includes the comma in w2.

In the second example, we uppercase the text (see w1), and we provide a period or full

stop character "." in place of one of our target variables. This tells Rexx to "skip" the

next token. As a result, w2 now contains "2014" inside of the "3-8," token.

In the third example, we see that only two target variables have been provided – w1 and

w2. The first token is inserted into w1, as we would expect. Our w2 variable now

contains every token that is left inside the original string.

28

Of course, your records may not be delimited by a blank or space character " ". This

example demonstrates how to use parse var to parse a variable using other tokens, such

as an asterisk '*'.

This section covers tracing and debugging functions that are built into Rexx and can be

very helpful when testing and debugging Rexx programs.

29

30

The TRACE statement has several options to trace different aspects of a Rexx program

and provide various levels of detail. TRACE statements may be placed anywhere in a

Rexx program; you can trace an entire program or any part of it.

31

Symbols are provided on each line of trace output. These symbols indicate what kind of

trace data is being shown.

32

There are some special options that can be used to modify tracing and program

execution. You can trace interactively by specifying ? before the trace option, causing

the program to stop at every trace step. This is very powerful; Rexx statements and

commands may be issued while the program is stopped, allowing checking and even

setting of data values and variables.

! can be used to trace commands that are issued in the Rexx program without the

command actually being processed.

If you have long-running Rexx program, you can use asynchronous commands to turn

tracing on and off while the Rexx program is running.

33

This example shows "Intermediates" tracing of a very short Rexx program:

• The first line of the trace output shows the entire statement on Line #3

• The next 2 lines show the literals "1" and "7"

• Next, we see the result of the division operation on the literals "1" and "7"

• Line 4 of the program is a SAY statement to display variable number

• The trace shows the value contained in variable number

• Finally, we see the output of the program (also the contents of variable

number)

34

Here is Exercise 2. Spend some time working on this exercise; when you feel

comfortable with your answer, you may move on to the next section. This exercise

should use multiple concepts you learned in this section, but this is not a long program –

perhaps 5 lines. There is no need to insert additional error-checking into the logic of

your program.

As a reminder, the answer to this exercise is in Appendix A. Because this lab is not

graded, you are welcome to study the answer at any time.

35

In this exercise, you will use Tracing to debug 2 Rexx programs that are already on your

A-disk. Once you figure out where the bugs are, fix the programs so they run correctly.

As usual, if you have any questions let us know and we will be there to help.

The next section deals with more advanced Rexx programming concepts – compound

variables, loops, if-then statements, and other logical constructs. It will also cover

subroutines, the Rexx built-in functions, Pipelines, and VM-specific Rexx programming

techniques.

36

37

We have already covered numbers and simple variables in Rexx programming.

However, there is another form of variable, called a "compound variable." It consists of

two parts, a "stem" and a "tail." Some programmers think of compound variables as

being Arrays, and they are correct. Other programmers think of them as being similar to

records or C++ object classes, and they are also correct. Compound variables are very

flexible and very powerful. The next slide will cover examples on how to use them.

38

In the first example, we see a compound variable being used as an array. It sits in a DO

loop, and is assigned a value for Array.1 through Array.50. When we output the value

of Array.25, we will see its value ("30"). When we output Array.51, we see it has not

been initialized … and therefore the value is its own name, capitalized: "ARRAY.51".

By convention or tradition, Rexx programmers use the Array.0 element to store the size

of that array. However, this value is not automatically included unless you are using

Pipelines. (More on this in a later slide.)

As we saw on the previous slide, compound variables can even be used to form

multidimensional arrays – for example, array.i.j.k

The second example demonstrates compound variables as records. In this case, we

check to see if a conference attendee's payment status is "LATE". If so, we output more

information about this attendee. As you can see, compound variables can be used to

organize data in more than just a single array.

39

One of the primary benefits of using Rexx for VM is that we can use it to automate CP

and CMS commands inside the VM operating environment. This allows us to reduce

hard operations or repeated tasks to a single program. In the examples above, we see

that our CP or CMS commands can be enclosed inside of single quotes. We will show

how to use these examples on the next side.

Rexx/VM provides a built-in function called DIAG(). This function allows a Rexx

programmer access to the Diagnose Instructions – APIs into the hypervisor layer itself.

In this example, we're issuing Diagnose x'08', which passes a CP command to the

hypervisor … in this case, QUERY CPLEVEL. *Note* that the DIAG function IS

case-sensitive and requires its input in UPPER case. The parse var or parse value

keywords can be used to pull the results into your Rexx program.

Finally, Rexx can change your "expected environment" so that you can send commands

to CP, to CMS, to XEDIT, to TSO … all without making complicated changes to your

program.

Let's explore these concepts in more detail, shall we?

40

In the first example, we change the address of our program to CMS, and we send the

CMS command directly to CMS as a result. We then check our special variable rc …

Rexx automatically inserts the return code from our CMS or CP command into variable

rc. Useful! So if the command passes (rc= 0) then we can issue another command.

What the example does is check to see if a certain file exists …. And if it does exist, we

copy that file into a new file with a new filename.

The second example displays the diag() function. Here we are parsing the value of

QUERY CPLEVEL into a single variable called queryout. When we output queryout,

we are given three lines full of text – QUERY CPLEVEL is very generous with its

information! But we have already covered how to parse bigger variables into smaller,

more usable pieces of information on previous slides. Perhaps that will be useful in an

upcoming exercise …?

41

If using TSO, similar concepts apply – remember, Rexx is available on more platforms

than just z/VM! Here we are sending mvs commands alternately to the CONSOLE (in

blocks), a single TSO command in the middle of the example, and then we change the

ADDRESS to TSO toward the end for tso-specific commands.

42

PIPE is a Rexx keyword; it processes "Pipelines." These are staged commands that

process data very rapidly. The output of one stage becomes the input to the next stage,

allowing the data to flow like water. PIPE can be combined with Rexx programs to

handle rapid data management. It is complex, but very powerful!

43

Here is an example of a simple Pipeline. The goal is to take our PROFILE EXEC file,

count the number of lines in it, and then post that output to the console. This would take

several lines in Rexx, but in these examples we see it can be done in a single line. It can

be executed outside of a Rexx program, right on the z/VM CMS command line (in the

first example), or issued inside a Rexx EXEC. While they can be written on one line,

Pipelines can extend for many stages, so tradition or common practice is to write them

onto multiple lines as shown in the last example. The PIPE command must be enclosed

in quotes (it is a CMS command), and the comma "," must be used as a continuation

character (since it is all meant to be one line, no matter how many stages).

44

Here is another example of a PIPE – we issue a LISTFILE to gather the list of Rexx

EXECs on our A disk, taking only the first word (the file name), and then placing the

resultant list into a compound variable called response.

We then issue a DO loop from 1 to response.0 – our PIPE stage has automatically put

the number of items from our LISTFILE into the .0 element, making it easy for us to

program this loop. We display the file names in turn, and then our program is

completed.

45

We have mentioned DO loops and IF-THEN briefly. We will now cover them in more

detail.

DO..END are pairs of keywords which indicate a block of code. They are often used in

loops, or to indicate code that will be executed after a comparison is done. In the case

above, we have an IF-THEN statement where we compare two variables. IF wins >

losses, then we issue a congratulations message. The keyword ELSE allows us to

output another set of data if the original statement was not true.

46

Sometimes IF-THEN is not enough, and multiple options are required. We can use a

SELECT in these cases. They are similar to SELECT and CASE statements in other

programming languages. The keyword WHEN pairs with THEN to indicate a single

case inside a SELECT. OTHERWISE covers all remaining options. When using

SELECT, an OTHERWISE statement must always be programmed, even if it is to say

'otherwise NOP' (otherwise, no operations occur). If an OTHERWISE statement is not

provided, Rexx will return an error.

47

The DO..END can also be used to build loops.

DO FOREVER executes its contents forever.

DO 3 executes its contents precisely 3 times.

Finally, DO loops can be programmed with a counter variable (in this case, i) to

process a variable number of iterations. We have previously seen examples of this when

dealing with compound variables as arrays.

48

DO loops can also be executed conditionally, in either the DO WHILE or DO UNTIL

format. They are different; we shall explain what is meant by each.

A DO UNTIL checks its conditional statement (above, "i > 21") only after the first pass

through the loop. The loop will always execute at least once, no matter what. It is

similar to the Pascal language's "REPEAT..UNTIL" keywords. So in our example, i is

already larger than 21, but the loop executes once anyway, so our output is 35.

In a DO WHILE loop, the conditional statement (above, "i < 21") is checked before the

first pass through the loop. So in this case, i is never less than 21 … the loop never

executes, and our output is 30.

49

Here are three keywords which are useful to have when writing loops:

Iterate branches to the end of your construct or loop. In the first example, we iterate if

i =2 … which means we skip the say statement that provides output.

Leave exits the control construct altogether. So in our middle example, if i=3, we exit

our loop and provide additional output. Because we left the loop, we never say the

number "4".

The Exit keyword terminates the Rexx program altogether. In our last example, we

EXIT if i =3 … which means the output after the loop is never processed.

50

Rexx provides approximately 75 "built-in" functions. These can be used by

programmers without having to write their own interfaces or subroutines, they come

with the Rexx language. This slide and the next slide provide examples of these built-in

functions.

ABS() returns the absolute value of a number.

C2D() and D2X() are conversion functions for translating Characters to Decimal or

Decimal to Hex. Similar functions exist for other conversions.

DATATYPE() returns information about a variable or number.

DATE() will return the date in one of any number of formats.

LENGTH() returns the length of a string, whether it is a variable or a literal string.

51

POS() returns the starting position of a substring within a larger string.

RIGHT() will right-align your data and pad a variable with 0's on the left-hand side.

SUBSTR() can be used to obtain a substring of a larger string.

WORDS() counts the number of tokens in a literal string or a variable

WORDPOS() returns the position of a particular token inside a string.

There are a lot more Rexx functions! Check out the Rexx Reference on your

workstation for more information.

52

Of course, if the built-in functions do not suffice, you can write your own functions.

The CALL keyword can be used to execute a function, be it internal to your Rexx

EXEC, a built-in function, or external (a separate Rexx EXEC file). Alternately, a

function can be called by routine name and have parentheses to note input parameters.

A function may or may not RETURN a result. The RETURN keyword will store a

value inside special variable result if it is used.

By default, all variables within a single Rexx EXEC are global and can be modified.

Special keywords procedure and EXPOSE can be used to control variables, or make

them local-only for a function.

53

Here is an example of a subroutine call. In this example, we use the CALL keyword to

execute subroutine Calc:. Calc: is located near the bottom of the example, and the label

name has a colon ":" at the end of it. That colon is required for function label names.

Calc parses its arguments (x and y) with PARSE ARG, and then returns a mathematical

calculation – specifically, it calculates the perimeter of a rectangle. That information is

stored in variable result.

In the main program, we see result is part of an IF-THEN statement; we use it to

determine our output.

Finally, at the end of the program, we have the EXIT keyword. This is very important –

if the EXIT keyword were not used, the Calc: subroutine would be executed a second

time! So make sure to end your program with EXIT when using internal subroutines

like this.

54

The last two exercises are provided together at the end of our lab. Work on them with

the time you have available. Remember, the answers are available in Appendix A.

Exercise 4 asks you to write a new Rexx program called WHATCP EXEC that shows

z/VM CP Level information. It will do this twice – first, issue the QUERY CPLEVEL

command inside your EXEC to display the CP Level. Second, inside that same EXEC,

use the Rexx Diag() function to issue QUERY CPLEVEL. Remember, this gives us

three lines of output, and we only want a small piece of it – the CP Version, Release,

and Service level. Use PARSE to collect the data you need from this longer string.

55

Exercise 5 asks you to write a Rexx program to show you the disks a userid has

accessed. You will use nearly every concept we have covered in this lab as part of this

exercise, including Pipes and subroutines.

The next slide contains places where you can learn more about the Rexx programming

language.

56

57

There is a lot of information on the Rexx Programming language available on the

internet, be it via the IBM libraries or from other publications. The IBMVM list server

is another good source for Rexx – this is a customer-run mailing list, and the people

there are very helpful and friendly toward anyone learning VM or Rexx, so don't be

afraid to ask questions!

58

The answers!

59

60

This is the Rexx Program which creates a temporary disk at a file mode that is provided

as input. The PARSE statement converts the input argument mode to UPPER case, and

then stores it in variable fmode. If there is any extra input it is placed in variable rest.

Next, the program checks to make sure valid input was provided. If not, it issues a

message and terminates the program.

The next we see are system commands issued by program GETTEMP. These

commands remove an existing temporary disk from if it exists, and then defines the new

temporary disk. Before files can be placed on a new disk, it must be formatted. The

FORMAT command does this; you see input to the prompts issued by the FORMAT

command provided on the QUEUE statements. Also, we specify the input mode on the

FORMAT command so the disk will be accessed at that mode when the format is

complete.

Once the disk is formatted, it is ready to accept files. But first, we check if the input

mode was "A"; if so, we move the disk that is currently at A to B; then we use the

COPYFILE command to copy existing files with type EXEC from the existing disk to

the new temporary disk.

61

As we indicated, this is a short program. All Rexx programs begin with a comment,

even if the comment is blank. We expect the suit to be entered on the command line

(for example "CARDLAB DIAMONDS" or "CARDLAB SPADES") … it is stored in

variable suit. Output from the say statement prompts someone sitting at the terminal to

enter a number. That input is collected by the pull statement and is stored in variable

num. We then provide output based upon your input.

62

When Trace Intermediates is used, we see the incorrect output "STRING11", instead

of expected output "Rexx Lab" in variable string1.

There is also an error on the statement that attempts to set variable string2 with the

value of concatenated string "Exercise".

A closer look at the program reveals that string11 was specified on the SAY statement

instead of string1. Since string11 has not been initialized, its contents are set to its

name in uppercase: "STRING11".

We can also see that there are mismatching quotes delimiting string "ise'.

63

The bugs are fixed as follows:

• The SAY statement is corrected to specify string1 instead of string11

• String "ise" is corrected with both delimiters now double quotes

With these corrections, the program correctly displays the strings "Rexx Lab" and

"Exercise".

64

In this program, Trace Intermediates shows that the values in variables w1, w2, and w3

that are used to compute $average are nulls. This causes an error when the computation

is attempted.

This happens because the PARSE statement is incorrect. The values to be used to

compute the average are in variable Nums; they were not provided as input arguments.

In addition, on the "$average =" statement, // will provide the remainder rather than the

quotient for the division operation. This will give an incorrect value for $average.

65

To correct this program:

• The PARSE statement was changed from parse arg nums to parse var nums . This

causes the values in variable Nums to be parsed into w1, w2, and w3.

• // on the '$average =' statement was changed to /. This corrects the division operation

to compute the correct average value.

66

The trace of the corrected program looks much different than when we originally traced

it. Now we see the correct values being used to compute $average, as well as the

addition and division operations being done correctly. The resulting correct average is

now displayed.

67

The first half of this exercise is simple – issue the CP command by putting it into

quotes. Rexx does the rest.

The second part is tougher. We use PARSE VALUE to gather the information from the

DIAG() function. We could just place this information into a single variable like our

queryout variable from the lecture slide, and then parse that into smaller variables …

but why add the extra step? Instead, we use the full stop (our "skip this token"

character) so that we only pull three tokens worth of data from the command. The final

full stop skips everything else that's left.

There were two ways to write this exec, but the main program is the same no matter

what. We call our subroutine, output the number of disks, and then we use a DO loop to

output the number of disks. Then we end with a QUERY DISK to provide comparative

output. Finally, we EXIT the program.

Our subroutine in this case is a PIPE which issues a CMS QUERY DISK command,

drops the first line (the header of the output), and then takes the remaining input and

places it in a stem variable DiskList. Remember, our PIPE automatically tells us how

many disks were involved by putting it into DiskList.0 … we place that data in variable

NumDisks and return it.

68

In the second example, our subroutine adds in another two extra lines. Rather than

assigning a value to NumDisks based on DiskList.0, we continue the PIPE. The third

Pipeline stage, "count lines," takes our DiskList variable as input, so it can tell us how

many elements are in our array. We then pass that information into a final stage, "var

NumDisks," which stores that value into the variable we plan to return.

69

This Appendix shows a sample Rexx program which could be used as a utility on a

z/VM system.

70

71

GETTMODE builds on the GETTEMP program that we saw in the first lab exercise.

Instead of providing a filemode as input, GETTMODE dynamically locates an unused

filemode and creates a temporary disk at that filemode.

GETTMODE uses most of the language constructs that were covered in the lab material

(plus a few Rexx programming tricks!).

72

This chart shows the logic of GETTMODE.

73

This is the main path code for GETTMODE. As you can see it is rather short, and very

similar to the logic in GETTEMP. The difference is that since the mode for the new disk

is an unused mode, we do not have to include the test to determine if we are replacing

the A-disk.

Most of the work is done in subroutine Findmode:, which is called at the beginning of

the program. The result of Findmode: will be used by the main path to define and

format the new temporary disk.

74

The most complex part of GETTMODE is determining which disk modes are available

for assignment of the temporary disk. This is done in subroutine Findmode:.

Findmode: starts with a CMS Pipeline. The pipe issues a QUERY SEARCH command,

which provides output listing all of the currently accessed disks. The third token, or

word, in each line of the QUERY SEARCH output is the filemode of that particular

disk. The modes from each line of the QUERY SEARCH output are saved in stem

variable usedmode. Each filemode will be in a separate entry in usedmode.

Next, the DO loop extracts each entry from stem variable usedmode and concatenates

them to a string variable called acc_modes. At the end of this loop, acc_modes will

contain all of the currently used filemodes.

The second DO loop builds a list of all possible modes into stem modelist.

Next, there is a nested loop which compares each character (representing a filemode) in

string acc_modes to its equivalent entry in stem modelist. When they are equal, the

filemode represented by that character is already being used. The entry in modelist is

cleared, indicating that this mode is not available for the new disk.

75

Once all of the used filemodes have been erased from stem modelist, GETTMODE

searches for the first non-blank filemode that remains in the modelist stem. This

indicates the first available filemode in the search order, and will be returned to the

main program to be used when creating the temporary disk.

If no filemodes are available, 0 is returned to the main program and no new disk is

created.

76

This program uses CMS Pipelines to accomplish the same thing as the GETTMODE

program on the previous pages. You can see how much shorter the program is when

Pipelines is used.

