

CPU MF Update and What's New with z/OS 2.1?

John Burg **IBM**

August 7, 2014 Session Number 15705

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

GDPS* RACF* AlphaBlox* Tivoli* APPN* **HiperSockets** Redbooks* Tivoli Storage Manager CICS* HyperSwap Resource Link TotalStorage* CICS/VSE* IBM* RFTAIN* VSE/ESA Cool Blue IBM eServer REXX VTAM* **DB2*** IBM logo* **RMF** WebSphere* **DESMS** \$/390* IMS zEnterprise **DFSMShsm** Language Environment* Scalable Architecture for Financial Reporting xSeries* **DFSMSrmm** Sysplex Timer* z9* Large System Performance Reference™ (LSPR™) Systems Director Active Energy Manager z10 DirMaint DRDA* Multiprise* System/370 z10 BC DS6000 MVS System p* z10 EC DS8000 **OMEGAMON*** System Storage z/Architecture* **ECKD** Parallel Sysplex* System x* 7/OS* ESCON* Performance Toolkit for VM System z z/VM* FICON* PowerPC* System z9* z/VSE FlashCopv* PR/SM System z10 zSeries* Processor Resource/Systems Manager * Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

^{*} All other products may be trademarks or registered trademarks of their respective companies.

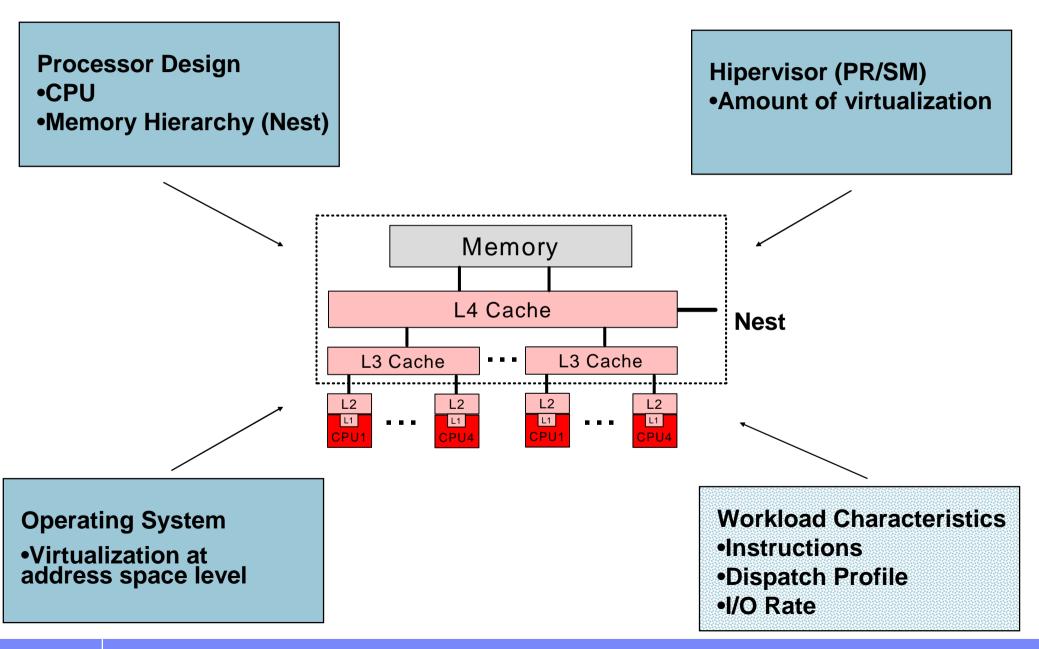
Notice Regarding Specialty Engines (e.g., zIIPs, zAAPs and IFLs):

Any information contained in this document regarding Specialty Engines ("SEs") and SE eligible workloads provides only general descriptions of the types and portions of workloads that are eligible for execution on Specialty Engines (e.g., zIIPs, zAAPs, and IFLs). IBM authorizes customers to use IBM SEs only to execute the processing of Eligible Workloads of specific Programs expressly authorized by IBM as specified in the "Authorized Use Table for IBM Machines" provided at:

www.ibm.com/systems/support/machine_warranties/machine_code/aut.html ("AUT").

No other workload processing is authorized for execution on an SE.

IBM offers SEs at a lower price than General Processors/Central Processors because customers are authorized to use SEs only to process certain types and/or amounts of workloads as specified by IBM in the AUT.



Agenda

- New Dawn in System z Capacity Planning
 - What and Why
- Validation and Enablement
- CPU MF Metrics
 - Basic
 - RNI
- CPU MF Update
- What's new in z/OS 2.1?
- Summary
- Back Up
 - Formulas
 - Data Profiles
 - HiperDispatch Considerations

New Day Dawning in System z Capacity Planning

Introduction to LSPR

A set of representative SCP/workload environments

- SCPs: z/OS, z/VM, and Linux on System z
- Workload categories: Low ←Relative Nest Intensity→ High
- Current LSPR workload categories: Low, Average, High
- zPCR extends published categories
 - Low-Avg
 - Avg-High
- A methodology focused on processor capacity
- No significant external constraints
- Equivalent (reasonably high, e.g. >= 90%) processor utilization

A metric to communicate the results

- ITR: Internal Throughput Rate
- Transactions or Jobs per processor busy second

Information stored on the web

https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex?OpenDocument

LSPR Workload Categories

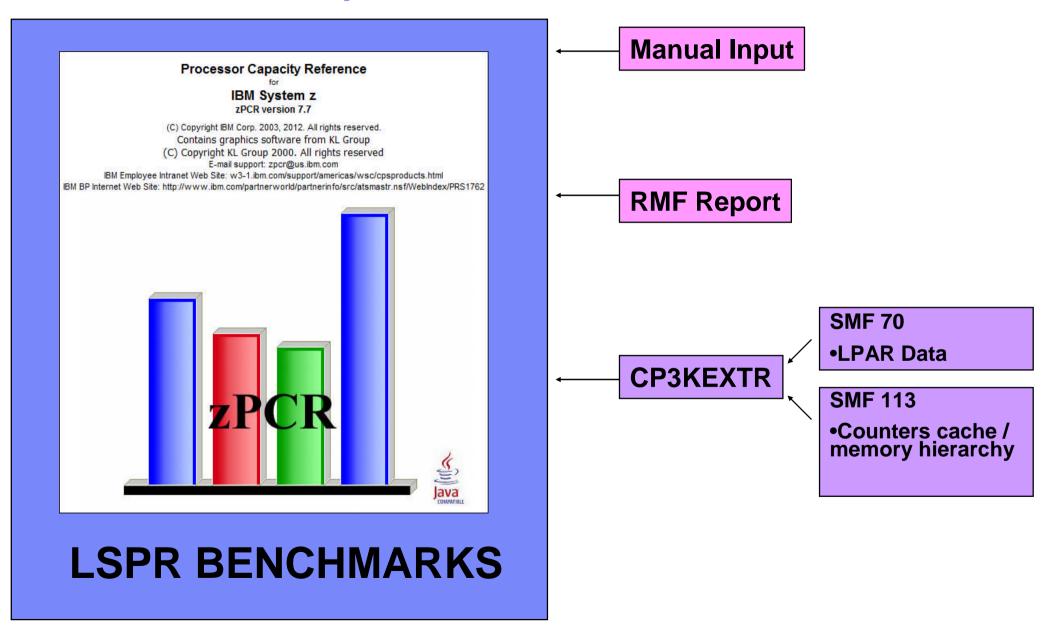
- Various combinations of workload primitives are measured on which the new workload categories are based
 - Applications include CICS, DB2, IMS, OSAM, VSAM, WebSphere, COBOL, utilities
- Low (relative nest intensity)
 - Workload curve representing light use of the memory hierarchy
 - Similar to past high scaling workload primitives
- Average (relative nest intensity)
 - Workload curve expected to represent the majority of customer workloads
 - Similar to the past LoIO-mix curve
- High (relative nest intensity)
 - Workload curve representing heavy use of the memory hierarchy
 - Similar to the past DI-mix curve
- zPCR extends published categories
 - Low-Avg
 - 50% Low and 50% Average
 - Avg-High
 - 50% Average and 50% High

CPU Measurement Facility

- Introduced in z10 and later processors
- Facility that provides hardware instrumentation data for production systems
- Two Major components
 - Counters
 - Cache and memory hierarchy information
 - SCPs supported include z/OS and z/VM
 - Sampling
 - Instruction time-in-CSECT

New z/OS HIS started task

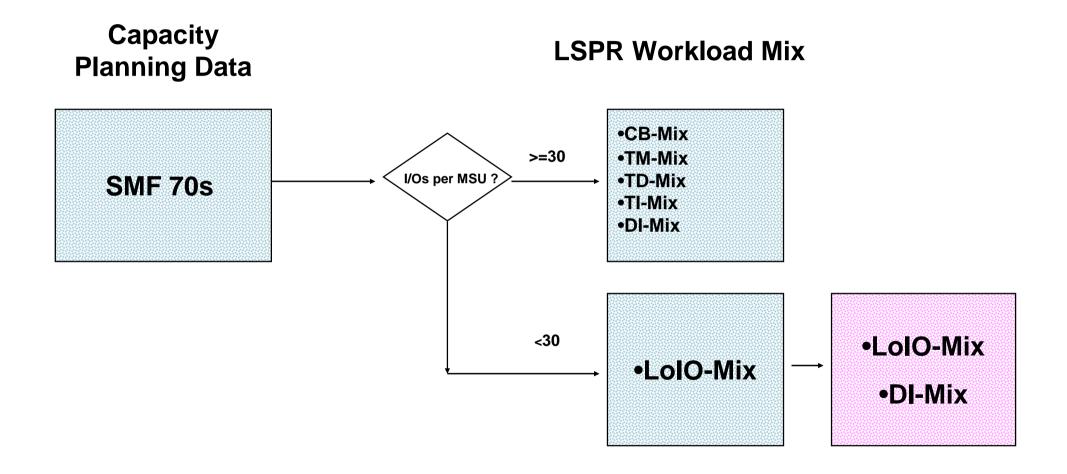
- Gathered on an LPAR basis
- Writes SMF 113 records


New z/VM Monitor Records

- Gathered on an LPAR basis all guests are aggregated
- Writes new Domain 5 (Processor) Record 13 (CPU MF Counters) records

Minimal overhead

New Hardware Capabilities to Size z/OS Workloads


Importance of using CPU MF Counters

 New CPU MF Counters provide better information to do more successful capacity planning

- Same data used to validate the LSPR workloads can now be obtained from production systems
 - Matches your production workload to the LSPR workloads
 - zPCR automatically processes CPU MF data to provide a match
 - Based on Relative Nest Intensity (RNI)
- CPU MF Counters also useful for performance analysis

Challenge to Use SMF to Select a LSPR Workload Mix

SMF 113s Provide Better LSPR Workload Selection

Capacity Planning Data LSPR Workload Category *Low *Low-Average *Average *Average *Average *Average *High

Validation and Enablement Details

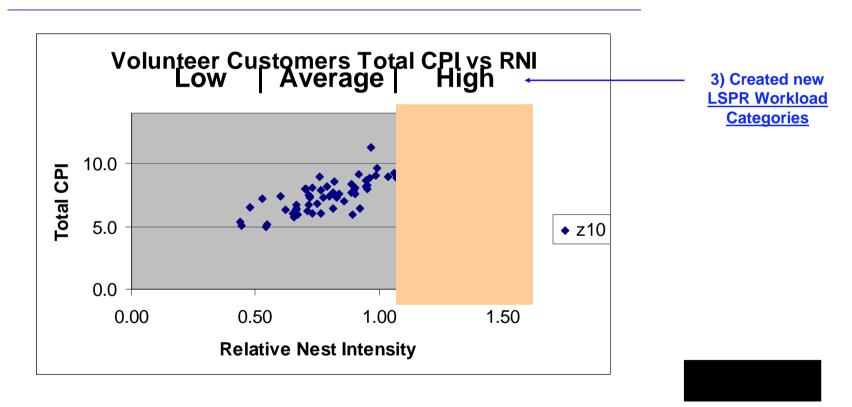
Workload Category Validation Process

Analyzed customer data

Initial z10 Study

- 100 z10 customer LPARs
- SMF 70s and SMF 113s
- Built relationship between performance and Nest
- Built new metric to more precisely match workloads
 - Relative Nest Intensity (RNI)
- LSPR workload categories defined as Low, Average, and High RNI

Validated RNI metrics with review of z10 to z196 Migrations


- 75 z10 to z196 customer LPAR migrations
- Validated RNI based workload match

Validation from zEC12 / zBC12 Migrations

105 z10/z196/z114 to zEC12/zBC12 customer LPAR migrations

CPU MF z10 Customer Workload Characterization Summary

1) Customer <u>CPI</u> measurements

2) Created new RNI metric

Requirements to Enable CPU MF Counters

Processor requirements

-z10, z196, z114, zEC12 or zBC12

z/OS requirements

- -z/OS 1.10 or higher
 - With APAR OA30486

z/VM requirements

- -z/VM at 5.4 or higher
 - With APAR VM64961

z/OS Steps to Enable CPU MF Counters

- 1 Configure the processor to collect CPU MF
 - ____ Update the LPAR Security Tabs, can be done dynamically
- 2 Set up HIS and z/OS to collect CPU MF
 - ___ Set up HIS Proc
 - Set up OMVS Directory required
 - ____ Collect SMF 113s via SMFPRMxx
- 3 Collect CPU MF COUNTERs
 - ___ Start HIS
 - ____ Modify HIS: "F HIS,B,TT='Text',PATH='/his/',CTRONLY,CTR=(B,E),SI=SYNC"
 - Recommend to start HIS, Modify for Counters, and continuously run

SMF 113s Space Requirements

- The SMF 113 record puts minimal pressure on SMF
 - 452 bytes for each logical processor per interval
- Example below is from 3 z196s processors
 - 713, 716 and 718
 - 10 Systems
 - 5 Days, 24 hours
- SMF 113s were 1.2% of the space compared to SMF 70s & 72s

RECORD TYPE	RECORDS READ		AVG. RECORD LENGTH	MIN. RECORD LENGTH	MAX. RECORD LENGTH	RECORDS WRITTEN	Total Size (with AVG. Record Size)	% Total Size (with AVG. Record Size)
70 72 113	14,250 744,014	OF TOTAL 1.8% 93.5% 4.7%	14,236 1,516	640 1,104	32,736 20,316	14,250 744,014	202,865,850 1,128,252,590 16,768,296	83.7%
TOTAL	795,362	100.0%	1,695	18	32,736	795,362	1,347,886,736	100.0%

Operations – Display Command (on zEC12)

F HIS, B, TT='CPU MF COUNTERS ENABLED', CTRONLY, CTR=ALL, SI=SYNC

D HIS

```
RESPONSE=SYSD
HIS015T 07.46.47 DISPLAY HIS 522
HIS 0025 ACTIVE
 COMMAND: MODIFY HIS, B, TT= 'CMU MF COUNTERS
ENABLED', CTRONLY, CTR=ALL, SI=
         SYNC
 START TIME: 2012/09/07 00:53:46
 END TIME: ----:--
 COMPLETION STATUS: -----
FILE PREFIX: SYSHIS20120907.005346.
 COUNTER VERSION NUMBER 1: 1 COUNTER VERSION NUMBER 2: (3) ← zEC12 "3"
 COMMAND PARAMETER VALUES USED:
                                                                z196 "2"
 TITLE= CMU MF COUNTERS ENABLED
 PATH= .
 COUNTER SET= BASIC, PROBLEM-STATE, CRYPTO-ACTIVITY, EXTENDED
 DURATION= NOLIMIT
 CTRONLY
 DATALOSS= IGNORE
  STATECHANGE = SAVE
  SMFINTVAL= SYNC
```

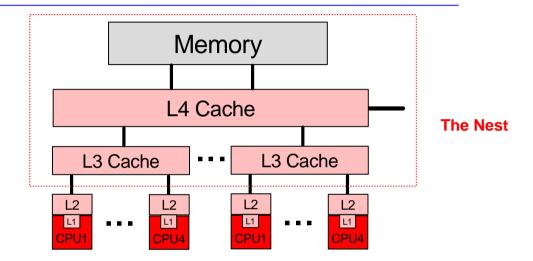

Use CPU MF Counters for Performance Analysis

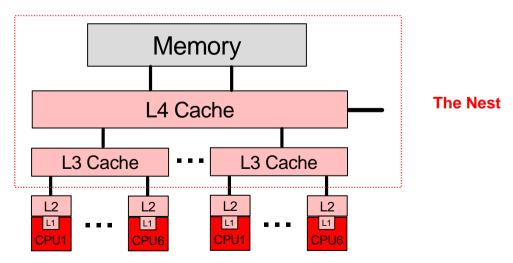
Counters can be used as a secondary source to:

- Supplement current performance data from SMF, RMF, DB2, CICS, etc.
- Help understand why performance may have changed

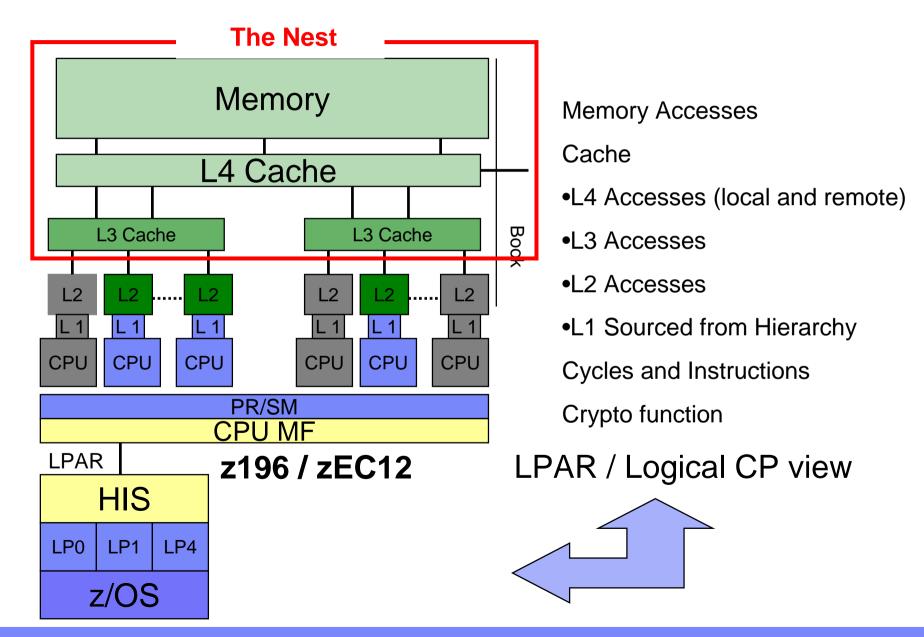
Some examples of usage include:

- HiperDispatch Impact
- Configuration changes (Additional LPARs)
- 1 MB Page implementation
- Application Changes (e.g. CICS Threadsafe Vs QR)
- Estimating Utilization Effect for capacity planning
- z196+ GHz change in Power Saving Mode
- Crypto CPACF usage




Metrics

zEC12 versus z196 hardware comparison


- **z**196
 - **CPU**
 - -5.2 GHz
 - Out-Of-Order execution
 - ► Caches
 - -L1 private 64k i, 128k d
 - -L2 private 1.5 MB
 - -L3 shared 24 MB / chip
 - -L4 shared 192 MB / book
- **z**EC12
 - **CPU**
 - -5.5 GHz
 - Enhanced Out-Of-Order
 - ► Caches
 - -L1 private 64k i, 96k d
 - -L2 private 1 MB i + 1 MB d
 - -L3 shared 48 MB / chip
 - -L4 shared 384 MB / book

z196 / zEC12 CPU MF Cache / Memory Hierarchy Sourcing

CPU MF Basic Performance Metrics:

			L15P /		L2LP/	L2RP/		
CPI	Prb State	L1MP	L2P	L3P	L4LP	L4RP	MEMP	LPARCPU

CPI – Cycles per Instruction

PRB STATE - % Problem State

L1MP – Level 1 Miss Per 100 instructions

L15P / L2P - % sourced from L1.5 or L2 cache

L3P - % sourced from L3 cache

L2LP / L4LP – % sourced from Level 2 (or L4) Local cache (on same book)

L2RP / L4RP – % sourced from Level 2 (or L4) Remote cache (on different book)

MEMP - % sourced from Memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

Workload Characterization
L1 Sourcing from cache/memory hierarchy

Workload Capacity Performance

- Instruction Complexity (Micro Processor Design)
 - Many design alternatives
 - Cycle time (GHz), instruction architecture, pipeline, superscalar, Out-Of-Order, branch prediction and more
 - Workload effect
 - May be different with each processor design
 - Once established for a workload on a processor, doesn't change very much

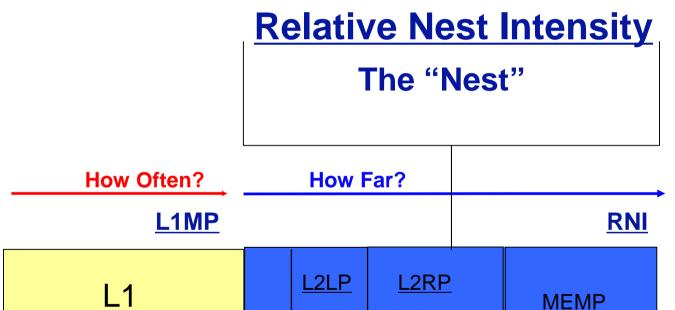
Workload Capacity Performance

Memory Hierarchy or "Nest"

- Many design alternatives
 - Cache (levels, size, private, shared, latency, MESI protocol), controller, data buses
- Workload effect
 - Quite variable
 - Sensitive to many factors: locality of reference, dispatch rate, IO rate, competition with other applications and/or LPARs, and more
 - Net effect of these factors represented in "Relative Nest Intensity"

Relative Nest Intensity (RNI)

- Activity beyond private-on-chip cache(s) is the most sensitive area
- Reflects distribution and latency of sourcing from shared caches and memory
- Level 1 cache miss per 100 instructions (L1MP) also important
- Data for calculation available from CPU MF (SMF 113) starting with z10



Relative Nest Intensity (RNI) Metric

- Reflects the distribution and latency of sourcing from shared caches and memory
 - For z10 EC and BC RNI = (

1.0*L2LP + 2.4*L2RP + 7.5*MEMP) / 100

- For z196 / z114
- RNI = 1.67*(0.4*L3P + 1.0*L4LP + 2.4*L4RP + 7.5*MEMP) / 100
- For zEC12 / zBC12 RNI = 2.2 * (0.4*L3P + 1.2*L4LP + 2.7*L4RP + 8.2*MEMP) / 100

L4LP

How intensely this part of the architecture is utilized

Microprocessor Design

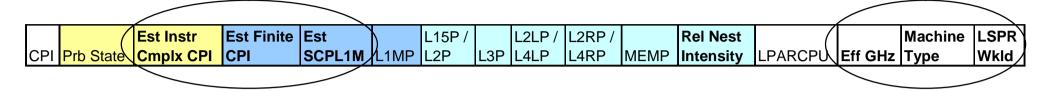
Memory Hierarchy or Nest

L4RP

*z196 / z114 RNI Changed July 2012

Note these Formulas may change in the future

RNI-based LSPR Workload Decision Table


L1MP	RNI	LSPR Workload Match
<3%	>= 0.75 < 0.75	AVERAGE LOW
3% to 6%	>1.0 0.6 to 1.0 < 0.6	HIGH AVERAGE LOW
>6%	>=0.75 < 0.75	HIGH AVERAGE

Notes: applies to z10, z196, z114, zEC12 and zBC12 CPU MF data table may change based on feedback

Note these Formulas may change in the future

CPU MF Additional Performance Metrics:

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI

Est Finite CPI - Estimated Finite CPI

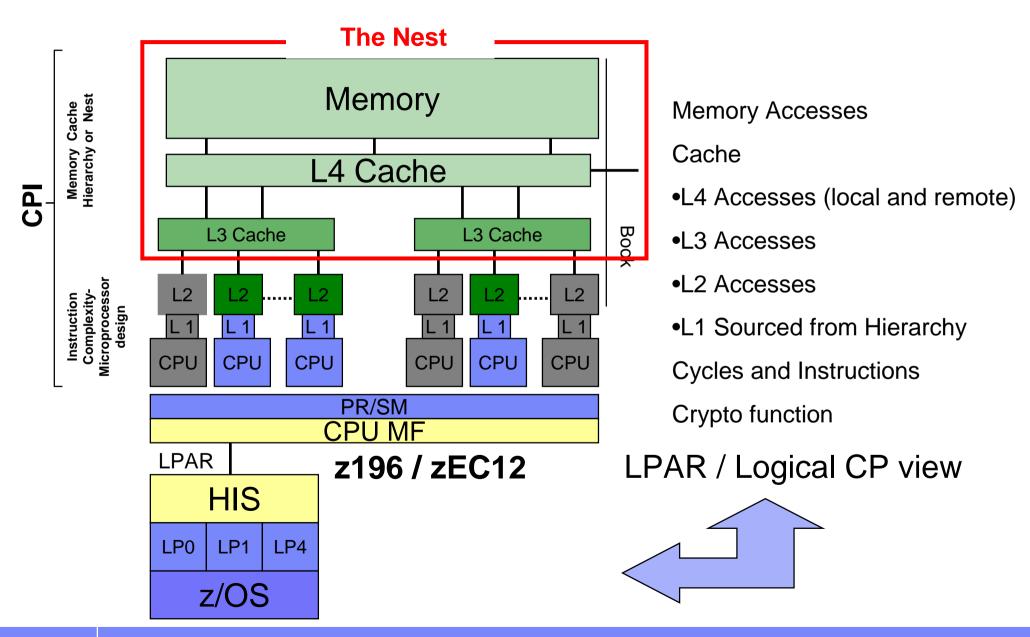
Est SCPL1M – Estimated Sourcing Cycles per L1 Miss Per 100 instructions

Eff GHz – Effective Gigahertz

Machine Type - Machine Type (e.g. z10, z196, z114, zEC12)

LSPR Wkld – LSPR Workload match based on L1MP and RNI

Workload Characterization
L1 Sourcing from cache/memory hierarchy


Sample WSC zEC12 Metrics

						Est Instr Cmplx	Est Finite	Est		L15P /		L2LP /	L2RP /		Rel Nest			Machine	LSPR
SYSID	Mon	Day SH	Hour	CPI	Prb State			SCPL1M	L1MP	L2P		L4LP				LPARCPU	Eff GHz		Wkld
SYSD	SEP	7 M	1.00	2.59	1.8	1.89	0.69	21	3.4	79.6	18.1	1.1	0.2	1.0	0.38	0.8	5.5 z	EC12	LOW
SYSD	SEP	7 M	1.25	2.48	1.9	1.87	0.61	17	3.5	81.4	17.2	0.6	0.1	0.6	0.28	0.7	5.5 z	EC12	LOW
SYSD	SEP	7 M	1.50	2.45	2.1	1.86	0.59	16	3.7	82.1	16.8	0.5	0.1	0.4	0.25	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	1.75	2.41	2.0	1.83	0.58	16	3.6	82.1	16.8	0.6	0.1	0.4	0.25	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	2.00	2.37	2.1	1.79	0.58	16	3.7	82.2	16.8	0.5	0.1	0.4	0.24	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	2.25	2.35	2.1	1.78	0.57	16	3.6	82.4	16.6	0.5	0.1	0.4	0.24	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	2.50	2.35	2.1	1.78	0.57	16	3.7	82.2	16.8	0.5	0.1	0.4	0.24	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	2.75	2.35	2.1	1.78	0.57	16	3.6	82.4	16.6	0.5	0.1	0.4	0.24	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	3.00	2.34	2.1	1.78	0.57	16	3.6	82.3	16.8	0.4	0.1	0.4	0.24	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	3.25	2.34	2.1	1.77	0.56	16	3.6	82.5	16.6	0.5	0.1	0.4	0.24	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	3.50	2.35	2.1	1.78	0.57	16	3.6	82.4	16.6	0.5	0.1	0.4	0.24	0.6	5.5 z	EC12	LOW
SYSD	SEP	7 M	3.75	2.35	2.1	1.78	0.57	16	3.6	82.4	16.6	0.5	0.1	0.4	0.24	0.6	5.5 z	EC12	LOW

Workload Characterization
L1 Sourcing from cache/memory hierarchy

z196 / zEC12 CPU MF Cache / Memory Hierarchy Sourcing

CPU MF Update

CPU MF Updates

- TDSz supports CPU MF Counters and Reporting
 - APAR PM78418 provides exploitation support for SMF 113-2s

- zBC12 RNI and LSPR Workload Match same as zEC12
 - Other zBC12 CPU MF metrics the same as zEC12 also

- Many customers still have not enabled CPU MF Counters
 - Will continue to be the way to match your workload to LSPR
 - Recommendation is to enable CPU MF Counters!

z/OS 2.1 New Features

z/OS 2.1 – CPU MF Summary

New HISSERV Service

New Programming Interface for <u>real time CPU MF access</u>

ZOS SOFTWARE Counters

- New Counter Set (in addition to Basic, Problem, Crypto, and Extended)
- Only recorded in SMF 113 subtype 1

Command Changes

- Modify HIS, SERVICE allows changes to Sampling parameters without having to start/stop.
 - Sampling parameters accept "PERSIST" to use value from previous run
- New CTRSET options
 - CTRSET=ALL (old, e.g. Basic, Problem, Crypto and Extended)
 - CTRSET=HARDWARE (new, same as ALL)
 - CTRSET=SOFTWARE (new, ZOS Counter Set) might include performance overhead
 - CTRSET=COMPLETE (new, HARDWARE AND ZOS Counter Set) might include performance overhead

SMF 113 Record Changes

- SMF 113 Subtype 2
 - Interval Start and End Time
- **Recommendation remains to continuously run CPU MF Counters** (Basic and Extended) – collecting SMF 113 Subtype 2 records
- "F HIS,B,TT='Text',PATH='/his/',CTRONLY,CTR=(B,E),SI=SYNC" Machine Sequence Code (e.g. Processor Serial Number)
- SMF 113 Subtype 1 New
 - Same as SMF 113 Subtype 2 but only Delta values
 - Includes ZOS Counter Set

z/OS 2.1 Display HIS Command (on zEC12)

F HIS.B.TT='BE Counters', CTRONLY, CTR=COMPLETE, SI=SYNC

2013/07/31 13:57:31 00:04:42.111226

D HIS

```
HIS015I 17.16.52 DISPLAY HIS 113
                                                        CTR=COMPLETE to get All Counters, including ZOS
HIS
       002A ACTIVE
COMMAND: MODIFY HIS, B, TT='BE Counters', CTRONLY CTR=COMPLETE SI=SYNC
START TIME: 2013/07/31 13:57:31
END TIME:
           ----/--/-- --:--
COMPLETION STATUS: -----
FILE PREFIX: SYSHIS20130731.135731.
COUNTER VERSION NUMBER 1: 1 COUNTER VERSION NUMBER 2:(3) ← ZEC12 "3"
COMMAND PARAMETER VALUES USED:
TITLE= BE Counters
PATH=
COUNTER SET= BASIC, PROBLEM-STATE, CRYPTO-ACTIVITY, EXTENDED, ZOS
DURATION= NOLIMIT
CTRONLY
DATALOSS= IGNORE
STATECHANGE = SAVE
                                                        New HISSERV Programming Interface
SMFINTVAL= SYNC
HISSERV STATUS: ACTIVE
EVENT
                                                               EVENT - Counters: B, P, C, E and ZOS
 AUTHORIZED= BASIC, PROBLEM-STATE, CRYPTO-ACTIVITY, EXTENDED, COS
 ENABLED= BASIC, PROBLEM-STATE, CRYPTO-ACTIVITY, EXTENDED ZOS
 SAMPLE
                                                               SAMPLE - Not active
 AUTHORIZED= BASIC
 ENABLED= NONE
          18 (PAGES/PROCESSOR)
 BUFCNT=
 SAMPFREO= 800000 (SAMPLES/MINUTE)
 PROFILER
 NAME
          START
                             OUERY
                                             SAMPLE
                                                            HISPROF Profiler captures Counters and Sampling
 HISPROF
```


z/OS 2.1 – SMF 113 Subtype 2 and Subtype 1 match values

	Subtype 2 Cycles	Subtype 2 Instructions	Subtype 2 CPI	Subtype 1 Cycles	Subtype 1 Instructions	Subtype 1 CPI	Difference Difference Cycles Instructions CPI
7/29/2014 10:50	7.62735E+12	3.5391E+12					
7/29/2014 10:55	7.63134E+12	3.54093E+12		3,994,929,861	1,835,586,625	2.18 <== deltas in Sub 1 record	
Deltas calculated ==>	3,994,929,861	1,835,586,625	2.18	3,994,929,861	1,835,586,625	2.18	0 0 0

Total Cycles and Instructions are equal for same time period whether Subtype 2 (by subtracting from previous record) or directly from Subtype 1

z/OS 2.1 - SMF 30 Instruction Counts Addition

- Instruction Counts added to SMF 30 Record
- Provide a more consistent metric which does not see as much CPU variability due to:
 - Impacts of hardware caching
 - LPAR configurations
 - Software stack
 - Workload interactions dispatch rate
- May have some variability due to how instruction counts are affected by interrupt processing
 - Looking for "Volunteers" to determine if Instruction Counts are more consistent
- Requires CPU MF Counters to be enabled
 - Basic, but IBM recommends Basic and Extended Counters to be continuously enabled on all partitions
- Requires new SMFPRMxx to be enabled
 - "SMF30COUNT"
 - Default is NOSMF30COUNT

Looking for zOS 2.1 Instruction Count "Volunteers" to send SMF data

 We want to determine Instruction Vs CPU time consistency at various utilizations

Looking for "Volunteers"

- •SMF data from 3 days from 2 different "like" weeks (e.g. Mon-Wed)
 - •24 hours/day, SMF 30s, 70s, 72s, 113s per LPAR
- •z/OS 2.1 with "SMF30COUNT" enabled and CPU MF Counters enabled
- Production partitions only
 - Preferred Customer Profile:

Websphere, or CICS running with Transaction goals, or large DDF workload, or small utility type Batch jobs that run consistently thru day

If interested send note to jpburg@us.ibm.com,

No deliverable will be returned

Benefit: Opportunity to ensure your data is used to influence analysis

z/OS 2.1 - SMF 30 Instruction Counts - WSC Example

evein	Year Mon	Time Ended	lab	Program	Step	EXCPs	Total CPU	Total
SYSID	Day		Job	Name	Name	EXCPS	Time (Sec)	Instructions
	z/OS 2.							
SYSA			JPBURGSA	_	STEP1	2001	0.01	16,340,482
SYSA			JPBURGSA		STEP2	2001	0.01	16,199,788
SYSA			JPBURGSA	_	STEP3	2001	0.01	16,347,731
SYSA			JPBURGSA		STEP4	2001	0.01	16,347,867
SYSA			JPBURGSA	_	STEP5	2001	0.01	16,337,641
SYSA			JPBURGSA		STEP6	2001	0.01	16,483,593
SYSA			JPBURGSA		STEP7	2001	0.01	16,499,524
SYSA			JPBURGSA	_	STEP8	2001	0.01	16,442,022
SYSA			JPBURGSA		STEP9	2001	0.01	16,320,232
SYSA	20130729	10:49:14	JPBURGSA	IFASMFDP	STEP10	2001	0.01	16,462,418
Averag	е							16,378,130
zEC1	2 z/OS 2	2.1						
SYSD	20130729	10:53:55	JPBURGSD	IFASMFDP	STEP1	1997	0.01	17,478,234
SYSD	20130729	10:53:55	JPBURGSD	IFASMFDP	STEP2	1997	0.01	16,769,039
SYSD	20130729	10:53:56	JPBURGSD	IFASMFDP	STEP3	1997	0.01	16,777,085
SYSD	20130729	10:53:56	JPBURGSD	IFASMFDP	STEP4	1997	0.01	16,766,266
SYSD	20130729	10:53:56	JPBURGSD	IFASMFDP	STEP5	1997	0.01	16,777,423
SYSD	20130729	10:53:57	JPBURGSD	IFASMFDP	STEP6	1997	0.01	16,776,880
SYSD	20130729	10:53:57	JPBURGSD	IFASMFDP	STEP7	1997	0.01	16,777,508
SYSD	20130729	10:53:58	JPBURGSD	IFASMFDP	STEP8	1997	0.01	16,772,420
SYSD	20130729	10:53:58	JPBURGSD	IFASMFDP	STEP9	1997	0.01	16,771,576
SYSD	20130729	10:53:59	JPBURGSD	IFASMFDP	STEP10	1997	0.01	16 ,772,24 2
Averag	е							16,843,867

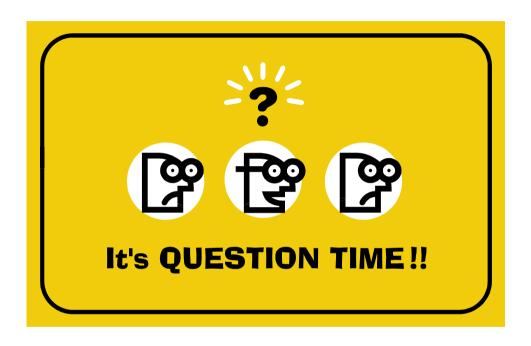
Total Instructions
may become the
preferred metric for
charge back because
of consistency Vs
CPU time

We'd like your feedback

Warning: These numbers come from a synthetic benchmark and do not represent a production workload

z/OS 2.1 - SMF 30 Instruction Counts - WSC Example

Job, Step or Service Class <u>Cycles per Instruction (CPI)</u> can now be derived from SMF 30 records and may become an additional metric to help identify a performance change


								zEC12 / z196		
	Year Mon	Time		Program	Step	Total	Total CPU Time		zEC12 / z196	
SYSID	Day	Ended	Job	Name	Name	Instructions	(microseconds)		Total Cycles	Total CPI
z196	z/OS 2.	1	•	•	•	•			-	
SYSA	20130729	10:49:10	JPBURGSA	IFASMFDP	STEP1	16,340,482	15,172.750	5208	79,019,682	4.84
SYSA	20130729	10:49:11	JPBURGSA	IFASMFDP	STEP2	16,199,788	14,796.000	5208	77,057,568	4.76
SYSA	20130729	10:49:11	JPBURGSA	IFASMFDP	STEP3	16,347,731	14,915.875	5208	77,681,877	4.75
SYSA	20130729	10:49:12	JPBURGSA	IFASMFDP	STEP4	16,347,867	14,864.500	5208	77,414,316	4.74
SYSA	20130729	10:49:12	JPBURGSA	IFASMFDP	STEP5	16,337,641	14,864.500	5208	77,414,316	4.74
SYSA	20130729	10:49:12	JPBURGSA	IFASMFDP	STEP6	16,483,593	14,813.125	5208	77,146,755	4.68
SYSA	20130729	10:49:13	JPBURGSA	IFASMFDP	STEP7	16,499,524	14,813.125	5208	77,146,755	4.68
SYSA	20130729	10:49:13	JPBURGSA	IFASMFDP	STEP8	16,442,022	14,693.250	5208	76,522,446	4.65
SYSA	20130729	10:49:14	JPBURGSA	IFASMFDP	STEP9	16,320,232	14,813.125	5208	77,146,755	4.73
SYSA	20130729	10:49:14	JPBURGSA	IFASMFDP	STEP10	1 6,462,41 8	14,950.125	5208	77,860,251	4.73
Averag	е					16,378,130	14,869.638		77,441,072	4.73
zEC1	2 z/OS 2	2.1								
SYSD			JPBURGSD		STEP1	17,478,234	9,278.625	5504	51,069,552	2.92
SYSD	20130729	10:53:55	JPBURGSD	IFASMFDP	STEP2	16,769,039	8,978.875	5504	49,419,728	2.95
SYSD	20130729	10:53:56	JPBURGSD	IFASMFDP	STEP3	16,777,085	9,019.750	5504	49,644,704	2.96
SYSD	20130729	10:53:56	JPBURGSD	IFASMFDP	STEP4	16,766,266	8,965.250	5504	49,344,736	2.94
SYSD	20130729	10:53:56	JPBURGSD	IFASMFDP	STEP5	16,777,423	8,938.000	5504	49,194,752	2.93
SYSD	20130729	10:53:57	JPBURGSD	IFASMFDP	STEP6	16,776,880	9,115.125	5504	50,169,648	2.99
SYSD	20130729	10:53:57	JPBURGSD	IFASMFDP	STEP7	16,777,508	8,978.875	5504	49,419,728	2.95
SYSD	20130729	10:53:58	JPBURGSD	IFASMFDP	STEP8	16,772,420	9,060.625	5504	49,869,680	2.97
SYSD	20130729	10:53:58	JPBURGSD	IFASMFDP	STEP9	16,771,576	9,278.625	5504	51,069,552	3.05
SYSD	20130729	10:53:59	JPBURGSD	IFASMFDP	STEP10	16,772,242	8,992.500	5504	49,494,720	2.95
Averag	е					16,843,867	9,060.625		49,869,680	(2.96
			Warning: T	hese number	s come fr	om a synthetic ber				
Overall	Change		and	d do not repre	esent a pro	oduction workload	1.64		zEC12 ITR ==>	1.69

CPU MF Summary

- CPU MF Counters provide better information for more successful capacity planning
- Same data used to validate the LSPR workloads can now be obtained from production systems
- CPU MF Counters can also be useful for performance analysis
- Enable CPU MF Counters Today!
 - Continuously collect SMF 113s for your production systems



Thank You for Attending!

Techdocs provides the latest ATS technical collateral www.ibm.com/support/techdocs

Connect with IBM System z on social media!

Subscribe to the new <u>IBM Mainframe Weekly</u> digital newsletter to get the latest updates on the IBM Mainframe!

Linked in 。

System z Advocates **
IBM Mainframe- Unofficial Group
IBM System z Events
Mainframe Experts Network
SHARE

IBM System z **
IBM Master the Mainframe
Contest
IBM Destination z

twitter

IBM System z **
IBM System z Events
Destination z
SHARE

System z SMEs and Executives:

Deon Newman - @deonnewm
Steven Dickens - @StevenDickens3
Michael Desens - @MikeDesens
Patrick Toole - @Pat Toole II
Kelly Ryan - @KellykmRyan
Richard Gamblin - @RichGx

Blogs

IBM Mainframe Insights **
Millennial Mainframer
#MainframeDebate blog
SHARE blog
IBM Destination z

IBM System z **
Destination z

IBM Mainframe50

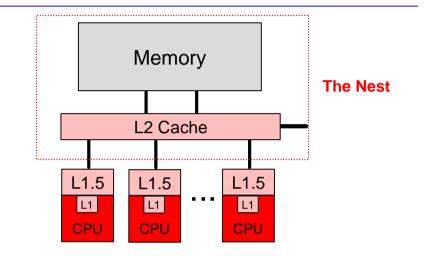
Include the hashtag #mainframe in your social media activity and #mainframe50 in 50th anniversary activity

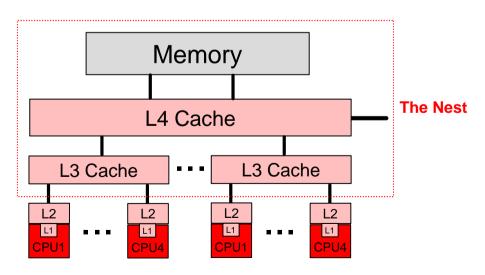
© 2014 IBM Corporation

Back Up

Operations – Display Command

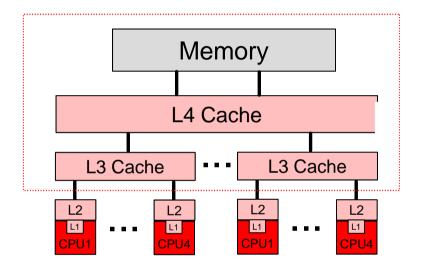
F HIS, B, TT= 'BE Counters', PATH= '/his/', CTRONLY, CTR=(B, E), SI=SYNC


D HIS


```
RESPONSE=SYSD
HIS015I 10.15.54 DISPLAY HIS 286
HIS
     0025 ACTIVE
COMMAND: MODIFY HIS, B, TT='BE Counters', PATH='/his/', CTRONLY, CTR=(B, E),
         SI=SYNC
 START TIME: 2012/04/12 10:15:45
END TIME: ----!--
COMPLETION STATUS: -----
FILE PREFIX: SYSHIS20120412.101545.
COUNTER VERSION NUMBER 1: 1 COUNTER VERSION NUMBER 2: 2
 COMMAND PARAMETER VALUES USED:
  TITLE= BE Counters
 PATH= /his/
 COUNTER SET= BASIC, EXTENDED
 DURATION= NOLIMIT
 CTRONLY
 DATALOSS= IGNORE
  STATECHANGE = SAVE
  SMFINTVAL= SYNC
```


z196 versus z10 hardware comparison

- **z**10 EC
 - **CPU**
 - -4.4 GHz
 - ▶ Caches
 - L1 private 64k i, 128k d
 - -L1.5 private 3 MB
 - L2 shared 48 MB / book
 - book interconnect: star
- **z**196
 - **CPU**
 - -5.2 GHz
 - Out-Of-Order execution
 - ▶ Caches
 - L1 private 64k i, 128k d
 - -L2 private 1.5 MB
 - -L3 shared 24 MB / chip
 - -L4 shared 192 MB / book
 - book interconnect: star



zBC12 versus z114 hardware comparison

- **z**114
 - **CPU**
 - -3.8 GHz
 - -Out-Of-Order execution
 - ▶ Caches
 - -L1 private 64k i, 128k d
 - -L2 private 1.5 MB
 - -L3 shared 12 MB / chip
 - -L4 shared 96 MB / book
 - 24 MB to each core
- zBC12
 - **CPU**
 - -4.2 GHz
 - Enhanced Out-Of-Order
 - ▶ Caches
 - -L1 private 64k i, 96k d
 - -L2 private 1 MB i + 1 MB d
 - -L3 shared 24 MB / chip
 - -L4 shared 192 MB / book
 - 32 MB to each core

The Nest

The Nest

IBM Processors

- IBM zEnterprise EC12 (zEC12)
- IBM zEnterprise BC12 (zBC12)
- IBM zEnterprise 196 (z196)
- IBM zEnterprise 114 (z114)
- **IBM System z10TM (z10)**

Summary

zBC12 Formulas – September 2013

Same as the zEC12

zEC12 Formulas – September 2012

See zEC12 and zBC12 Metrics Slides

z196 RNI Changes – July 2012

- See z10 and z196 / z114 Metrics Slides
 - RNI scaling factor raised to 1.67 (up from 1.60)
 - ESCPL1M / EFCPI formula raised to 0.59 (up from 0.57)

z196 TLB changes – August 2012

- See z10 and z196 / z114 Metrics Slides
 - Scaling factor raised to .61 (up from .47)

z/OS SMF 113 Record

SMF113_2_CTRVN2

$$-$$
"1" = z10

$$-$$
"2" = z196 / z114

$$-$$
"3" = zEC12 / zBC12

zEC12 and zBC12 Metrics

Formulas – zEC12 / zBC12

Workload Characterization
L1 Sourcing from cache/memory hierarchy

Metric	Calculation – note all fields are deltas between intervals
CPI	B0 / B1
PRBSTATE	(P33 / B1) * 100
L1MP	((B2+B4) / B1) * 100
L2P	((E130+E131+E132) / (B2+B4)) * 100
L3P	((E144+E150+E153+E159) / (B2+B4)) * 100
L4LP	((E147+E145+E151+E156+E154+E160) / (B2+B4)) * 100
L4RP	((E148+E146+E152+E157+E155+E161) / (B2+B4)) * 100
MEMP	(((E135+E137) + (B2+B4-E130-E131-E132-E144-E150-E153-E159- E147-E145-E151-E156-E154-E160-E148-E146-E152-E157-E155- E161-E135-E137)) / (B2+B4)) * 100
LPARCPU	(((1/CPSP/1,000,000) * B0) / Interval in Seconds) * 100

CPI - Cycles per Instruction

Prb State - % Problem State

L1MP - Level 1 Miss Per 100 instructions

L2P - % sourced from Level 2 cache

L3P - % sourced from Level 3 on same Chip cache

L4LP - % sourced from Level 4 Local cache (on same book)

L4RP - % sourced from Level 4 Remote cache (on different book)

MEMP - % sourced from Memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

B* - Basic Counter Set - Counter Number

P* - Problem-State Counter Set - Counter Number

See "The Load-Program-Parameter and CPU-Measurement Facilities" SA23-2260-03 for full description

E* - Extended Counters - Counter Number

See "IBM The CPU-Measurement Facility Extended Counters Definition for z10, z196, z114 and zEC12" SA23-2261-02 for full description

Formulas – zEC12 / zBC12 Additional

Metric	Calculation – note all fields are deltas between intervals
Est Instr Cmplx CPI	CPI – Estimated Finite CPI
Est Finite CPI	((B3+B5) / B1) * (.54 + (0.04*RNI))
Est SCPL1M	((B3+B5) / (B2+B4)) * (.54 + (0.04*RNI))
Rel Nest Intensity	2.2*(0.4*L3P + 1.2*L4LP + 2.7*L4RP + 8.2*MEMP) / 100
Eff GHz	CPSP / 1000

Note these Formulas may change in the future

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)

Est Finite CPI - Estimated CPI from Finite cache/memory

Est SCPL1M – Estimated Sourcing Cycles per Level 1 Miss

Rel Nest Intensity –Reflects distribution and latency of sourcing from shared caches and memory

Eff GHz - Effective gigahertz for GCPs, cycles per nanosecond

Workload Characterization
L1 Sourcing from cache/memory hierarchy

B* - Basic Counter Set - Counter Number

P* - Problem-State Counter Set - Counter Number

See "The Load-Program-Parameter and CPU-Measurement Facilities" SA23-2260-03 for full description

Formulas – Additional TLB

Metric – zEC12 / zBC12	Calculation – note all fields are deltas between intervals
Est. TLB1 CPU Miss % of Total CPU	((E128+E129) / B0) * 100 * .65
Estimated TLB1 Cycles per TLB Miss	(E128+E129) / (E133+E140) * .65
PTE % of all TLB1 Misses	(E141 / (E133+E140)) * 100

Note these Formulas may change in the future

Est. TLB1 CPU Miss % of Total CPU - Estimated TLB CPU % of Total CPU Estimated TLB1 Cycles per TLB Miss - Estimated Cycles per TLB Miss PTE % of all TLB1 Misses - Page Table Entry % misses

B* - Basic Counter Set - Counter Number

See "The Load-Program-Parameter and CPU-Measurement Facilities" SA23-2260-03 for full description

E* - Extended Counters - Counter Number

See "IBM The CPU-Measurement Facility Extended Counters Definition for z10, z196, z114 and zEC12" SA23-2261-02 for full description

z10 and z196 / z114 Metrics

Formulas – z10

Workload Characterization
L1 Sourcing from cache/memory hierarchy

Metric	Calculation – note all fields are deltas between intervals
CPI	B0 / B1
PRBSTATE	(P33 / B1) * 100
L1MP	((B2+B4) / B1) * 100
L15P	((E128+E129) / (B2+B4)) * 100
L2LP	((E130+E131) / (B2+B4)) * 100
L2RP	((E132+E133) / (B2+B4)) * 100
MEMP	(((E134+E135) + (B2+B4-E128-E129-E130-E131-E132- E133-E134-E135)) / (B2+B4)) * 100
LPARCPU	(((1/CPSP/1,000,000) * B0) / Interval in Seconds) * 100

CPI - Cycles per Instruction

PRBSTATE - % Problem State

L1MP – Level 1 Miss Per 100 instructions

L15P - % sourced from L1.5 cache

L2LP – % sourced from Level 2 Local cache (on same book)

L2RP - % sourced from Level 2 Remote cache (on different book)

MEMP - % sourced from Memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

B* - Basic Counter Set - Counter Number

P* - Problem-State Counter Set - Counter Number

See "The Load-Program-Parameter and CPU-Measurement Facilities" SA23-2260-03 for full description

E* - Extended Counters - Counter Number

See "IBM The CPU-Measurement Facility Extended Counters Definition for z10, z196, z114 and zEC12" SA23-2261-02 for full description

Formulas – z10 Additional

Metric	Calculation – note all fields are deltas between intervals
Est Instr Cmplx CPI	CPI – Estimated Finite CPI
Est Finite CPI	((B3+B5) / B1) * .84
Est SCPL1M	((B3+B5) / (B2+B4)) * .84
Rel Nest Intensity	(1.0*L2LP + 2.4*L2RP + 7.5*MEMP) / 100
Eff GHz	CPSP / 1000

Note these Formulas may change in the future

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)

Est Finite CPI - Estimated CPI from Finite cache/memory

Est SCPL1M – Estimated Sourcing Cycles per Level 1 Miss

Rel Nest Intensity – Reflects distribution and latency of sourcing from shared caches and memory

Eff GHz – Effective gigahertz for GCPs, cycles per nanosecond

Workload Characterization
L1 Sourcing from cache/memory hierarchy

B* - Basic Counter Set - Counter Number

P* - Problem-State Counter Set - Counter Number

See "The Load-Program-Parameter and CPU-Measurement Facilities" SA23-2260-03 for full description

Formulas - z196 / z114

Workload Characterization
L1 Sourcing from cache/memory hierarchy

Metric	Calculation – note all fields are deltas between intervals
CPI	B0 / B1
PRBSTATE	(P33 / B1) * 100
L1MP	((B2+B4) / B1) * 100
L2P	((E128+E129) / (B2+B4)) * 100
L3P	((E150+E153) / (B2+B4)) * 100
L4LP	((E135+E136+E152+E155) / (B2+B4)) * 100
L4RP	((E138+E139+E134+E143) / (B2+B4)) * 100
MEMP	(((E141+E142) + (B2+B4-E128-E129-E150-E153-E135-E136-E152- E155-E138-E139-E134-E143-E141-E142)) / (B2+B4)) * 100
LPARCPU	(((1/CPSP/1,000,000) * B0) / Interval in Seconds) * 100

CPI - Cycles per Instruction

Prb State - % Problem State

L1MP - Level 1 Miss Per 100 instructions

L2P - % sourced from Level 2 cache

L3P - % sourced from Level 3 on same Chip cache

L4LP - % sourced from Level 4 Local cache (on same book)

L4RP - % sourced from Level 4 Remote cache (on different book)

MEMP - % sourced from Memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

B* - Basic Counter Set - Counter Number

P* - Problem-State Counter Set - Counter Number

See "The Load-Program-Parameter and CPU-Measurement Facilities" SA23-2260-03 for full description

E* - Extended Counters - Counter Number

See "IBM The CPU-Measurement Facility Extended Counters Definition for z10, z196, z114 and zEC12" SA23-2261-02 for full description

Formulas – z196 / z114 Additional

Metric	Calculation – note all fields are deltas between intervals
Est Instr Cmplx CPI	CPI – Estimated Finite CPI
Est Finite CPI	((B3+B5) / B1) * (.59 + (0.1*RNI)) updated *
Est SCPL1M	((B3+B5) / (B2+B4)) * (.59 + (0.1*RNI)) updated *
Rel Nest Intensity	1.67*(0.4*L3P + 1.0*L4LP + 2.4*L4RP + 7.5*MEMP) / 100 updated *
Eff GHz	CPSP / 1000

Note these Formulas may change in the future

* Updated July 2012

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)

Est Finite CPI - Estimated CPI from Finite cache/memory

Est SCPL1M – Estimated Sourcing Cycles per Level 1 Miss

Rel Nest Intensity –Reflects distribution and latency of sourcing from shared caches and memory

Eff GHz - Effective gigahertz for GCPs, cycles per nanosecond

Workload Characterization
L1 Sourcing from cache/memory hierarchy

B* - Basic Counter Set - Counter Number

P* - Problem-State Counter Set - Counter Number

See "The Load-Program-Parameter and CPU-Measurement Facilities" SA23-2260-03 for full description

Formulas – Additional TLB

Metric – z10	Calculation – note all fields are deltas between intervals
Est. TLB1 CPU Miss % of Total CPU	((E145+E146) / B0) * 100 * . <mark>31 *</mark>
Estimated TLB1 Cycles per TLB Miss	(E145+E146) / (E138+E139) * .31 *
PTE % of all TLB1 Misses	(E140 / (E138+E139)) * 100

Metric – z196 / z114	Calculation – note all fields are deltas between intervals
Est. TLB1 CPU Miss % of Total CPU	((E130+E131) / B0) * 100 * .61 *
Estimated TLB1 Cycles per TLB Miss	(E130+E131) / (E144+E145) * .61 *
PTE % of all TLB1 Misses	(E146 / (E144+E145)) * 100

Note these Formulas may change in the future

* Updated March 2012 / August 2012

Est. TLB1 CPU Miss % of Total CPU - Estimated TLB CPU % of Total CPU Estimated TLB1 Cycles per TLB Miss - Estimated Cycles per TLB Miss PTE % of all TLB1 Misses - Page Table Entry % misses

B* - Basic Counter Set - Counter Number

See "The Load-Program-Parameter and CPU-Measurement Facilities" SA23-2260-03 for full description

E* - Extended Counters - Counter Number

See "IBM The CPU-Measurement Facility Extended Counters Definition for z10, z196, z114 and zEC12" SA23-2261-02 for full description

Definitions

CPI – Cycles per Instruction

PRB STATE - % Problem State

L1MP – Level 1 Miss Per 100 instructions

L15P / L2P - % sourced from L1.5 or L2 cache

L2LP – % sourced from Level 2 (or L4) Local cache (on same book)

L2RP – % sourced from Level 2 (or L4) Remote cache (on different book)

L3P - % sourced from L3 cache

MEMP - % sourced from Memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI

Est Finite CPI - Estimated Finite CPI

Est SCPL1M - Estimated Sourcing Cycles per L1 Miss Per 100 instructions

Rel Nest Intensity – Relative Nest Intensity

Eff GHz – Effective Gigahertz

Machine Type - Machine Type (e.g. z10, z196, zEC12)

LSPR Wkld - LSPR Workload match based on L1MP and RNI

Pool - 1 = GCP, 3 = zAAP, 6 = zIIP

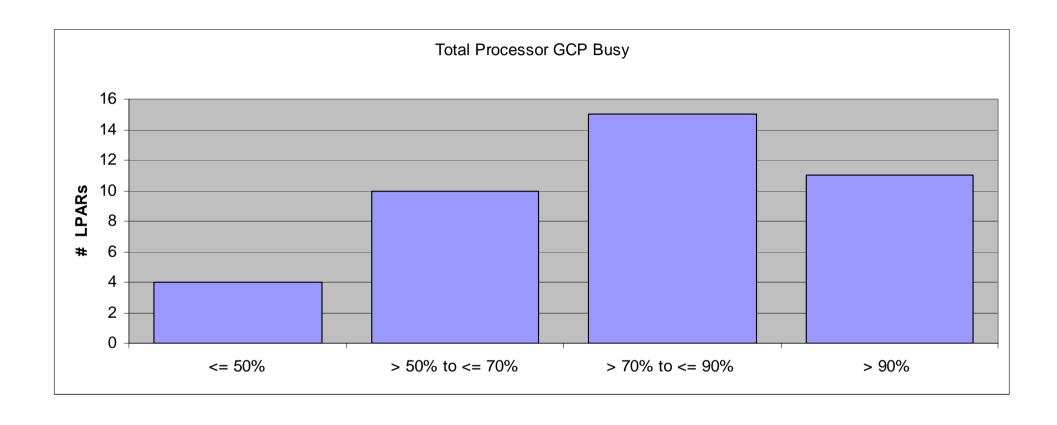
Data Profiles

Profiles

40 Total LPARs

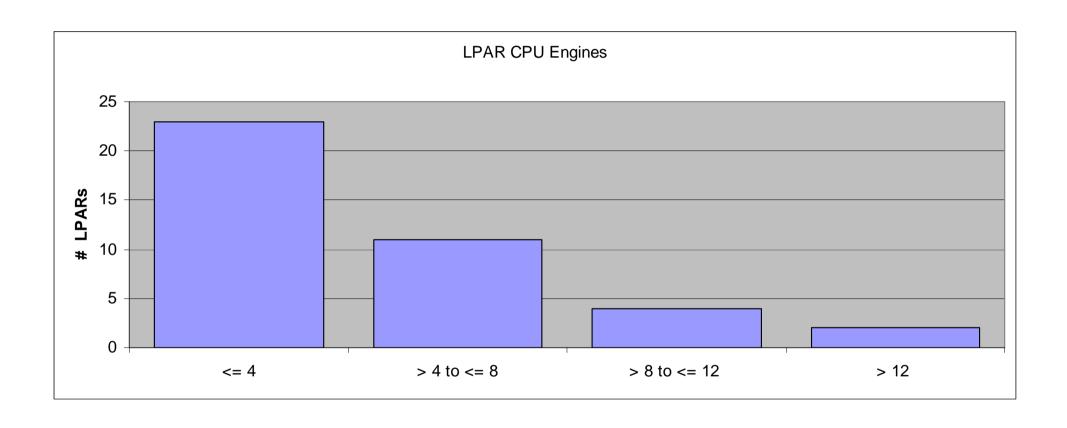
- 14 z10 ECs / z10 BCs
- -26 z196s/z114s

HiperDispatch

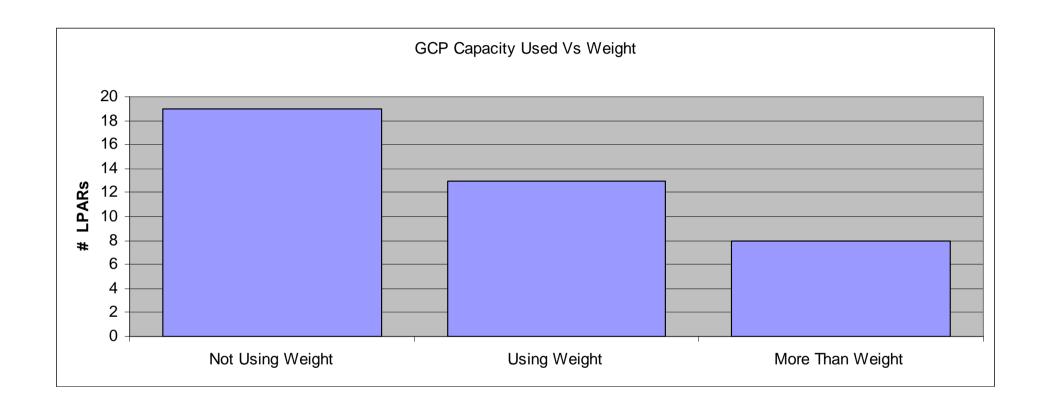

- 28 Yes
- 12 No

33 LPARs utilized zllPs and/or zAAPs

Customer Data from 2012
Completed June 2012

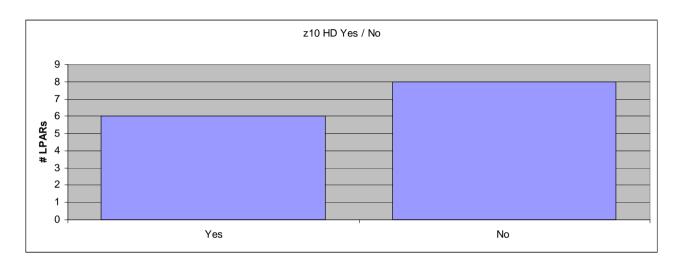


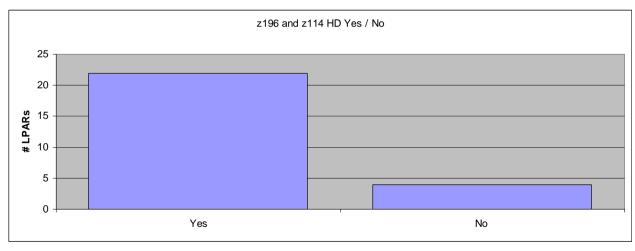
Total Processor GCP Busy



LPAR CPU Engines Distribution

GCP Capacity Used Vs Weight


Not Using Weight GCP Eng <= -.5 Weight


Using Weight GCP Eng > -.5 and < +.5 Weight

More Than Weight GCP Eng >= +.5 Weight

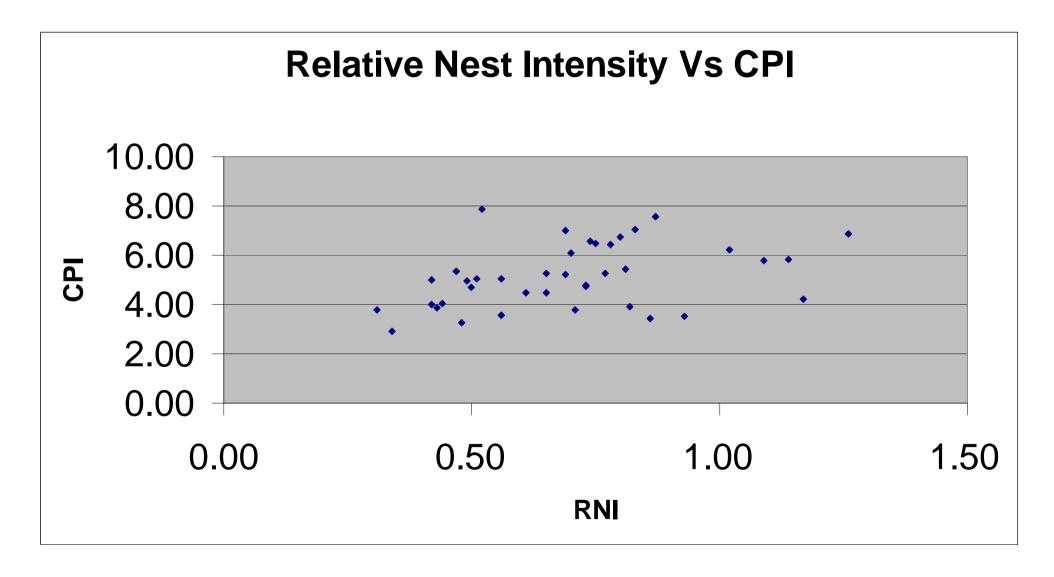
HD=Yes / No Distribution

■z196

-HD=YES is even more important on z196, ensure HD=YES, 0-11% for 1 Book z196

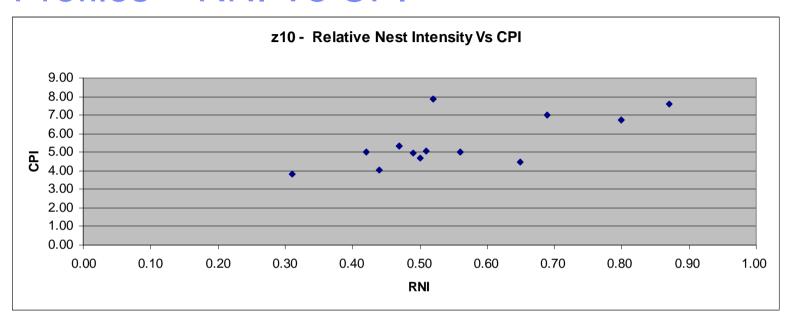
•See "Planning Considerations for HiperDispatch Mode **Version 2**" **WP101229**

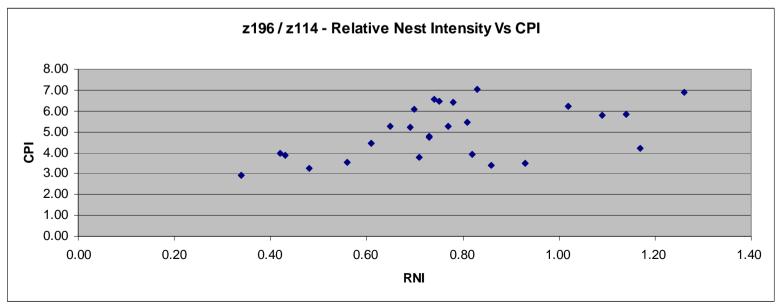
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101229


CPU MF Averages – Technology Differences

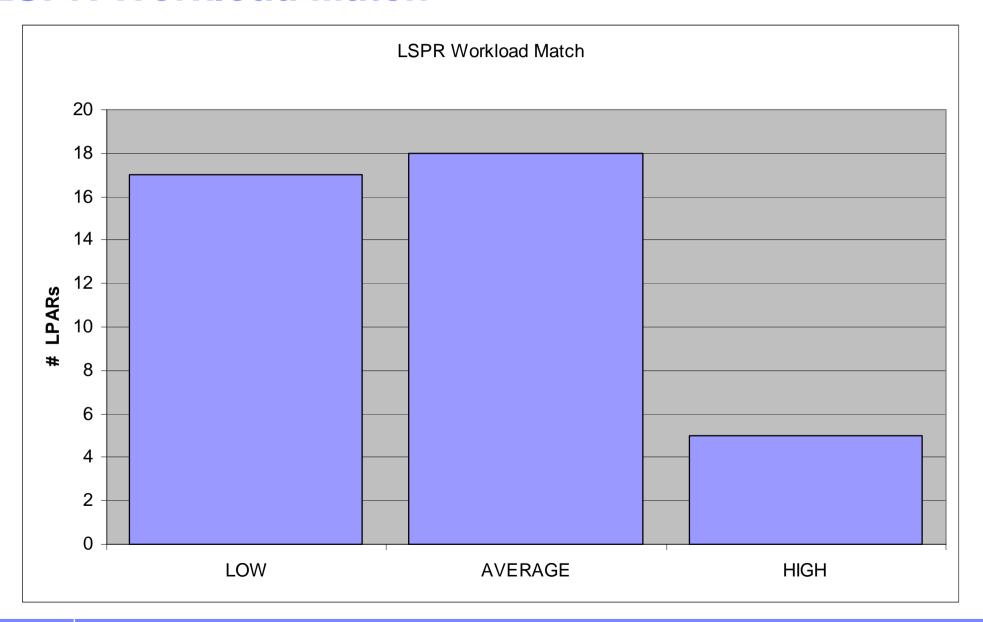
			Est Instr	Est									
		Prb	Cmplx	Finite	Est		L15P /		L2LP/	L2RP/		Rel Nest	
	CPI	State	CPI	CPI	SCPL1M	L1MP	L2P	L3P	L4LP	L4RP	MEMP	Intensity	LPARCPU
z10	5.50	22.7	2.98	2.52	68	3.6	74.9	0.0	20.1	0.4	4.5	0.55	467.1
z196 / z114	4.96	35.5	2.55	2.41	63	3.8	60.8	23.8	11.3	0.7	3.4	0.77	425.4

CPU MF Metrics do not imply "goodness" or "badness"




Data Profiles - RNI Vs CPI

Data Profiles - RNI Vs CPI



© 2014 IBM Corporation

LSPR Workload Match

Data Profiles z10 and z196 / z114

			Est Instr Cmplx	Est Finite	Est		L15P /		L2LP/	L2RP/		Rel Nest			Machine	LSPR			нw			LPAR Log GCP	LPAR GCP	Total Processor
SYSID	CPI	Prb State	CPI	CPI	SCPL1M	L1MP	L2P	L3P	L4LP	L4RP	MEMP	Intensity	LPARCPU	Eff GHz	Туре	Wkld	Machine	Model	Model	HD?	Eng	Eng	Weight	GCP %
3	4.99	10.5	2.89	2.10	56	3.8	80.7	0.0	15.6	0.2	3.5	0.42	180.6	4.4	Z10	LOW	2097	604	E40	Yes	4	4	44.9%	72.6
24	4.06	na	2.89	1.17	58	2.0	76.1	0.0	20.9	0.1	3.0	0.44	53.3	4.4	Z10	LOW	2097	706	E26	Yes	6	5	1.5%	82.3
10	4.71	16.1	2.32	2.39	71	3.4	80.2	0.0	12.3	3.5	3.9	0.50	2335.6	4.4	Z10	LOW	2097	719	E40	Yes	19	17	94.0%	83.1
7	5.05	19.1	2.71	2.34	63	3.7	77.2	0.0	18.4	0.0	4.4	0.51	280.1	4.4	Z10	LOW	2097	504	E12	Yes	4	4	66.0%	96.8
1	7.86	33.0	4.03	3.82	68	5.7	69.6	0.0	27.0	0.1	3.3	0.52	362.1	3.2	Z10	LOW	2097	607	E26	Yes	7	6	100.0%	49.8
36	7.02	21.2	2.99	4.03	89	4.5	71.3	0.0	20.7	2.3	5.7	0.69	575.6	4.4	Z10	AVG	2097	716	E40	Yes	16	8	39.0%	57.6
30	3.80	na	2.71	1.08	48	2.3	82.0	0.0	16.0	0.0	1.9	0.31	442.7	4.4	Z10	LOW	2097	505	E12	No	5	5	DED	91.6
4	5.33	24.2	3.01	2.32	58	4.0	76.1	0.0	20.4	0.0	3.5	0.47	473.2	4.4	Z10	LOW	2097	505	E12	No	5	5	91.0%	90.9
29	5.36	na	3.01	2.36	58	4.0	77.3	0.0	19.0	0.0	3.7	0.47	272.4	4.4	Z10	LOW	2097	505	E12	No	5	4	86.0%	55.6
8	4.97	na	2.87	2.10	61	3.5	80.0	0.0	15.5	0.0	4.5	0.49	125.4	2.1	Z10	LOW	2098	U02	E10	No	2	2	72.7%	60.5
13	5.03	na	2.76	2.27	63	3.6	78.2	0.0	16.6	0.0	5.2	0.56	50.5	2.4	Z10	LOW	2098	V01	E10	No	1	1	73.1%	91.3
12	4.49	6.1	2.75	1.74	69	2.5	66.3	0.0	28.9	0.0	4.9	0.65	351.0	4.4	Z10	LOW	2097	504	E12	No	4	4	70.0%	91.1
23	6.76	na	3.20	3.56	94	3.8	67.2	0.0	25.4	0.1	7.3	0.80	884.7	4.4	Z10	AVG	2097	709	E26	No	9	8	100.0%	84.6
18	7.58	51.3	3.52	4.06	95	4.3	66.7	0.0	25.1	0.0	8.2	0.87	151.7	4.4	Z10	AVG	2097	504	E12	No	4	3	23.5%	93.6
	5.50	22.7	2.98	2.52	68	3.6	74.9	0.0	20.1	0.4	4.5	0.55	467.1								7	5	66.3%	78.7

z10 Avg

SYSID	СРІ			Est Finite CPI	Est SCPL1M	L1MP	L15P / L2P	L3P	-	L2RP / L4RP		Rel Nest Intensity	LPARCPU	Eff GHz	Machine Type	-	Machine	Model	HW Model	HD?	CEC GCP Eng	LPAR Log GCP Eng		Total Processor GCP %
34	3.98	40.7	2.36	1.62	46	3.6	72.1	19.5	6.3	0.7	1.4	0.42	1.8	3.8	Z114	LOW	2818	Z03	M10	Yes	3	3	14.3%	3.6
40	3.55	na	2.07	1.48	50	2.9	68.8	19.8	7.9	1.4	2.1	0.56	1302.4	5.2	Z196	LOW	2817	716	M66	Yes	16	15	77.0%	76.1
31	4.47	na	2.31	2.16	51	4.2	53.4	32.5	11.8	0.6	1.6	0.61	337.0	5.2	Z196	AVG	2817	704	M32	Yes	4	4	90.0%	77.0
37	5.26	45.3	2.74	2.51	51	4.9	62.7	23.2	11.5	0.0	2.7	0.65	106.1		Z196	AVG	2817	504	M15	Yes	4	3	39.4%	51.7
	5.21	47.2	3.27	1.94		3.5	66.7		8.4	0.5	3.4	0.69	594.9		Z196	AVG	2817	734		Yes	34	32	42.5%	33.4
	6.08	na		3.20		5.6	55.0		12.0	8.0	2.4	0.70	332.9		Z196	AVG	2817			Yes	4	4	96.6%	76.5
	3.80	na		1.36		2.2		20.0	13.2	0.9	2.8	0.71	421.4		Z196	LOW	2817	510		Yes	10	6	45.0%	73.1
	4.77	52.0		2.34		4.0	69.2		5.7	4.9	2.9	0.73	467.2		Z196	AVG	2817			Yes	16	8	25.2%	69.6
	4.74	na	2.77	1.97	59	3.4	55.5		10.3	0.2	3.0	0.73	74.6		Z196	AVG	2817	604		Yes	4	2	16.3%	92.1
	6.57	50.6		3.38		5.7	58.0		11.7	0.3	3.1	0.74	691.2			AVG	2817	709		Yes	9	9	69.9%	96.2
	6.49	19.7	3.17	3.32		5.2	60.9		11.4	0.4	3.3	0.75	876.9			AVG	2817	720		Yes	20	19	78.0%	49.9
	5.26	na		3.01	63	4.8	69.0		6.0	2.1	3.9	0.77	932.8		Z196	AVG	2817			Yes	24	24	46.0%	78.8
	6.42 5.45	24.0	2.87 3.69	3.55 1.76		5.5 2.8	54.5 63.6		11.7	0.5 1.3	3.2 3.6	0.78 0.81	579.4 244.9		Z196 Z196	AVG AVG	2817 2817	610		Yes Yes	10 7	8	59.8% 43.0%	63.7 99.9
	3.92	na 49.9		1.76	63 63	2.6	65.9		13.1 9.2	0.1	4.5	0.81	592.2		Z196 Z196	AVG	2817			Yes	11	9	60.0%	68.3
	3.42	0.5	2.41	1.27	71	1.8	59.6		10.4	0.1	4.3	0.82	447.4		Z196	AVG	2817			Yes	10	6	37.8%	68.2
21		na		1.40		2.0	43.7		14.6	0.0	3.8	0.93	164.9		Z196	AVG	2817			Yes	7	3	16.0%	73.8
	6.23	na		3.62		4.8	64.0		7.0	0.4	6.3	1.02	253.0		Z196	HIGH	2817			Yes	14	6	25.6%	61.8
	5.80	19.9		3.98		4.8	41.8		22.1	0.3	4.4	1.09	216.5		Z196	HIGH	2817			Yes	14	13	54.3%	71.8
	5.83	na		3.72		4.0	48.8		25.5	2.3	4.3	1.14	390.1		Z196	HIGH	2817	710		Yes	10	7	32.5%	58.1
	4.23	na		1.98		2.2	52.7		14.5	0.2	6.4	1.17	49.5		Z196	AVG	2817	612		Yes	12	3	5.6%	74.1
15	6.88	40.8	2.71	4.16	95	4.4	52.6	27.9	11.9	0.2	7.4	1.26	412.7	5.2	Z196	HIGH	2817	711	M49	Yes	11	8	36.7%	78.6
25	2.90	na	2.04	0.86		2.6	76.7	18.6	3.3	0.0	1.4	0.34	190.3	5.2	Z196	LOW	2817	704	M15	No	4	3	17.8%	82.9
32	3.86	na	2.39	1.47	37	4.0	78.8	12.8	6.0	0.4	1.9	0.43	125.8	5.2	Z196	LOW	2817	707	M32	No	7	2	9.5%	74.6
26	3.25	na	2.63	0.63	52	1.2	69.9	16.4	12.1	0.0	1.5	0.48	351.1	0.9	Z114	LOW	2818	M03	M05	No	3	3	93.2%	99.5
19	7.04	36.2	2.66	4.38	69	6.4	53.5	27.8	15.0	0.4	3.3	0.83	903.2	5.2	Z196	HIGH	2817	511	M32	No	11	11	84.4%	94.8
6 / z114 Avg	4.96	35.5	2.55	2.41	63	3.8	60.8	23.8	11.3	0.7	3.4	0.77	425.4								11	8	46.8%	71.1

© 2014 IBM Corporation

HiperDispatch Considerations

HiperDispatch Considerations

Adjusting Weight to increase Vertical Highs

- z196 710, Processor GCP Busy 58.1%, LPAR: 7 Logicals, 32.5% Weight
 - Results in 2 VHs, 2 VMs, and 3 VLs
 - Using more GCP than weight, 390.1 LPAR CPU Vs 325 weight (> .5 Engine more)
 - Data shows 2 VMs with lower L3Ps and higher RNIs than 2 VHs
- Consider assigning more weight from 32.5% to 35.1% to get additional VH
 - Processor Capacity is available
 - Fine tuning to increase L3P for Vertical High (thus lower RNI and Lower CPI)

CP ID	PID Summary - SMF 113s														SMF 70s			
			Est Instr	E . E' ''	F .		L 45D /											
					Est		L15P /			L2RP/		Rel Nest						
CPID	CPI	Prb State	CPI	CPI	SCPL1M	L1MP	L2P	L3P	L4LP	L4RP	MEMP	Intensity	LPARCPU	PARKED	SHARE	%		
0	6.14	0.0	2.09	4.04	95	4.3	47.1	20.4	25.5	2.4	4.6	1.19	87.7	0.0	100.0	HIGH		
1	6.73	0.0	2.44	4.30	83	5.2	50.9	21.9	21.2	2.6	3.4	0.99	77.5	0.0	100.0	HIGH		
2	6.26	0.0	2.03	4.23	101	4.2	46.4	17.4	29.3	2.4	4.6	1.22	80.8	0.0	62.5	MED		
3	6.21	0.0	2.04	4.17	101	4.2	46.6	17.3	29.1	2.3	4.6	1.22	78.6	0.0	62.5	MED		
4	5.59	0.0	2.34	3.25	90	3.6	49.5	19.3	25.0	2.0	4.1	1.10	21.6	74.4	0.0	LOW		
5	5.62	0.0	2.35	3.26	88	3.7	49.0	19.7	25.5	1.9	3.9	1.08	17.4	79.3	0.0	LOW		
6	5.50	0.0	2.37	3.13	84	3.7	50.6	19.7	24.1	1.8	3.7	1.03	14.3	83.0	0.0	LOW		

HiperDispatch Considerations

- z196 HiperDispatch=NO specified for 4 LPARs
- z196 Objective keep VH Polarity Processors on same chip
 - Source PU from On Chip L3 Cache
 - HD=YES is assumed LSPR / zPCR
- L3 Off Chip and Off Book sourced from respective L4s
 - CPU MF provides a measurement of this activity
- Example from LPAR with HD=NO
 - Opportunity cost: L4 Local sourcing that could have been resolved from L3

CPID	СРІ		Est Instr Cmplx CPI	Est Finite CPI	Est SCPL1M	L1MP	L15P / L2P	L3P	<== L4LP that could have been L3P if HD=YES	L2LP / L4LP	L2RP / L4RP		Rel Nest Intensity	LPARCPU
0	7.40	35.0	2.89	4.51	69	6.5	51.5	28.8	5.9	16.4	0.3	3.0	0.82	82.3
1	7.39	35.1	2.89	4.50	69	6.5	51.6	28.8	5.9	16.3	0.3	3.0	0.82	81.5
2	7.38	35.0	2.88	4.50	69	6.5	51.5	28.9	5.9	16.3	0.3	3.0	0.82	80.5
3	7.38	35.1	2.88	4.50	69	6.5	51.5	28.9	5.9	16.3	0.3	3.0	0.82	79.4
4	7.37	35.0	2.88	4.49	69	6.5	51.7	28.9	5.8	16.1	0.3	3.0	0.82	78.2
5	7.37	35.0	2.88	4.49	69	6.5	51.6	29.0	5.8	16.1	0.3	3.0	0.82	77.2
6	7.38	35.0	2.88	4.50	69	6.5	51.6	29.0	5.8	16.1	0.3	3.0	0.82	76.0
7	7.38	34.9	2.88	4.50	69	6.5	51.5	29.0	5.8	16.2	0.3	3.0	0.82	74.8
8	7.42	34.9	2.87	4.55	70	6.5	51.4	28.1	6.4	17.1	0.3	3.0	0.83	73.7
9	7.64	33.1	2.99	4.66	67	7.0	52.8	27.6	6.2	16.4	0.3	2.8	0.79	72.7
10	7.76	31.7	3.05	4.70	65	7.2	53.7	27.1	6.1	16.2	0.3	2.7	0.77	72.0

References and Feedback

- CPU MF Webinar Replays and Presentations
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4922
- Additional z/OS CPU MF information
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TC000066
- How to Collect CPU Measurement Facility data for z/VM
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD105949