
© 2014 IBM Corporation1

Linux for System z
Performance Tools for Problem Determination

Martin Schwidefsky
IBM Lab Böblingen, Germany
August 4 2014
Session 15696

© 2014 IBM Corporation2

IBM

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM
Trademarks, see www.ibm.com/legal/copytrade.shtml:

IBM, the IBM logo, BladeCenter, Calibrated Vectored Cooling, ClusterProven, Cool Blue, POWER, PowerExecutive, Predictive Failure Analysis, ServerProven,
System p, System Storage, System x , System z, WebSphere, DB2 and Tivoli are trademarks of IBM Corporation in the United States and/or other countries. For a
list of additional IBM trademarks, please see http://ibm.com/legal/copytrade.shtml.

The following are trademarks or registered trademarks of other companies: Java and all Java based trademarks and logos are trademarks of Sun Microsystems,
Inc., in the United States and other countries or both Microsoft, Windows,Windows NT and the Windows logo are registered trademarks of Microsoft Corporation in
the United States, other countries, or both. Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep,
Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries or both. Linux is a trademark of Linus Torvalds in the United States,
other countries, or both. Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc. InfiniBand is a trademark of the InfiniBand Trade
Association.
Other company, product, or service names may be trademarks or service marks of others.

NOTES: Linux penguin image courtesy of Larry Ewing (lewing@isc.tamu.edu) and The GIMP

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many
factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on
development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Users of this document should verify
the applicable data for their specific environment. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our
warranty terms apply.
Information is provided “AS IS” without warranty of any kind. All customer examples cited or described in this presentation are presented as illustrations of the
manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics
will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the
information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products
and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Prices are suggested US list prices and are subject to change without notice. Starting price may not include a hard drive, operating system or other features.
Contact your IBM representative or Business Partner for the most current pricing in your geography. Any proposed use of claims in this presentation outside of the
United States must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication at any

Trademarks & Disclaimer

© 2014 IBM Corporation3

IBM

Agenda

 Introduction
 Start the analysis
 Formulate a theory
 Looking into the problem area

– CPU related issues

– Memory related issues

– I/O related issues

– Networking related issues

 A look at monitoring

© 2014 IBM Corporation4

IBM

What this is not about

 Functional problems / crashes
Unable to handle kernel pointer dereference at virtual kernel address 0086000096000000
Oops: 0038 [#1] SMP
CPU: 1 Not tainted 3.0.80-0.5.1.5607.3.PTF-default #1
Process kworker/1:4 (pid: 202, task: 000000001df56438, ksp: 000000001df67c78)
Krnl PSW : 0404300180000000 000000000024dac2 (free_block+0xa6/0x1a8)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:0 CC:3 PM:0 EA:3
Krnl GPRS: 0000000000000015 0000940000810000 0086000096000099 000000001925f400
 000000001ff06400 000000001f3d2000 0000000000000000 000000001ff06400
 000000001ff06440 0000000000000268 0000000000000003 000000001ff07a00
 000000001fbb7418 00000000005119e0 000000001df67cb0 000000001df67c70
Krnl Code: 000000000024dab0: e349b0000004 lg %r4,0(%r9,%r11)
 000000000024dab6: e32030000004 lg %r2,0(%r3)
 000000000024dabc: e31030080004 lg %r1,8(%r3)
 >000000000024dac2: e31020080024 stg %r1,8(%r2)
 000000000024dac8: e32010000024 stg %r2,0(%r1)
 000000000024dace: e310d0080004 lg %r1,8(%r13)
 000000000024dad4: e320d0000004 lg %r2,0(%r13)
 000000000024dada: e31030000024 stg %r1,0(%r3)
Call Trace:
([<070000001f638a80>] 0x70000001f638a80)
 [<000000000024e004>] drain_array+0xb0/0x134
 [<000000000024e32a>] cache_reap+0xb6/0x178
 [<000000000016ccf4>] process_one_work+0x1ec/0x574
 [<000000000016d542>] worker_thread+0x1d2/0x4a4
 [<0000000000176ac2>] kthread+0xa6/0xb0
 [<00000000004e926e>] kernel_thread_starter+0x6/0xc
 [<00000000004e9268>] kernel_thread_starter+0x0/0xc
Last Breaking-Event-Address:
 [<000000000024da92>] free_block+0x76/0x1a8

© 2014 IBM Corporation5

IBM

General thoughts on performance analysis

 Things that are always to consider
– Monitoring will impact the system

– Most data gathering averages over a period of time

→this flattens peaks

– Define the problem
● which parameter(s) from the application/system indicates the problem
● which range is considered bad, what is considered good

– Monitor the good case and save the results

• comparison good vs. bad can save a lot of time

 Staged approach saves a lot of work
– Try to use general tools to isolate the area of the issue

– Create theories and try to quickly verify/falsify them

– Use advanced tools to debug the identified area

© 2014 IBM Corporation6

IBM

Start the analysis

“Taking a quick look”

© 2014 IBM Corporation7

IBM

The “ps” tool

 Reports a snapshot of the currently running processes
 Usage: “ps axlf”, many more options available
 Example output

#> ps axlf
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
1 0 2 0 20 0 0 0 kthrea S ? 0:00 [kthreadd]
1 0 3 2 20 0 0 0 smpboo S ? 0:00 _ [ksoftirqd/0]
5 0 4 2 20 0 0 0 worker S ? 0:00 _ [kworker/0:0]
1 0 5 2 0 -20 0 0 worker S< ? 0:00 _ [kworker/0:0H]
...
4 0 1 0 20 0 9672 5096 SyS_ep Ss ? 0:01 /sbin/init
4 0 2023 1 20 0 3584 1400 hrtime Ss ? 0:00 /usr/sbin/crond -n
4 0 2024 1 20 0 2840 892 pause Ss ? 0:00 /usr/sbin/atd -f
...
4 0 2280 1 20 0 10892 3344 poll_s Ss ? 0:00 /usr/sbin/sshd -D
4 0 2316 2280 20 0 14472 4700 poll_s Ss ? 0:00 _ sshd: root@pts/0
4 0 2318 2316 20 0 106392 2216 wait Ss pts/0 0:00 _ -bash
0 0 2350 2318 20 0 105576 1056 - R+ pts/0 0:00 _ ps axlf
1 0 2351 2318 20 0 106392 796 sleep_ D+ pts/0 0:00 _ -bash
...
0 0 2368 2318 20 0 2192 360 - R pts/0 110:04 /usr/bin/app
...

© 2014 IBM Corporation8

IBM

The “top” tool

 Shows resource usage on process level
 Usage: “top -b -d [interval in sec] > [outfile]”
 Shows

– CPU utilization

– Detailed memory usage

 Hints
– Parameter -b enables to write the output for each interval to a file

– Use -p [pid1, pid2, ...] to reduce the output to the processes of interest

– Configure displayed columns using 'f' key on the running top instance

– Use the 'W' key to write current configuration to ~/.toprc
→ becomes the default

© 2014 IBM Corporation9

IBM

The “top” tool

 Output example

 Hints
– virtual memory: VIRT = SWAP + RES unit KB
– physical memory used: RES = CODE + DATA unit KB
– shared memory: SHR unit KB
– The “htop” tool is an alternative “top” with extra features

top - 11:12:52 up 1:11, 3 users, load average: 1.21, 1.61, 2.03
Tasks: 53 total, 5 running, 48 sleeping, 0 stopped, 0 zombie
Cpu(s): 3.0%us, 5.9%sy, 0.0%ni, 79.2%id, 9.9%wa, 0.0%hi, 1.0%si, 1.0%st
Mem: 5138052k total, 801100k used, 4336952k free, 447868k buffers
Swap: 88k total, 0k used, 88k free, 271436k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ P SWAP DATA WCHAN COMMAND
3224 root 18 0 1820 604 444 R 2.0 0.0 0:00.56 0 1216 252 - dbench
3226 root 18 0 1820 604 444 R 2.0 0.0 0:00.56 0 1216 252 - dbench
2737 root 16 0 9512 3228 2540 R 1.0 0.1 0:00.46 0 6284 868 - sshd
3225 root 18 0 1820 604 444 R 1.0 0.0 0:00.56 0 1216 252 - dbench
3230 root 16 0 2652 1264 980 R 1.0 0.0 0:00.01 0 1388 344 - top
 1 root 16 0 848 304 256 S 0.0 0.0 0:00.54 0 544 232 select init
 2 root RT 0 0 0 0 S 0.0 0.0 0:00.00 0 0 0 migration migration/0
 3 root 34 19 0 0 0 S 0.0 0.0 0:00.00 0 0 0 ksoftirqd ksoftirqd/0
 4 root 10 -5 0 0 0 S 0.0 0.0 0:00.13 0 0 0 worker_th events/0
 5 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 0 0 0 worker_th khelper

© 2014 IBM Corporation10

IBM

The “hyptop” tool

 Show hypervisor performance data on System z
– Check CPU and overhead statistics of your and sibling images

 Usage: “hyptop”
 Shows

– CPU load and management overhead

– Memory usage (only under z/VM)

– Can show image overview or single image details

 Hints
– Good “first view” tool for a look outside of a single image

– Requirements

• For z/VM the guest needs class B

• For LPAR “Global performance data control” needs to be enabled

© 2014 IBM Corporation11

IBM

The “hyptop” tool

Why are exactly 4 CPUs
used in all 6 CPU guests

All these do not fully
utilize their 2 CPUs

No peaks in service guests

service guest weights

LPAR images would see
other LPARs

memuse = resident

11:12:56 CPU-T: UN(64)
system #cpu cpu Cpu+ online memuse memmax wcur
(str) (#) (%) (hm) (dmh) (GiB) (GiB) (#)
R3729003 6 399.11 2:24 0:03:05 11.94 12.00 100
R3729004 6 399.07 2:24 0:03:05 11.94 12.00 100
R3729001 6 398.99 2:26 0:03:09 11.95 12.00 100
R3729005 6 398.76 2:24 0:03:05 11.94 12.00 100
R3729009 4 398.62 2:22 0:03:05 4.20 6.00 100
R3729008 4 398.49 2:22 0:03:05 4.21 6.00 100
R3729007 4 398.39 2:21 0:03:05 4.18 6.00 100
R3729010 4 398.02 2:21 0:03:05 4.18 6.00 100
R3729002 6 397.99 2:24 0:03:05 11.94 12.00 100
R3729006 4 393.09 2:21 0:03:05 4.17 6.00 100
R3729012 2 117.37 0:43 0:03:05 0.25 2.00 100
R3729014 2 117.27 0:44 0:03:05 0.25 2.00 100
R3729011 2 117.13 0:43 0:02:37 0.25 2.00 100
R3729013 2 117.08 0:43 0:03:05 0.25 2.00 100
R3729015 2 116.63 0:43 0:03:05 0.25 2.00 100
VMSERVU 1 0.00 0:00 0:03:10 0.01 0.03 1500
VMSERVP 1 0.00 0:00 0:03:10 0.01 0.06 1500
VMSERVR 1 0.00 0:00 0:03:10 0.01 0.03 1500
RACFVM 1 0.00 0:00 0:03:10 0.01 0.02 100
OPERSYMP 1 0.00 0:00 0:03:10 0.01 0.03 100
TCPIP 1 0.00 0:00 0:03:10 0.01 0.12 3000
DTCVSW2 1 0.00 0:00 0:03:10 0.01 0.03 100
OPERATOR 1 0.00 0:00 0:03:10 0.00 0.03 100
RSCS 1 0.00 0:00 0:03:09 0.00 0.03 100
RSCSDNS 1 0.00 0:00 0:03:10 0.00 0.03 100
AUTOVM 1 0.00 0:00 0:03:10 0.00 0.03 100
GCS 1 0.00 0:00 0:03:10 0.00 0.02 100
LGLOPR 1 0.00 0:00 0:03:10 0.00 0.03 100
DIRMAINT 1 0.00 0:00 0:30:10 0.01 0.03 100
DTCVSW1 1 0.00 0:00 0:30:10 0.01 0.03 100

system #cpu cpu Cpu+ online memuse memmax wcur
(str) (#) (%) (hm) (dmh) (GiB) (GiB) (#)

© 2014 IBM Corporation12

IBM

The “vmstat” tool

 Report virtual memory statistics
 Usage: “vmstat [interval in sec]”
 Shows

– Data per time interval
– CPU utilization
– Disk I/O
– Memory usage / swapping

 Output example

 Hints
– Shared memory usage is listed under 'cache'

#> vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 2 2 0 4415152 64068 554100 0 0 4 63144 350 55 29 64 0 3 4
 3 0 0 4417632 64832 551272 0 0 0 988 125 60 32 67 0 0 1
 3 1 0 4415524 68100 550068 0 0 0 5484 212 66 31 64 0 4 1
 3 0 0 4411804 72188 549592 0 0 0 8984 230 42 32 67 0 0 1

© 2014 IBM Corporation13

IBM

The “pidstat” tool

 Report statistics for Linux tasks
– Identify processes with peak activity

 Usage: “pidstat [-w | -r | -d]”
 Shows

– -w context switching activity and if it was voluntary

– -r memory statistics, especially minor/major faults per process

– -d disk throughput per process

 Hints
– Also useful if run as background log due to its low overhead

• Good extension to sadc in systems running different applications/services

– -p <pid> can be useful to track activity of a specific process

© 2014 IBM Corporation14

IBM

The “pidstat” tool

 Example output
12:46:18 PM PID cswch/s nvcswch/s Command
12:46:18 PM 3 2.39 0.00 smbd
12:46:18 PM 4 0.04 0.00 sshd
12:46:18 PM 1073 123.42 180.18 Xorg

12:47:51 PM PID minflt/s majflt/s VSZ RSS %MEM Command
12:47:51 PM 985 0.06 0.00 15328 3948 0.10 smbd
12:47:51 PM 992 0.04 0.00 5592 2152 0.05 sshd
12:47:51 PM 1073 526.41 0.00 1044240 321512 7.89 Xorg

12:49:18 PM PID kB_rd/s kB_wr/s kB_ccwr/s Command
12:49:18 PM 330 0.00 1.15 0.00 sshd
12:49:18 PM 2899 4.35 0.09 0.04 notes2
12:49:18 PM 3045 23.43 0.01 0.00 audacious2

Voluntarily / Involuntary

How much KB disk I/O per process

Faults per process

© 2014 IBM Corporation15

IBM

Formulate a theory

“Make a wild guess”

© 2014 IBM Corporation16

IBM

Formulate a theory

 Identify the most likely problem area
– CPU related

– Memory related

– I/O related

– Networking related

– or a combination of several factors

 If the first look did not show anything obvious use monitoring
– Needs preparation to capture the event of interest, e.g. at 4pm

– Usually a lot of data is generated that needs to be analysed

– Monitoring will impact your system

© 2014 IBM Corporation17

IBM

CPU related issues

“Who is stealing my CPU ?”

© 2014 IBM Corporation18

IBM

The “strace” tool

 Trace system calls and signals
 Usage: “strace -p [process id]”
 Shows

– Identify kernel entries called more often or taking too long

• Can be useful if you search for increased system time

– Time in call (-T)

– Relative timestamp (-r)

 Hints
– High overhead, high detail tool which will slow down your application

– Option “-c” allows medium overhead by just tracking counters and durations

© 2014 IBM Corporation19

IBM

The “strace” tool

 Example output

strace -cf -p 26802
Process 26802 attached - interrupt to quit
^Process 26802 detached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 58.43 0.007430 17 450 read
 24.33 0.003094 4 850 210 access
 5.53 0.000703 4 190 10 open
 4.16 0.000529 3 175 write
 2.97 0.000377 2 180 munmap
 1.95 0.000248 1 180 close
 1.01 0.000128 1 180 mmap
 0.69 0.000088 18 5 fdatasync
 0.61 0.000078 0 180 fstat
 0.13 0.000017 3 5 pause
------ ----------- ----------- --------- --------- ----------------
100.00 0.012715 2415 225 total

shares to rate
importance

system call name
(see man pages)

a lot, slow or
failing calls?

© 2014 IBM Corporation20

IBM

The “ltrace” tool

 A library call tracer
 Usage: “ltrace -p [process id]”
 Shows

– Identify library calls that are too often or take too long

• Good if you search for additional user time

• Good if things changed after upgrading libs

– Time in call (-T)

– Relative timestamp (-r)

 Hints
– High overhead, high detail tool which will slow down your application

– Option “-c” allows medium overhead by just tracking counters and durations

– Option “-S” allows to combine ltrace and strace

© 2014 IBM Corporation21

IBM

The “ltrace” tool

 Example output

ltrace -cf -p 26802
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
 98.33 46.765660 5845707 8 pause
 0.94 0.445621 10 42669 strncmp
 0.44 0.209839 25 8253 fgets
 0.08 0.037737 11 3168 __isoc99_sscanf
 0.07 0.031786 20 1530 access
 0.04 0.016757 10 1611 strchr
 0.03 0.016479 10 1530 snprintf
 0.02 0.010467 1163 9 fdatasync
 0.02 0.008899 27 324 fclose
 0.02 0.007218 21 342 fopen
 0.01 0.006239 19 315 write
 0.00 0.000565 10 54 strncpy
------ ----------- ----------- --------- --------------------
100.00 47.560161 59948 total

shares to rate
importance

a lot or slow
calls? library call name

(see man pages)

© 2014 IBM Corporation22

IBM

The “perf” tool

 Performance analysis tools for Linux
– Get detailed information where & why CPU is consumed

 Usage: “perf top”, “perf stat <cmd>”, “perf record/perf diff”
 Shows

– Sampling for CPU hotspots

• Annotated source code along hotspots, list functions according to their usage

– CPU event counters

– Kernel tracepoints

 Hints
– Without HW support only userspace can be reasonably profiled

– “successor” of oprofile that is available with HW support (SLES11-SP2)

– Perf HW is upstream, wait for next distribution releases

– Won't help with I/O wait or CPU stalls

© 2014 IBM Corporation23

IBM

The “perf” tool

 Example output (perf diff)

 Preparation
– The cpu measurement facility needs

to be enabled

Baseline Delta Symbol
........
#
 12.14% +8.07% [kernel.kallsyms] [k] lock_acquire
 8.96% +5.50% [kernel.kallsyms] [k] lock_release
 4.83% +0.38% reaim [.] add_long
 4.22% +0.41% reaim [.] add_int
 4.10% +2.49% [kernel.kallsyms] [k] lock_acquired
 3.17% +0.38% libc-2.11.3.so [.] msort_with_tmp
 3.56% -0.37% reaim [.] string_rtns_1
 3.04% -0.38% libc-2.11.3.so [.] strncat

© 2014 IBM Corporation24

IBM

Memory related issues

“Who is eating all the memory ?”

© 2014 IBM Corporation25

IBM

The “smem” tool

 Memory usage details per process/mapping
 Usage: smem -tk -c "pid user command swap vss uss pss rss”
 smem -m -tk -c "map count pids swap vss uss rss pss
 avgrss avgpss"

 Package: http://www.selenic.com/smem/

 Shows
– Pid, user, Command or Mapping, Count, Pid

– Memory usage in categories vss, uss, rss, pss and swap

 Hints
– Has visual output (pie charts) and filtering options as well

– No support for huge pages or transparent huge pages (kernel interface missing)

© 2014 IBM Corporation26

IBM

The “smem” tool

 Example output

 How much of a process is:
– Swap - Swapped out
– VSS - Virtually allocated
– USS - Really unique
– RSS - Resident
– PSS - Resident accounting a proportional part of shared memory

smem -tk -c "pid user command swap vss uss pss rss”
 PID User Command Swap VSS USS PSS RSS
 1860 root /sbin/agetty -s sclp_line0 0 2.1M 92.0K 143.0K 656.0K
 1861 root /sbin/agetty -s ttysclp0 11 0 2.1M 92.0K 143.0K 656.0K
 493 root /usr/sbin/atd -f 0 2.5M 172.0K 235.0K 912.0K
 1882 root /sbin/udevd 0 2.8M 128.0K 267.0K 764.0K
 1843 root /usr/sbin/crond -n 0 3.4M 628.0K 693.0K 1.4M
 514 root /bin/dbus-daemon --system - 0 3.2M 700.0K 771.0K 1.5M
 524 root /sbin/rsyslogd -n -c 5 0 219.7M 992.0K 1.1M 1.9M
 2171 root ./hhhptest 0 5.7G 1.0M 1.2M 3.2M
 1906 root -bash 0 103.8M 1.4M 1.5M 2.1M
 2196 root ./hhhptest 0 6.2G 2.0M 2.2M 3.9M
 1884 root sshd: root@pts/0 0 13.4M 1.4M 2.4M 4.2M
 1 root /sbin/init 0 5.8M 2.9M 3.0M 3.9M
 2203 root /usr/bin/python /usr/bin/sm 0 109.5M 6.1M 6.2M 6.9M

© 2014 IBM Corporation27

IBM

The “smem” tool

 Example output

 How much of a process is:
– Swap - Swapped out
– VSS - Virtually allocated
– USS - Really unique
– RSS - Resident
– PSS - Resident accounting a proportional part of shared memory
– Averages as there can be multiple mappers

smem -m -tk -c "map count pids swap vss uss rss pss avgrss avgpss"

Map Count PIDs Swap VSS USS RSS PSS AVGRSS AVGPSS
[stack:531] 1 1 0 8.0M 0 0 0 0 0
[vdso] 25 25 0 200.0K 0 132.0K 0 5.0K 0
/dev/zero 2 1 0 2.5M 4.0K 4.0K 4.0K 4.0K 4.0K
/usr/lib64/sasl2/libsasldb.so.2.0.23 2 1 0 28.0K 4.0K 4.0K 4.0K 4.0K 4.0K
/bin/dbus-daemon 3 1 0 404.0K 324.0K 324.0K 324.0K 324.0K 324.0K
/usr/sbin/sshd 6 2 0 1.2M 248.0K 728.0K 488.0K 364.0K 244.0K
/bin/systemd 2 1 0 768.0K 564.0K 564.0K 564.0K 564.0K 564.0K
/bin/bash 2 1 0 1.0M 792.0K 792.0K 792.0K 792.0K 792.0K
[stack] 25 25 0 4.1M 908.0K 976.0K 918.0K 39.0K 36.0K
/lib64/libc-2.14.1.so 75 25 0 40.8M 440.0K 9.3M 1.2M 382.0K 48.0K
/lib64/libcrypto.so.1.0.0j 8 4 0 7.0M 572.0K 2.0M 1.3M 501.0K 321.0K
[heap] 16 16 0 8.3M 6.4M 6.9M 6.6M 444.0K 422.0K
<anonymous> 241 25 0 55.7G 20.6M 36.2M 22.3M 1.4M 913.0K

© 2014 IBM Corporation28

IBM

The “smem” tool

 Example of a memory distribution
Visualization (many options)

 Warning in regard to monitoring
the /proc/<pid>/smaps interface
is expensive

© 2014 IBM Corporation29

IBM

The “/proc/meminfo” interface

 How the kernel has allocated the memory
cat /proc/meminfo
MemTotal: 889520 kB
MemFree: 749820 kB
Buffers: 10956 kB
Cached: 58844 kB
SwapCached: 0 kB
Active: 27140 kB
Inactive: 55760 kB
Active(anon): 13292 kB
Inactive(anon): 1184 kB
Active(file): 13848 kB
Inactive(file): 54576 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 1048556 kB
SwapFree: 1048556 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 13204 kB
Mapped: 7528 kB

Shmem: 1352 kB
Slab: 39544 kB
SReclaimable: 18200 kB
SUnreclaim: 21344 kB
KernelStack: 2208 kB
PageTables: 608 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 1493316 kB
Committed_AS: 52680 kB
VmallocTotal: 130023424 kB
VmallocUsed: 118616 kB
VmallocChunk: 129903444 kB
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1024 kB

© 2014 IBM Corporation30

IBM

The “slabtop” tool

 Display kernel slab cache information in real time
 Usage: “slabtop”
 Shows

– Active / Total object number/size

– Objects per Slab

– Object Name and Size

– Objects per Slab

 Hints
– Option -o is used for one time output e.g. to gather debug data

– Despite slab/slob/slub in kernel its always slabtop

© 2014 IBM Corporation31

IBM

The “slabtop” tool

 Example output

How is kernel memory managed by the sl[auo]b allocator used
– Named memory pools or generic kmalloc pools

– Active/total objects and their size

– growth/shrinks of caches due to workload adaption

 Active / Total Objects (% used) : 2436408 / 2522983 (96.6%)
 Active / Total Slabs (% used) : 57999 / 57999 (100.0%)
 Active / Total Caches (% used) : 75 / 93 (80.6%)
 Active / Total Size (% used) : 793128.19K / 806103.80K (98.4%)
 Minimum / Average / Maximum Object : 0.01K / 0.32K / 8.00K

 OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME
578172 578172 100% 0.19K 13766 42 110128K dentry
458316 458316 100% 0.11K 12731 36 50924K sysfs_dir_cache
368784 368784 100% 0.61K 7092 52 226944K proc_inode_cache
113685 113685 100% 0.10K 2915 39 11660K buffer_head
113448 113448 100% 0.55K 1956 58 62592K inode_cache
111872 44251 39% 0.06K 1748 64 6992K kmalloc-64
 54688 50382 92% 0.25K 1709 32 13672K kmalloc-256
 40272 40239 99% 4.00K 5034 8 161088K kmalloc-4096
 39882 39882 100% 0.04K 391 102 1564K ksm_stable_node
 38505 36966 96% 0.62K 755 51 24160K shmem_inode_cache
 37674 37674 100% 0.41K 966 39 15456K dm_rq_target_io

© 2014 IBM Corporation32

IBM

I/O related issues

“Why are disk always to slow?”

© 2014 IBM Corporation33

IBM

The “iostat” tool

 Report input/output statistics for devices and partitions
 Usage: “iostat -xtdk [interval in sec]”
 Shows

– Throughput

– Request merging

– Device queue information

– Service times

 Hints
– Most critical parameter often is await

• average time (in milliseconds) for I/O requests issued to the device to be served.

• includes the time spent by the requests in queue and the time spent servicing them.

– Also suitable for network file systems

© 2014 IBM Corporation34

IBM

The “iostat” tool

 Example output

Time: 10:56:35 AM
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
dasda 0.19 1.45 1.23 0.74 64.43 9.29 74.88 0.01 2.65 0.80 0.16
dasdb 0.02 232.93 0.03 9.83 0.18 975.17 197.84 0.98 99.80 1.34 1.33

Time: 10:56:36 AM
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
dasda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dasdb 0.00 1981.55 0.00 339.81 0.00 9495.15 55.89 0.91 2.69 1.14 38.83

Time: 10:56:37 AM
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
dasda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dasdb 0.00 2055.00 0.00 344.00 0.00 9628.00 55.98 1.01 2.88 1.19 41.00

© 2014 IBM Corporation35

IBM

The “blktrace” tool

 Generate traces of the I/O traffic on block devices
 Usage: “blktrace -d [device(s)]”

“blktrace -st [commontracefilepart]”
 Shows

– Events like merging, request creation, I/O submission, I/O completion, ...

– Timestamps and disk offsets for each event

– Associated task and executing CPU

– Application and CPU summaries

 Hints
– Filter masks allow lower overhead if only specific events are of interest

– Has an integrated client/server mode to stream data away

• Avoids extra disk I/O on a system with disk I/O issues

© 2014 IBM Corporation36

IBM

The “blktrace” tool

 Often its easy to identify that I/O is slow
→ but where?
→ and why?

 Blocktrace allows to
– Analyze Disk I/O characteristics like sizes and offsets

• Maybe your I/O is split in a layer below

– Analyze the timing with details about all involved Linux layers

• Often useful to decide if HW or SW causes stalls

– Summaries per CPU / application can identify imbalances

© 2014 IBM Corporation37

IBM

The “blktrace” tool – block device events (simplified)

 Y N

App / A / X

C

Q

G

I

D

P

U

M / Fmergeable

Merge with an
existing request

Need to Generate
a new request

Plug queue and wait for
follow-on request

Time from Dispatch
to Complete

Unplug on upper limit,
time reached or

 task switch

Dispatch from block
device layer to
device driver

Additional info from
dasdstat or scsi sysfs

statistics required to get
the complete picture

A - remap

B - bounced

C - complete

D - issued

F - front merge

G - get request

I - inserted

M - back merge

P - plug

Q - queued

T - timer unplug

U - unplug

X - split

© 2014 IBM Corporation38

IBM

The “blktrace” tool

 Example output
– The snippet shows a lot of 4k requests (8x512 byte sectors)

• We expected the I/O to be 32k

– Each one is dispatched separately (no merges)

• This caused unnecessary overhead and slow I/O

Maj/Min CPU Seq-nr sec.nsec pid Action RWBS sect + size map source / task
94,4 27 21 0.059363692 18994 A R 20472832 + 8 <- (94,5) 20472640
94,4 27 22 0.059364630 18994 Q R 20472832 + 8 [qemu-kvm]
94,4 27 23 0.059365286 18994 G R 20472832 + 8 [qemu-kvm]
94,4 27 24 0.059365598 18994 I R 20472832 + 8 (312) [qemu-kvm]
94,4 27 25 0.059366255 18994 D R 20472832 + 8 (657) [qemu-kvm]
94,4 27 26 0.059370223 18994 A R 20472840 + 8 <- (94,5) 20472648
94,4 27 27 0.059370442 18994 Q R 20472840 + 8 [qemu-kvm]
94,4 27 28 0.059370880 18994 G R 20472840 + 8 [qemu-kvm]
94,4 27 29 0.059371067 18994 I R 20472840 + 8 (187) [qemu-kvm]
94,4 27 30 0.059371473 18994 D R 20472840 + 8 (406) [qemu-kvm]

Action codes

© 2014 IBM Corporation39

IBM

The DASD statistics

 Collects statistics of I/O operations on DASD devices
 Usage:

– enable: echo on > /proc/dasd/statistics

– show:

• Overall cat /proc/dasd/statistics

• for individual DASDs tunedasd -P /dev/dasda

 Package: n/a for kernel interface, s390-tools for dasdstat
 Shows: various processing times

New Tool “dasdstat” available
to handle that all-in-one

Histogram of I/O till ssch
Histogram of I/O between

ssch and IRQ
Histogram between

I/O and End
Start End

Histogram of I/O times

Build channel program
wait till subchannel is
free

Processing data transfer
from/to storage server

Tell block dev layer
Data has arrived

© 2014 IBM Corporation40

IBM

The FCP statistics

 Collects statistics of I/O operations on FCP devices on request base
 Usage:

– CONFIG_STATISTICS=y must be enable for the kernel build

– debugfs is mounted at /sys/kernel/debug/

– for each FCP device there is a LUN directory
/sys/kernel/debug/statistics/zfcp-<device-bus-id>-<WWPN>-<LUN>

– to enable, do “echo on=1 > definition”

– to disable, do “echo on=0 > definition”

– to reset, do “echo data=reset > definition”

– to view, do “cat data”

 Hint
– FCP and DASD statistics are not directly comparable, because in the FCP case

many I/O requests can be sent to the same LUN before the first response is
given. There is a queue at FCP driver entry and in the storage server

© 2014 IBM Corporation41

IBM

The FCP statistics

 Shows:
– Request sizes in bytes (hexadecimal)

– Channel latency Time spent in the FCP channel in nanoseconds

– Fabric latency processing data transfer from/to storage server incl. SAN in nanoseconds

– (Overall) latencies whole time spent in the FCP layer in milliseconds

– Calculate the pass through time for the FCP layer as

pass through time = overall latency – (channel latency + fabric latency)

→ Time spent between the Linux device driver and FCP channel adapter inclusive in
Hypervisor

Start End

Channel
Latency

Fabric
Latency

Overall Latency

© 2014 IBM Corporation42

IBM

IRQ statistics

 Condensed overview of IRQ activity
 Usage: cat /proc/interrupts and cat /proc/softirqs
 Shows

– Which interrupts happen on which cpu

– Where softirqs and tasklets take place

 Hints
– Recent Versions (SLES11-SP2) much more useful due to better naming

– If interrupts are unintentionally unbalanced

– If the amount of interrupts matches I/O

• This can point to non-working IRQ avoidance

© 2014 IBM Corporation43

IBM

IRQ statistics

 Example
– Network focused on CPU zero (in this case unwanted)

– Scheduler covered most of that avoiding idle CPU 1-3

– But caused a lot migrations, IPI's and cache misses
 CPU0 CPU1 CPU2 CPU3
EXT: 21179 24235 22217 22959
I/O: 1542959 340076 356381 325691
CLK: 15995 16718 15806 16531 [EXT] Clock Comparator
EXC: 255 325 332 227 [EXT] External Call
EMS: 4923 7129 6068 6201 [EXT] Emergency Signal
TMR: 0 0 0 0 [EXT] CPU Timer
TAL: 0 0 0 0 [EXT] Timing Alert
PFL: 0 0 0 0 [EXT] Pseudo Page Fault
DSD: 0 0 0 0 [EXT] DASD Diag
VRT: 0 0 0 0 [EXT] Virtio
SCP: 6 63 11 0 [EXT] Service Call
IUC: 0 0 0 0 [EXT] IUCV
CPM: 0 0 0 0 [EXT] CPU Measurement
CIO: 163 310 269 213 [I/O] Common I/O Layer Interrupt
QAI: 1 541 773 338 857 354 728 324 110 [I/O] QDIO Adapter Interrupt
DAS: 1023 909 1384 1368 [I/O] DASD
[…] 3215, 3270, Tape, Unit Record Devices, LCS, CLAW, CTC, AP Bus, Machine Check

© 2014 IBM Corporation44

IBM

IRQ statistics

 Also softirqs can be tracked which can be useful to
– check if tasklets execute as intended

– See if network, scheduling and I/O behave as expected

 CPU0 CPU1 CPU2 CPU3
 HI: 498 1522 1268 1339
 TIMER: 5640 914 664 643
 NET_TX: 15 16 52 32
 NET_RX: 18 34 87 45
 BLOCK: 0 0 0 0
BLOCK_IOPOLL: 0 0 0 0
 TASKLET: 13 10 44 20
 SCHED: 8055 702 403 445
 HRTIMER: 0 0 0 0
 RCU: 5028 2906 2794 2564

© 2014 IBM Corporation45

IBM

Networking related issues

“Is there anybody out there?”

© 2014 IBM Corporation46

IBM

The “netstat” tool

 Print network connections, routing tables, interface statistics and more
 Usage: “netstat -eeapn” list connections

 “netstat -s” display summary statistics
 Shows

– Information about each connection and various connection states

– Information in regard to each protocol

– Amount of incoming and outgoing packages

– Various error states, for example TCP segments retransmitted!

 Hints
– Inodes and program names are useful to reverse-map ports to applications

– Option -s shows accumulated values since system start

– There is always a low amount of packets in error or resets

– Dropped segments show up on the sender side as retransmits

– Use sadc/sar to identify the device

© 2014 IBM Corporation47

IBM

The “netstat” tool

 Example output “netstat -s”
Tcp:
 15813 active connections openings
 35547 passive connection openings
 305 failed connection attempts
 0 connection resets received
 6117 connections established
 81606342 segments received
 127803327 segments send out
 288729 segments retransmitted
 0 bad segments received.

© 2014 IBM Corporation48

IBM

The socket statistics “ss” tool

 Another utility to investigate sockets
 Usage: “ss -aempi”
 Shows

– Socket options

– Socket receive and send queues

– Inode, socket identifiers

 Example output

 Hints
– Inode numbers can assist reading strace logs

– Check long outstanding queue elements

ss -aempi
 State Recv-Q Send-Q Local Address:Port Peer Address:Port
 LISTEN 0 128 :::ssh :::*
 users:(("sshd",959,4)) ino:7851 sk:ef858000 mem:(r0,w0,f0,t0)

© 2014 IBM Corporation49

IBM

The “iptraf” tool

 Interactive colorful IP LAN monitor
 Usage: “iptraf”
 Shows

– Live information on network devices / connections

– Details per Connection / Interface

– Statistical breakdown of ports / packet sizes

– LAN station monitor

 Hints
– Can be used for background logging as well

• Use SIGUSR1 and logrotate to handle the growing amount of data

– Knowledge of packet sizes important for the right tuning

© 2014 IBM Corporation50

IBM

The “iptraf” tool

 Questions that usually can be addressed
– Connection behavior overview

– Do you have peaks in your workload characteristic

– Who does your host really communicate with

 Comparison to wireshark
– Not as powerful, but much easier and faster to use

– Lower overhead and no sniffing needed (often prohibited)

IF
details

Packet
sizes

© 2014 IBM Corporation51

IBM

The “tcpdump” tool

 analyze packets of applications manually
 Usage: “tcpdump ...”

 Not all devices support dumping packets in older distribution releases
– Also often no promiscuous mode

 Check flags or even content if your expectations are met
 -w flag exports captured unparsed data to a file for later analysis

– Also supported by wireshark
 Usually you have to know what you want to look for

tcpdump host pserver1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
13:30:00.326581 IP pserver1.boeblingen.de.ibm.com.38620 > p10lp35.boeblingen.de.ibm.com.ssh: Flags [.], ack 3142, win
102, options [nop,nop,TS val 972996696 ecr 346994], length 0

13:30:00.338239 IP p10lp35.boeblingen.de.ibm.com.ssh > pserver1.boeblingen.de.ibm.com.38620: Flags [P.], seq
3142:3222, ack 2262, win 2790, options [nop,nop,TS val 346996 ecr 972996696], length 80
13:30:00.375491 IP pserver1.boeblingen.de.ibm.com.38620 > p10lp35.boeblingen.de.ibm.com.ssh: Flags [.], ack 3222, win
102, options [nop,nop,TS val 972996709 ecr 346996], length 0
[...]
^C
31 packets captured
31 packets received by filter
0 packets dropped by kernel

© 2014 IBM Corporation52

IBM

Monitoring

“For the hard problems”

© 2014 IBM Corporation53

IBM

The “SADC/SAR” tool

 System activity data collector and analysis
– Suitable for permanent system monitoring and detailed analysis

 Usage: “/usr/lib64/sa/sadc [-S XALL] [interval in sec] [outfile]”
 “sar -A -f [outfile]”

 Shows
– Reports statistics data over time and creates average values for each item
– CPU and memory utilization
– Disk I/O overview and on device level
– Network I/O and errors on device level
– … and much more

 Hints
– Shared memory is listed under 'cache'
– [outfile] is a binary file, which contains all values. It is formatted using sar
– sadc parameter “-S XALL” enables the gathering of further optional data

• enables the creation of item specific reports, e.g. network only
• enables the specification of a start and end time → time of interest

© 2014 IBM Corporation54

IBM

The “SAR” output – processes created

Processes created per second usually small except during startup.
If constantly at a high rate your application likely has an issue.
Be aware – the numbers scale with your system size and setup.

© 2014 IBM Corporation55

IBM

The “SAR” output – context switch rate

Context switches per second usually < 1000 per cpu
except during startup or while running a benchmark
if > 10000 your application might have an issue.

© 2014 IBM Corporation56

IBM

The “SAR” output – CPU utilization
Per CPU values:
watch out for
 system time (kernel)
 user (applications)
 irq/soft (kernel, interrupt handling)
 idle (nothing to do)
 iowait time (runnable but waiting for I/O)
 steal time (runnable but utilized somewhere else)

© 2014 IBM Corporation57

IBM

The “SAR” output – network traffic

Per interface statistic of packets/bytes
You can easily derive average packet sizes from that.
Sometimes people expect - and planned for – different sizes.

Has another panel for errors, drops and such events.

© 2014 IBM Corporation58

IBM

The “SAR” output – disk I/O overall

Overview of
- operations per second
- transferred amount

© 2014 IBM Corporation59

IBM

The “SAR” output – disk I/O per device

Is your I/O balanced across devices?
Imbalances can indicate issues wit a LV setup.

tps and avgrq-sz combined can be important.
Do they match your sizing assumptions?

Await shows the time the application has to wait.

© 2014 IBM Corporation60

IBM

The “SAR” output – memory statistics

Be aware that high %memused and low kbmemfree
is no indication of a memory shortage (common mistake).

Same for swap – to use swap is actually good,
but to access it (swapin/-out) all the time is bad.

© 2014 IBM Corporation61

IBM

The “SAR” output – memory pressure / swap

The percentage seen before can be high,
But the swap rate shown here should be low.
Ideally it is near zero after a rampup time.
High rates can indicate memory shortages.

© 2014 IBM Corporation62

IBM

The “SAR” output – memory pressure faults and reclaim

Don't trust pgpgin/-out absolute values
Faults populate memory
Major faults need I/O
Scank/s is background reclaim by kswap/flush (modern)
Scand/s is reclaim with a “waiting” allocation
Steal is the amount reclaimed by those scans

© 2014 IBM Corporation63

IBM

The “SAR” output – system load

Runqueue size are the currently runnable programs.
It's not bad to have many, but if they exceed the amount
of CPUs you could do more work in parallel.

Plist-sz is the overall number of programs, if that is always
growing you have likely a process starvation or connection issue.

Load average is a runqueue length average for 1/5/15 minutes.

© 2014 IBM Corporation64

IBM

The “dstat” tool

 Versatile tool for generating system resource statistics
 Usage: dstat -tv –aio –disk-util -n –net-packets -i –ipc
 -D total,[diskname] –top-io [...] [interval]

 Short: dstat -vtin
 Shows

– Throughput

– Utilization

– Summarized and per device queue information

– Much more, it more or less combines several classic tools like iostat and vmstat

 Hints
– Powerful plug-in concept

• “--top-io” for example identifies the application causing the most I/Os

– Colorization allows fast identification of deviations

© 2014 IBM Corporation65

IBM

The “dstat” tool

 ●●

●●●

similar to vmstat
similar to iostat
(also per device)

new in live tool

© 2014 IBM Corporation66

IBM

The ziomon

 Analyze your FCP based I/O
 Usage: “ziomon” → “ziorep*”

 Be aware that ziomon can be memory greedy if you have very memory constrained systems

 The has many extra functions please check out the live virtual class of Stephan Raspl

– PDF: http://www.vm.ibm.com/education/lvc/LVC0425.pdf

– Replay: http://ibmstg.adobeconnect.com/p7zvdjz0yye/

ziomon Tools

Collect data
using ziomon

Generate reports
using ziorep_*

Data
Target
system

.log .agg

 ziorep_config

ziorep_traffic

ziorep_utilization

.csv
.cfg

Data

.config

http://www.vm.ibm.com/education/lvc/LVC0425.pdf
http://ibmstg.adobeconnect.com/p7zvdjz0yye/

© 2014 IBM Corporation67

IBM

Questions

 Further information is available at
– Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

– Live Virtual Classes for z/VM and Linux
http://www.vm.ibm.com/education/lvc/

Schönaicher Strasse 220
71032 Böblingen, Germany

Phone +49 (0)7031-16-2247
schwidefsky@de.ibm.com

Martin Schwidefsky

Linux on System z
Development

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

