

How System SSL Uses Crypto on System z

Greg Boyd gregboyd@mainframecrypto.com

Share 15660

August 2014

Copyrights and Trademarks

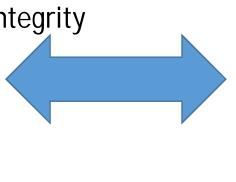
- Presentation based on material copyrighted by IBM, and developed by myself, as well as many others that I worked with over the past 10 years
- Copyright © 2014 Greg Boyd, Mainframe Crypto, LLC. All rights reserved.
- All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. IBM, System z, zEnterprise and z/OS are trademarks of International Business Machines Corporation in the United States, other countries, or both. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.
- THIS PRESENTATION IS FOR YOUR INFORMATIONAL PURPOSES ONLY. Greg Boyd and Mainframe Crypto, LLC assumes no responsibility for the accuracy or completeness of the information. TO THE EXTENT PERMITTED BY APPLICABLE LAW, THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. In no event will Greg Boyd or Mainframe Crypto, LLC be liable for any loss or damage, direct or indirect, in connection with this presentation, including, without limitation, lost profits, lost investment, business interruption, goodwill, or lost data, even if expressly advised in advance of the possibility of such damages.

QR Code

• Share #15660

Agenda

- System SSL Basics
 - What is it?
 - How it works
- Crypto Hardware
- How do I tell what I'm using (hardware/software)?
- Performance (Reports and Expectations)
- Heartbleed



Secure Sockets Layer/Transport Layer Security V#, Serial N Sign Issue

V#, Serial Number, CA's Signature Signature Algorithm, Issuer Name: Caxyz Validity Date & Time Subject Name: Greg Subject's Public Key Signature Algorithm: RSA with SHA-1 Extensions

- Communication protocol developed by Netscape to provide security on the internet
 - Establishes a communication session between a client and a server
 - Authenticates one or both parties
 - May provide security (encryption)
 - May provide data integrity

Two methods on z/OS

- System SSL
 - Component of z/OS, provides C/C++ callable APIs
 - Leverages crypto hardware and ICSF as appropriate
 - Primary implementation
- Java
 - Part of IBM SDK for z/OS, Java Technology Edition provides Java callable APIs
 - Leverages crypto hardware and ICSF ... maybe
 - Used by Java-based workloads running on z/OS

System SSL Security Level 3

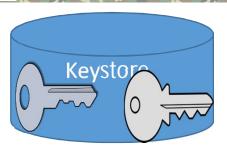
z/OS Version	FMID
OS/390 R10; z/OS 1.1	JCPT2A1
z/OS 1.2; z/OS 1.3	JCPT321
z/OS 1.4; z/OS 1.5	JCPT341
z/OS 1.6; z/OS 1.7	JCPT361
z/OS 1.8	JCPT381
z/OS 1.9	JCPT391
z/OS 1.10	JCPT3A1
z/OS 1.11	JCPT3B1
z/OS 1.12	JCPT3C1
z/OS 1.13	JCPT3D1
z/OS 2.1	JCPT411

SSL/TLS : High Level Flow Client

- 1. Initiates the communication session
- 2. Requests specific data to be provided by the Server
- 3. Usually via a browser but not always
- 4. May need to prove its identity by having a certificate

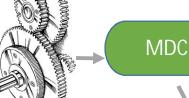
Server

- 1. Provides data at the client's request
- 2. Provides access based on it's security environment
- 3. Usually an application responding to the request
- 4. Protects it's identity via a certificate



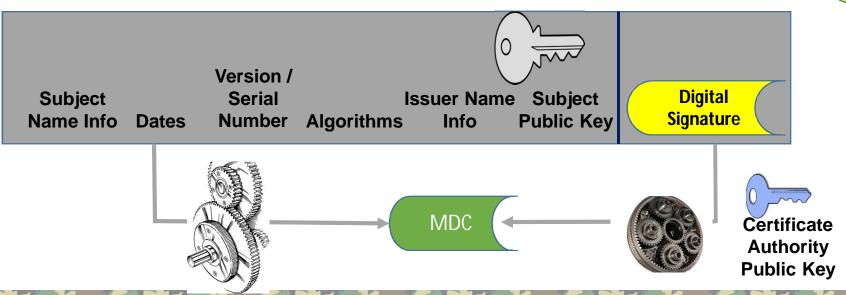
SSL/TLS Protocol

- Two phases
 - Handshake phase relies on certificates and public/private key algorithms to provide authentication
 - Signature Verification
 - Public key authentication
 - Record phase relies on symmetric algorithms and hashes to provide security and integrity
 - DES/TDES, AES, RC4, Blowfish ...
 - SHA1, SHA-2, MD5 ...



Digital Certificate

Certificate Request



Certificate
Authority
Private Key

Digital Signature

Certificate

Why Both Asymmetric and Symmetric?

Asymmetric

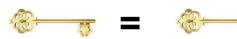
- + Can be used to establish a secret between two parties
- Performance impact

Symmetric

- + Better performance
- Key distribution (key must be shared securely between the parties)

SSL & Crypto Devices

- Crypto Express4S (CEX4S); Crypto Express3 (CEX3)
 - Combines PCICA & PCIXCC in single feature
 - RSA asymmetric algorithms up to 4096-bit keys
 - ECC asymmetric algorithms
- Crypto Express2 (CEX2)
 - Combines PCICA & PCIXCC in single feature
 - RSA asymmetric algorithms up to 2048-bit keys
- PCIXCC, PCIX Cryptographic Coprocessor
 - RSA (2048-bit keys) asymmetric algorithms
- PCICA, PCI Cryptographic Accelerator
 - RSA (2048-bit keys) asymmetric algorithms



SSL & Crypto Devices ...

- CPACF, CP Assist for Cryptographic Functions
 - z890/z990
 - clear key encryption: DES/TDES
 - hash engine: SHA-1
 - z9
 - clear key encryption: DES/TDES and AES-128
 - hash engine: SHA-1, SHA-256
 - z10/z196/z114/zEC12
 - clear key encryption: DES/TDES and AES
 - hash engine: SHA-1, SHA-2 (full SHA-2 suite)

The specific algorithms available to System SSL/TLS depend on the installed hardware and the version of z/OS

System SSL hardware crypto usage

			<u> </u>			
Crypto Type	Algorithm	Only CPACF available	CPACF + Coprocessor/Accelerator			
Asymmetric	RSA/ECC signature generation	In software	In coprocessor mode only. Otherwise in software (accelerator does not support this operation)			
Encrypt/ Decrypt	RSA/ECC signature verification	In software	In coprocessor/accelerator			
	PKA/ECC encrypt/decrypt for handshake	In software	In coprocessor/accelerator			
	DES	CPACF (non-FIP	S mode only: DES not allowed in FIPS mode)			
Symmetric Encrypt /	3DES	CPACF				
Decrypt	AES-CBC-128	CPACF				
	AES-CBC-256	In software on z9, CPACF in z10, z196, EC12				
	SHA-1, SHA-256, SHA-512	CPACF				
Hashing	MD5	In software (non- mode)	-FIPS mode only: MD5 not allowed in FIPS			

FIPS Mode Support

- NIST Cert #1692 (z/OS 1.13); NIST Cert #1600 (z/OS 1.12); NIST Cert #1492 (z/OS 1.11)
 - TDES
 - AES (128- or 256-bit)
 - SHA-1, SHA-2
 - RSA (1024- to 4096-bit)
 - DSA (1024-bit)
 - DH (2048-bit)
 - ECC (160- to 521-bit)
- FIPS On Demand

http://csrc.nist.gov/groups/STM/cmvp/validation.html

SSL Exploiters

CICS **LDAP** WebSphere **MQ** Series Tivoli Access Manager for **Business Integration Host** Edition **Policy Director Authorization Services** Secure TN3270 IMS **PKI Services** EIM Sendmail Secure FTP **IPSEC IBM HTTP Server**

How do I tell, what ciphersuites – F GSKSRVR, DISPLAY CRYPTO

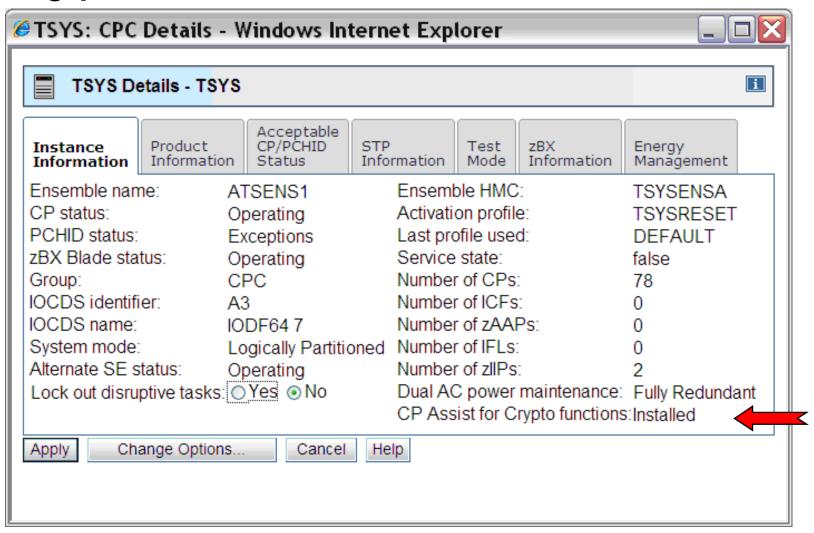
GSK01009I Cryptographic status

31 3 1		
Algorithm	Hardware	Software
DES	56	56
3DES	168	168
AES	256	256
RC2		128
RC4		128
RSA Encrypt		4096
RSA Sign		4096
DSS		1024
SHA-1	160	160
SHA-2	512	512
ECC		

Environment: z196 running z/OS 1.13, but ICSF <u>not</u> active

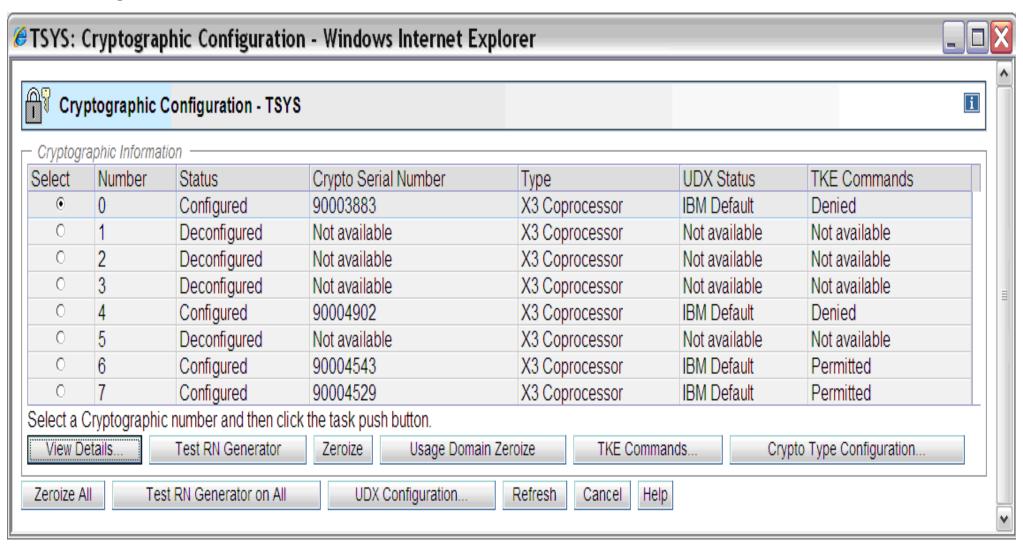
How do I tell, what ciphersuites – F GSKSRVR, DISPLAY CRYPTO

GSK01009I Cryptographic status


Algorithm	Hardware	Software
DES	56	56
3DES	168	168
AES	256	256
RC2		128
RC4		128
RSA Encrypt	4096	4096
RSA Sign	4096	4096
DSS		1024
SHA-1	160	160
SHA-2	512	512
ECC	521	521

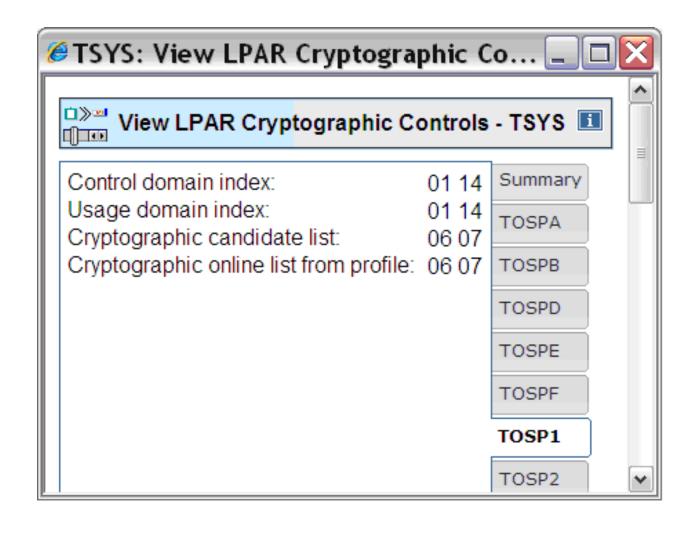
Environment: z196 running z/OS 1.13, with ICSF active

Crypto Microcode Installed?



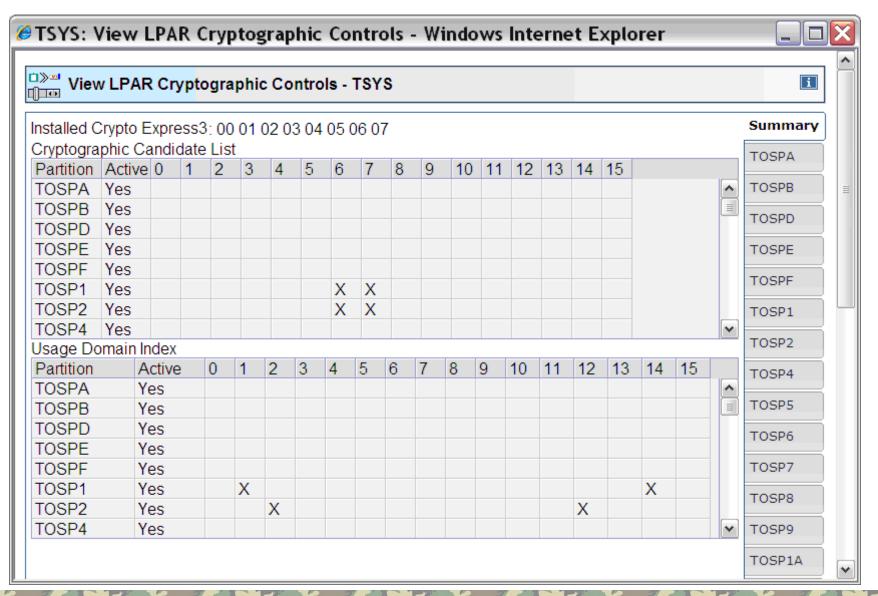
 From the HMC, you must be in Single Object Mode, then look at the CPC Details

Crypto Devices Available



• From the CPC Menu, select Crypto Configuration

How do I tell, what hardware I'm using (LPAR)



From CPC
 Operational
 Customization,
 click on View
 LPAR
 Cryptographic
 Controls

How do I tell, what hardware I'm using (LPAR)

Coprocessor Management Panel

Select the coprocessors to be processed and press ENTER. Action characters are: A, D, E, K, R and S. See the help panel for details.

	Serial						
CoProcessor XXXP11	Number	Status	AES	DES	ECC	RSA	
G01	0000001	ONLINE	U	U	С	U	
G02	00000002	ACTIVE	A	U	A	E	
G03	0000003	ACTIVE	A	U	A	С	
E05	00000004	ACTIVE	A	U	_	C	
но7		ACTIVE					

RMF Crypto Hardware Activity Report

CRYPTO HARDWARE ACTIVITY

Г	Λ	\sim		1
Р	А	G	ь.	- 1

z/OS	V1R13

SYSTEM ID TRX2

START 09/28/2011-08.15.00 INTERVAL 007.14.59

RPT VERSION V1R13 RMF END 09/28/2011-15.30.00 CYCLE 1.000 SECONDS

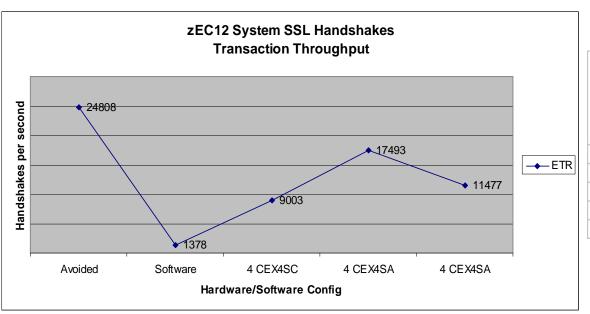
CRYPTOGRAPHIC COPROC	ESSOR
----------------------	-------

			TOTAL		KEY-GEN
TYPE	ID	RATE	EXEC TIME	UTIL%	RATE
CEX2C	0	0.00	0.000	0.0	0.00
	1	2.16	295.9	63.9	2.14
	2	0.00	0.000	0.0	0.00
CEX3C	4	2 15	227.8	48 9	2 15

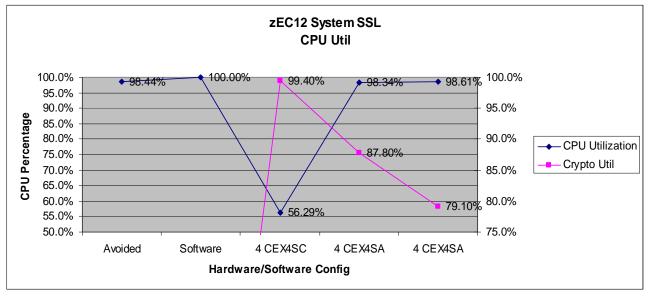
------ CRYPTOGRAPHIC ACCELERATOR ------

	TOTAL				ME-FORMAT RSA OPERATIONS CRT-FORMAT RSA OPERATIO				RATIONS	
TYPE ID F	RATE EX	EC TIME L	JTIL%	KEY	RATE	EXEC TIME	UTIL%	RATE	EXEC TIME	UTIL%
CEX2A 3	766.9	0.434	33.3	1024	362.4	0.521	18.9	369.5	0.183	6.8
				2048	0.00	0.000	0.0	34.99	2.175	7.6
CEX3A 5	998.9	0.365	36.5	1024	246.4	0.534	13.2	554.3	0.205	11.3
				2048	0.00	0.000	0.0	83.16	0.689	5.7
				4096	0.00	0.000	0.0	115.1	0.547	6.3

------ICSF SERVICES ------


ENCRYPTION	DECRYPTION	MAC	HASH	PIN

	SDES	TDES	AES	SDES	TDES	AES	GENERATE \	/ERIFY	SHA-1	SHA-256	6 SHA-512	TRANSLATE	VERIFY
RATE	15.41	10.27	0.02	5.14	10.27	0.02	34.23	35.87	15352	<0.01	< 0.01	8.97	5.14
SIZE	3200	4400	189.0	800.0	4400	189.5	4573	4400	105.0	48.00	48.00		



Performance – System SSL on zEC12

zEC12 HA1 - 4

Caching SID/Client				
Authentication	Handshake	ETR	CPU Util%	Crypto Util %
100%/No	Avoided	24808	98.44%	NA
No/No	Software	1378	100.00%	NA
No/No	4 CEX4SC	9003	56.29%	99.40%
No/No	4 CEX4SA	17493	98.34%	87.80%
No/Yes	4 CEX4SA	11477	98.61%	79.10%

Crypto Performance Whitepaper

http://www.ibm.com/systems/z/ advantages/security/ zec12cryptography.html

System SSL Summary

- SSL combines the strengths of symmetric and asymmetric algorithms to provide secure communications
- The product or application invoking SSL makes the decision about when and how to use the crypto environment
- Where the SSL workload is executed depends on the environment (hardware and software) and the security protocols that you require and configure; The crypto environment, SSL and the calling application must be in sync
- SSL and ICSF are designed to find a way to service the request efficiently; but does not provide a lot of data on how/where its being serviced

Heartbleed – An explanation

- http://xkcd.com/1354/
- Or google 'Heartbleed xkcd'
- System SSL is not affected
- OpenSSL 1.0.1 through 1.0.1f (inclusive) are vulnerable
- Fix
 - Recompile using patched libraries (fix the problem)
 - Vendor change private key (that might have been exposed)
 - You change your passwords (that might have been viewed)

Some useful sites

- Heartbleed Vulnerabilities
 - https://zmap.io/heartbleed/
 - http://mashable.com/2014/04/09/heartbleed-bugwebsites-affected/
- IBM Security Portal
 - http://www.ibm.com/systems/z/advantages/security /integrity_sub.html

System SSL References

- Protocols
 - SSL V3 http://tools.ietf.org/html/rfc6101
- IBM Manuals
 - z/OS V2.1 Cryptographic Services System Secure Sockets Layer Programming SC14-7495
 - z/OS V1.13 Cryptographic Services System Secure Sockets Layer Programming – SC24-5901
- Performance Doc
 - zEC12 http://www.ibm.com/systems/z/advantages/security/zec12cryptography.html
 - z196 and z10 http://www.ibm.com/systems/z/advantages/security/z10cryptography.html
 - Comm Server Performance Index http://www.ibm.com/support/docview.wss?uid=swg27005524

Crypto References

- For information on hardware cryptographic features reference whitepapers on Techdocs (www.ibm.com/support/techdocs)
 - WP100810 A Synopsis of System z Crypto Hardware
 - WP100647 A Clear Key/Secure Key/Protected Key Primer

Questions

QR Code

• Share #15660