
Insert

Custom

Session

QR if

Desired.

CICS Identity and Security

Leigh Y Compton

IBM zGrowth Team

lcompton@us.ibm.com

Abstract

• User identity and security is critical to businesses
today. This session will show how CICS TS V5
participates in today's infrastructure to ensure a
secure environment for your applications and data.

Abstract

• Traditional CICS security

• Security principles

• Security in an interconnected world

– Network security

– WS-Security

Traditional CICS security

• Sign on (i.e. Authentication)

– User ID plus password (or pass phrase)

– Terminal oriented

• Authorization checks

– z/OS Security Manager

• RACF, ACF2, or Top Secret

– Transaction security

– Resource security

– Command security

Security for modern CICS applications

• Non-terminal access

– No “sign on” as such

– Requires alternate means of authentication

• EXEC CICS VERIFY PASSWORD

• X.509 Certificate

• Intermediate systems

Authentication

• Real or genuine, from Greek: αυθεντικός = 'authentes' = author

• Establishing or confirming something (or someone) as authentic

– Claims made by or about the thing are true

– Authenticating a person often consists of verifying their
identity.

• In computer security:

– The process of attempting to verify the digital identity of the
sender

• Such as a request to log in

• Sender being authenticated may be:

– A person using a computer

– A computer itself

– A computer program. -- Wikipedia -- http://en.wikipedia.org/wiki/Authentication

Authentication

• Real or genuine, from Greek: αυθεντικός = 'authentes' = author

• The act of establishing or confirming something (or someone) as
authentic, that is, that claims made by or about the thing are true.
Authenticating an object may mean confirming its provenance,
whereas authenticating a person often consists of verifying their
identity. Authentication depends upon one or more authentication
factors.

• In computer security, authentication is the process of attempting to
verify the digital identity of the sender of a communication such as a
request to log in. The sender being authenticated may be a person
using a computer, a computer itself or a computer program.

-- Wikipedia -- http://en.wikipedia.org/wiki/Authentication

Identity Propagation

• Supports a downstream server in accepting the client identity
that is established on an upstream server, with credentials that
allow for authentication.

Identity Assertion

• Supports a downstream server in accepting the client identity
that is established on an upstream server, without having to
authenticate again. The downstream server trusts the
upstream server.

Authorization

• A part of the operating system that protects computer
resources by only allowing those resources to be used by

resource consumers that have been granted authority to

use them.

• Resources include individual files or items data, computer

programs, computer devices and functionality provided by

computer applications.

• Examples of consumers are computer users, computer
programs and other devices on the computer.

-- Wikipedia -- http://en.wikipedia.org/wiki/Authorization

Confidentiality

• Assures that information in storage and in-transit are
accessible only for reading by authorized parties.

• Encryption is used to assure message confidentiality.

– Encryption is the process of scrambling data so as to

render it unreadable to all but the holder of the correct

decryption key

And more …

• Intermediaries

– A basic tenet of Web services is that requests for

services may travel through multiple intermediates.

• Non-repudiation

– Requires that neither the sender nor the receiver of a
message be able to legitimately claim they didn't

send/receive the message.

• Message integrity

– Ensures that information, either in storage or in-transit

cannot be modified intentionally or unintentionally.

– Digital signatures are used to assure message
integrity.

Notes

A basic tenet of Web services is that requests for services may travel through

multiple intermediates, which may be different divisions of the service
company and, in many instances, different companies.

Therefore, from a security point of view, moving to a Web services architecture

entails moving from security models based on a client/server paradigm to one

where there are multiple intermediates that may or may not be trusted.

Surprising to many is the fact that traditional, transport level security protocols

such as SSL and Kerberos decrypt the message at each endpoint thus

inappropriately exposing information.

Across the security divide

• The objective of loosely coupled integration is often
completely lost when security integration is added:

– Linking separate applications often means linking

separate user access security processes

– It's best to manage user identity and access policies

outside individual applications

– Centralized security solutions quickly run out of steam

– Federated identity across multiple security domains
bring greater flexibility

-- Phil Wainewright, Solving the web services identity crisis, Loosely Coupled Digest, April 2004

Notes

What is the real issue in web services security?

When techies talk about it, they're typically talking about intruders intercepting trusted XML messages
and substituting malicious code. Business people, who take this kind of wire-level security for granted,
are more concerned about tracking the identities and activities of users who log on legitimately:
"Threats come internally within an organization — from within your secure environment," says
Christopher Crowhurst, VP enterprise architecture at computer-based assessment provider Thomson
Prometric.

Of course technologists have a duty to master the fine detail of securing the web services
infrastructure. But it's no good focussing all your efforts on guarding against XML hackers, when
failing to get to grips with the complexities of access and identity management in a web services
project could expose sensitive data to the wrong users.

"Questions of identity are perhaps more sophisticated than the security of XML itself," says Mark
O'Neill, CTO of web services security vendor Vordel. "If your web service is being accessed through a
portal, you have to have a way of tying the web service to the user. The issue is that you have
someone authenticating in one place and using a service that's somewhere else." The two processes
may be independently secure, but maintaining security when the applications are linked together
means integrating their separate mechanisms for authenticating users and controlling access rights.

--- Phil Wainewright, Solving the web services identity crisis,

Web Services

• SOAP uses XML messages
for a request and response
model of conversation
between programs

• WSDL describes everything
a requester needs to use a
service.

• UDDI can be used to publish
details of one or more
services.

CICS and Web Services Standards

• HTTP: Transport layer *
• SOAP: Describes the Web Services message formats
• WSDL: Describes the interface to a Web Service
• WS-I Basic Profile: Interoperability between providers and requesters using

SOAP
• WS-Coordination: Extensible coordination framework
• WS-AtomicTransaction: For transactionality
• WS-Security: Authentication and encryption of all or part of a message
• WS-Trust: Extensions for requesting and issuing security tokens
• XOP and MTOM: optimizing the transmission and format of a SOAP

message

* WebSphere MQ can also be used as the transport layer

Notes

CICS support for Web services conforms to a number of industry standards and specifications.

• Extensible Markup Language Version 1.0
• SOAP 1.1 and 1.2
• SOAP 1.1 Binding for MTOM 1.0
• SOAP Message Transmission Optimization Mechanism (MTOM)
• Web Services Addressing 1.0
• Web Services Atomic Transaction Version 1.0
• Web Services Coordination Version 1.0
• Web Services Description Language Version 1.1 and 2.0
• Web Services Security: SOAP Message Security
• Web Services Trust Language
• WSDL 1.1 Binding Extension for SOAP 1.2
• WS-I Basic Profile Version 1.1
• WS-I Simple SOAP Binding Profile Version 1.0
• XML (Extensible Markup Language) Version 1.0
• XML-binary Optimized Packaging (XOP)
• XML Encryption Syntax and Processing
• XML-Signature Syntax and Processing

CICS is compliant with the supported Web services standards and specifications, in that it allows you
to generate and deploy Web services that are compliant.

The Web Services “Stack”

WS-Policy

WS-Security

family of

specifications

UDDI

Quality
of Service

Messaging
and Encoding

Transport

Business
Processes

Other protocols

Other services

Business Process Execution Language (BPEL)

Description
and Discovery

WSDL

SOAP

XML

Transports

WS-Coordination

WS-Transactions

WS-Reliable

Messaging

WS-Distributed

Management

Web Services and Security

Description
and Discovery

WS-Policy

WS-Reliable

Messaging

UDDI

Messaging

and Encoding

Transport

Business
Processes

Other protocols

Other services

Business Process Execution Language

WSDL

SOAP, SOAP Attachments

XML

Transports

WS-Coordination

WS-Transactions

WS-Security
Quality

of Service

WS-Security
Policy

WS-Privacy

WS-Secure
Conversation

WS-Authorization

X509
profile

Kerberos
profile

XrML
profile

Username
profile

Mobile
profile

SAML
profile

WS-Security (framework)

WS-Trust

WS-Federation

Notes

CICS® Transaction Server for z/OS® provides support for a number of related specifications that
enable you to secure SOAP messages.

The Web Services Security (WSS): SOAP Message Security 1.0 specification describes the use of
security tokens and digital signatures to protect and authenticate SOAP messages.

Web Services Security protects the privacy and integrity of SOAP messages by, respectively,
protecting messages from unauthorized disclosure and preventing unauthorized and undetected
modification. WSS provides this protection by digitally signing and encrypting XML elements in the
message. The elements that can be protected are the body, or any elements within the body or the
header. Different levels of protection can be given to different elements within the SOAP message.

The Web Services Trust Language (WS-Trust) uses the secure messaging mechanisms of WS-
Security to define additional primitives and extensions for the issuance, exchange and validation of
security tokens. WS-Trust also enables the issuance and dissemination of credentials within different
trust domains.

Security considerations with SOAP

messaging
• how to include security credentials in the message

• how to use element-wise encryption: expose some parts

for routing, hide critical data from unauthorized parties

• how to use digital signatures

• security must persist from originator to processing end-

point, for the life of the transaction

• security survives call to external business partner

• use with, or instead of, protocol-level security

Securing Web services

• Securing the transport
– Authentication

– Encryption

• Encrypting message
– SSL

– WS-Security

• Identity propagation and assertion
– WS-Security

– WS-Trust

• Signing messages
– WS-Security

Securing the transport

• CICS supports Secure HTTP messages

– https://hostname:port/ ...

– Using SSL or TLS

• Client authentication

• Mutual authentication

• Encryption

Extended support for cryptographic

standards
• Support for TLS v1.1 and v1.2

– APAR PM97207 for CICS TS v5.1

– Assures compliance with NIST SP800-131A

– Adds cipher suites from FIPS 140-2

– Choose FIPS or non-FIPS mode at CICS start-up

• NIST SP800-131A

– Requirement for US agencies to transition to stronger
cryptographic algorithms and longer keys

• FIPS 140-2

– Security requirements for cryptographic modules

Defining cipher suites

• CIPHERS – a parameter on resource defintions

– TCPIPSERVICE

– URIMAP

– IPCONN

• Specified as

– String of hexadecimal 2-character values

• 35363738392F303132330A1613100D

– CIPHERs XML file

• allvalidciphers.xml

• fipsciphers.xml

• strongciphers.xml

HTTPS may not be enough for Web

services
• HTTPS is transport-level security

– Point-to-point

– Lasts only for duration of the connection

– All or nothing encryption

– Weak integrity concept

– Does not support other security mechanisms

Website Web serviceClient

WS-Security: SOAP Message Security

• A foundational set of SOAP message extensions for building
secure Web services

– Defines new elements to be used in SOAP header for message-

level security

• Defines the use of formerly incompatible proven and emerging
security technologies:

– Kerberos, PKI, HTTPS, IPSEC, XrML

– XML Signature, XML Encryption, XKMS from W3C

– SAML, XACML from OASIS

• OASIS WS-Security 1.0 standard

– http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wss

– widely supported in application servers and development tools

from several vendors, including IBM, Microsoft, Oracle …

WS-Security: SOAP Message Security

• Flexible, composable specification

– Designed to be used as basis for securing Web services

– Supports a wide variety of industry security models including
PKI, Kerberos, and SSL

• Builds upon existing security technologies

– XML DSIG

– XML Encryption

• Provides support for:

– multiple security token formats

– multiple trust domains

– multiple signature formats

– multiple encryption technologies

Review: SOAP Message Structure

• The SOAP specification defines the “envelope”
– The envelope wraps the message itself
– The message is a different vocabulary
– A namespace prefix is used to distinguish vocabularies

• WS-Security defines the <Security> element, which
allows security extensions to be placed in
<soapenv:header>

– Username/password
– Encryption details
– x.509 certificate
– Kerberos ticket
– XrML
– SAML

The WS-Security <Security> element

The WS-Security specification defines a vocabulary that can be used inside

the SOAP envelope. <wsse:Security> is the “container” for security-

related information

<S:Envelope

xmlns:S="http://www.w3.org/2002/06/soap-envelope">

<S:Header>

<wsse:Security

xmnls:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext">

Security information

</wsse:Security>

</S:Header>

<S:Body> Application specific content </S:Body>

</S:Envelope>

Security Tokens for the <Security>

element

• A Security Token is a collection of one or more “claims”
– A claim is a declaration made by some entity, such as

name, identity, key, group, privilege, capability, etc.
– “username” is an example of an unsigned security token

• A Signed Security Token is one that is cryptographically
signed by a specific authority
– An X.509 certificate is a signed security token
– A Kerberos ticket is also a signed security token

• An XML Security Token is one that is defined with a
separate XML schema rather than simple or encrypted
text
– SAML and XrML are examples

– Can be included directly in <wsse:Security> container

WS-Security <UsernameToken> element

<S:Envelope

xmlns:S="http://www.w3.org/2002/06/soap-envelope">

<S:Header>

<wsse:Security

xmnls:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext">

<wsse:UsernameToken wsu:ID="myToken">

<wsse:Username>compton</wsse:Username>

<wsse:Password>up2date</wsse:Password>

</wsse:UsernameToken>

</wsse:Security>

</S:Header>

<S:Body> Application specific content</S:Body>

</S:Envelope>

This element can be used to provide a user name within a

<wsse:Security> element, for Basic Authentication

WS-Security <BinarySecurityToken>

element

<S:Envelope

xmlns:S="http://www.w3.org/2002/06/soap-envelope">

<S:Header>

<wsse:Security

xmnls:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext">

<wsse:BinarySecurityToken wsu:ID="myToken"

ValueType="wsse:X509"

EncodingType="wsse:Base64Binary>

XIFNWZz99UUbalqIEmJZc0

</wsse:BinarySecurityToken>

</wsse:Security>

</S:Header>

<S:Body> Application specific content</S:Body>

</S:Envelope>

Signed security tokens, such as a Kerberos ticket or x.509 certificate are binary

content. They must be encoded for inclusion in the wsse:Security container.

X.509 Certificate Token

• Public key infrastructure

• Binding between a public key and attributes

– Subject name

– Issuer name

– Serial number

– Validity interval

– Others

• Uses:

– Authentication

– Encryption

– Digital Signature

Kerberos Token

• Kerberos performs authentication

– as a trusted third-party authentication service

– using shared secret key cryptography

• Kerberos provides a means of verifying the identities
of principals

– without relying on authentication by the host operating
system

– without basing trust on host addresses

– without requiring physical security of all the hosts on
the network

– under the assumption that packets that travel along
the network can be read, modified, and inserted at will.

WS-Security <saml:Assertion> element

<S:Envelope

xmlns:S="http://www.w3.org/2002/06/soap-envelope">

<S:Header>

<wsse:Security

xmnls:wsse="http://schemas.xmlsoap.org/ws/2003/07/secext">

<saml:Assertion

AssertionID="_a75adf55-01d7-40cc-929f-

dbd8372ebdfc"

IssueInstant="2003-04-17T00:46:02Z"

Issuer=”www.opensaml.org”

MajorVersion="1"

MinorVersion="1“ . . .

</saml:Assertion>

</wsse:Security>

</S:Header>

<S:Body> Application specific content</S:Body>

</S:Envelope>

SAML assertions are attached to SOAP messages by placing assertion

elements inside a <wsse:Security> header

SAML – Security Assertion Markup Language

• OASIS open standard

• “XML based framework for
describing and exchanging
security information between
on-line business partners.”

• SAML dates from 2001;
most recent update from
2005

• Used for:

– Web SSO

– Attribute-based
authorization

– Web service security

Profiles
Combinations of assertions, protocols,

and bindings to support a defined use case

Bindings
Mappings of SAML protocols
onto standard messaging and

Communication protocols

Protocols
Requests and responses for

Obtaining assertions and doing
identity management

Assertions
Authentication, attribute, and

entitlement information

SAML – Roles

• Principal (or subject of the
assertion)

• Identity Provider/Security Token
Service (or asserting party)

• Service Provider (or relying party)

SAML Assertions

• Assertions

– Collection of statements about principal

– Made by a SAML authority

• Assertion types

– Authentication

– Attribute

– Authorization decision

Using XML Digital Signatures with SOAP

• XML Digital Signatures tells us how to sign arbitrary
XML content

• How do we use XML Signatures with SOAP
messages?

– WS-Security defines a new element in the SOAP
header to hold XML Signature(s) on the content

– Standardization of these elements allows

implementations from different vendors to interoperate
with signatures

– WS-I Basic Security Profile specifies usage details to

ensure interoperability

Example: SOAP with XML Signature

<S:Envelope

xmlns:S="http://www.w3.org/2002/06/soap-envelope">

<S:Header>

<wsse:Security S:mustUnderstand="1"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">

<wsse:BinarySecurityToken EncodingType="wsse:Base64Binary">

MIIDQTCC4ZzO7tIgerPlaid1q ... [truncated]

</wsse:BinarySecurityToken>

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

....signature data....

</ds:Signature>

</wsse:Security>

</S:Header>

<S:Body>

<m:OrderAircraft quantity=“1” type=“777” config=“Atlantic”

xmlns:m=“http://www.boeing.com/AircraftOrderSubmission”/>

</S:Body>

</S:Envelope>

WS-Security uses W3C XML Encryption

• <EncryptedData> element replaces the content being
encrypted. It contains:
– <EncryptionMethod> Algorithm used to encrypt the data
– <CipherData>

• <CipherValue> Element containing the
encrypted data

• <EncryptedKey> element placed in security header
contains:
– <EncryptionMethod> Algorithm used to encrypt

symmetric key

– <KeyInfo> Identifier of key used to encrypt symmetric key

– <CipherData>

• <CipherValue> Encrypted symmetric key

value
– <ReferenceList> List of <DataReference>s to

content encrypted with this symmetric key

Example: entire <body> contents

encrypted

<PayBalanceDue xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>

<CreditCard Limit='5,000' Currency='USD'>

<Number>4019 2445 0277 5567</Number>

<Issuer>Bank of the Internet</Issuer>

<Expiration>04/02</Expiration>

</CreditCard>

</PayBalanceDue >

<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'

Type='http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml'>
<CipherData><CipherValue>A23B4C6</CipherValue></CipherData>

</EncryptedData>

“PayBalanceDue” element identity is hidden in

encrypted form. We can’t even see what kind
of transaction it is.

(The real cipher would

be longer than this)

Unencrypted original content

Red text is data to be encrypted

Green text is left unencrypted

Example: one element and subelements

encrypted

<PayBalanceDue xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>

<CreditCard Limit='5,000' Currency='USD'>

<Number>4019 2445 0277 5567</Number>

<Issuer>Bank of the Internet</Issuer>

<Expiration>04/02</Expiration>

</CreditCard>

</PayBalanceDue >

<PayBalanceDue xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>

<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'

Type='http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml'>
<CipherData><CipherValue>A23B4C6</CipherValue></CipherData>

</EncryptedData>

</PayBalanceDue >

<CreditCard> group was replaced

by <EncryptedData> element

Unencrypted original content

Red text is data to be encrypted

Green text is left unencrypted

Example: element text (only) encrypted

<PayBalanceDue xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>

<CreditCard Limit='5,000' Currency='USD'>

<Number>4019 2445 0277 5567</Number>

<Issuer>Bank of the Internet</Issuer>

<Expiration>04/02</Expiration>

</CreditCard>

</PayBalanceDue >

<PayBalanceDue xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>

<CreditCard Limit='5,000' Currency='USD'>

<Number>

<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'

Type='http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml'>
<CipherData><CipherValue>A23B4C6</CipherValue></CipherData>

</EncryptedData>

</Number>

<Issuer>Bank of the Internet</Issuer>

<Expiration>04/02</Expiration>

</CreditCard>

</PayBalanceDue >

Unencrypted original content

Red text is data to be encrypted

Green text is left unencrypted

Text was replaced by

<EncryptedData>

element

CICS Support for WS-Security

• Support is provided by the CICS WS-Security Message Handler

– DFHWSSE1: shipped via APAR PK22736 in CICS TS V3.1

• SOAP Message Security

– Signature validation of inbound message signatures, for RSA-
SHA1 & DSA-SHA1

– Signature generation for the SOAP Body on outbound messages
using RSA-SHA1

– Decryption of encrypted data in inbound messages

• AES 128, 192 & 256 or Triple DES

– Encryption of the SOAP Body content with the above algorithms

• Various mechanisms for deriving a User ID from an inbound message

– UsernameToken Profile

– X.509 Certificate Token Profile

– SAML Token Profile (V5.2 or Feature Pack for Security
Extensions)

– Kerberos Token Profile (V5.2)

Signature Generation & Validation

• CICS will verify the validity of any signatures present
in inbound SOAP messages.

• Invalid signatures will cause a Security Fault to be
raised.

• A CICS Pipeline can be configured to sign the body
of outbound SOAP messages.

• The label of the certificate to use and the algorithm
required are specified in the Pipeline configuration
file.

Encryption & Decryption

• CICS will decrypt any encrypted elements present in
inbound SOAP messages

• Invalid encryption elements will cause a Security
Fault to be raised

• A CICS Pipeline can be configured to encrypt the
body of outbound SOAP messages

• The label of the certificate to use and the algorithm
required are specified in the Pipeline configuration
file.

Certificate & Key Management

• Certificates and Keys are stored in a Key Ring file

– Managed by the z/OS Security Manager

• The Key Ring used for WS-Security is the same one
used for SSL support

– SAML support introduces optional additional Key Ring

file

• Configured in CICS Security Trust Server region(s)

• Certificates must be propagated between the
Requesters and Providers

Support for UsernameTokens via SOAP Header
Handler

• In deployments where SSL is sufficient to satisfy the
integrity and confidentiality requirements, then a
simple Header processing program can be used to
extract a User ID from an inbound message

• See Implementing Web Services in CICS

– Redbook SG24-7206

CICS Support for Kerberos

• WS-Security authentication

– Provider mode

– Asserted identity

– Token validation

– User ID extracted

• API command

– Validate Kerberos token

– Extract User ID

• IBM Network Authorization Service for z/OS

– Implemented by External Security Manager

Kerberos and CICS

Verify Token

CICS Support for SAML

• SAMLCore1.1 and SAMLCore2.0
– No support for protocols

• WS-Security authentication
– Token validation
– Extraction of SAML parts for inbound messages
– Addition of SAML token to SOAP request
– Augmentation of SAML token before it is added to outbound

message
• API

– Linkable interface: DFHSAML
– Channel and containers
– Create tokens
– Validate tokens
– Extract SAML parts
– Augment SAML assertions

SAML processing in CICS

Conclusions

• Security is many things
– Authentication

• Identification Credentials

• Identity Propagation

• Identity Assertion

– Authorization

– Confidentiality

• Encryption

– Integrity

• Digital Signatures

• Non-repudiation

• Open standards assist with security interoperability

Further Resources

• WS-Security specifications

– http://www.oasis-open.org/specs/index.php#wssv1.0

• WS-I Basic Security Profile V1.0

– http://www.ws-i.org/Profiles/BasicSecurityProfile-
1.0.html

• IBM Redbooks

– Implementing CICS Web Services, SG24-7206

– Patterns: Extended Enterprise SOA and Web
Services, SG24-7135

• WS-Trust

– February 2005,
http://www.ibm.com/developerworks/library/specificatio
n/ws-trust/

Interesting reading

• Securing Web Services
– http://www.techweb.com/wire/security/20020508_security

• Best Practices for Web services: Web services security

– http://www-128.ibm.com/developerworks/webservices/library/ws-
best11/

– http://www-128.ibm.com/developerworks/webservices/library/ws-

best12/

• Web Service Security: Scenarios, Patterns, and Implementation

Guidance

– http://www.gotdotnet.com/codegallery/codegallery.aspx?id=67f659f

6-9457-4860-80ff-0535dffed5e6
• Solving the web services identity crisis

– http://www.looselycoupled.com/stories/2004/crisis-id0622.html

• Mainframe security changes as Web services arrive

– http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci12
02408,00.html?asrc=SS_CLA_301932&psrc=CLT_26

FYI

• Asymmetric key algorithms (Public-key cryptography)
– RSA

• encryption algorithm patented by Rivest, Shamir, and Adleman

• patent expired in 2000
– DSA

• Digital Signature Algorithm, U.S. Government standard
– DES

• Data Encryption Standard, U.S. Government standard
– AES

• Advanced Encryption Standard, U.S. Government standard

• Cryptographic hash functions
– SHA-1

• Secure Hash Algorithm, developed by NSA, U.S. Government
standard

• used in many security applications and protocols
– TLS, SSL, PGP, SSH, S/MIME, and IPSec

– MD5
• Message-Digest algorithm 5

