
Insert
Custom
Session
QR if
Desired.

Intermediate Topics in
Mainframe Application
Development

Venkat Balabhadrapatruni
venkatu@us.ibm.com

August 4th, 2014
Session: 15478

Purpose and Presentation flow

2

• Purpose … to present the features in Rational
Developer for System z that help organizations
enhance code quality and streamline the delivery of
new functions into existing code.

• Flow
• Code quality and governance

• Importance of code quality and governance
• Tools available

• Unit testing
• Why Unit test ?
• Tools available

Information is confidential and must not be shared or redistributed without permission
from IBM. Plans are based on best information available and may change in future.

DISCLAIMER

IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product
direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information about
potential future products may not be incorporated into any contract. The development,
release, and timing of any future features or functionality described for our products
remains at our sole discretion.

Performance is based on measurements and projections using standard IBM
benchmarks in a controlled environment. The actual throughput or performance that any
user will experience will vary depending upon many factors, including considerations
such as the amount of multiprogramming in the user’s job stream, the I/O configuration,
the storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve results similar to those stated here.

4

IBM DevOps accelerates enterprise software delivery

Continuous
Monitoring

Collaborative
Development

Continuous Release
and Deployment

Continuous
Customer

Feedback and
Optimization

Continuous
Business Planning

Continuous
Testing

Monitor
and Optimize

Develop
and Test

Release
and Deploy

Plan
and Measure

DevOps –
Continuous
innovation,

feedback and
improvements

 Accelerate
software delivery –

for faster time to value

Balance speed, cost,
quality and risk –

for increased capacity
to innovate

Reduce time to
customer feedback –
for improved customer

experience

Enterprise capability for continuous software delivery that enables you to
seize market opportunities and reduce time to customer feedback

5

Rational Developer for System z:
An Integrated Development Environment for System z

Rational Developer for System z

A modern IDE for development of cross-
platform applications written in COBOL, PL/I,
ASM, Java, EGL or C/C++ in System z CICS,
IMS, DB2, Batch applications

Access to typical System
z sub-system functionality
in z/OS, CICS, IMS, DB2,
WAS

Integration with Fault
Analyzer for Dump Analysis

Integration with File
Manager and Fault
Analyzer for file and test
data handling and Dump
Analysis

Integration with Asset Analyzer
for Application Understanding
and Impact Analysis

Integration with Team
Concert for Lifecycle and
Source Management

Integration with RD&T for
flexible access to System z
environment

Robust Mobile Development
in conjunction with Worklight

6

Why is Code Review capability needed ?

Every organization has standards by which their code must be
developed.

 Currently no governance capability when developing and checking COBOL/PLI code
into an SCM.

 No tools to help determine if coding best practices were being followed, or if internal
guidelines were being followed, etc.

 Most mainframe organizations judge adherence to those standards via time
consuming code reviews and manual reporting.

Difficult to report on these non-compliant practices, leaving
management with no clear picture of health of source code.

 Companies that obtain code via services contracts have no way to validate the
quality of this code being developed for them

Code Review tooling evolution..

RDz 8.0.3

 IDE Code Review introduced
COBOL rules provided
Select rules
Run the Analysis
View results in UI
HTML, PDF reports

RDz 8.5
Additional COBOL rules provided
PL/I rules provided

RDz 8.5.0.1
COBOL Application Model
Custom COBOL rules

Command line invocation
XML, CSV reports

RDz 8.5.1

RDz 9.0
 z/OS Batch invocation
Additional rules provided
CICS CAM updates

RDz 9.0.1
 z/OS Batch invocation
Additional rules provided
Export language specific

results

RDz 9.1
PL/I Application Model
Custom PL/I rules
Baseline comparison

Code Review Scenario
 The code review feature is used to identify

violations of coding conventions, which are defined
by a set of rules

– Ensuring code quality and conformance

– What about established, trusted legacy code?

 Running a code review analysis on legacy code
may produce large numbers of results

– Take corrective action? Or ignore?

– It depends…

Code review support for COBOL & PL/I
 Rules definition

 Define analysis configurations, specifying scope and rule set
 Rules defined/managed using the rules configuration definition

editor
 Select from a list of pre-built COBOL & PL/I rules
 Select from a list of COBOL &PL/I rules templates and customize parameters
 Specify severity for each selected rule
 Scope analysis per file, project, workspace, etc.

 Rules administration (via Push-to-client)
 Central administration of rule sets
 Export rules configurations to push to multiple developers

Creating configuration and specifying rules

IDE code review support for COBOL & PL/I
 Analysis

 Launch the code review from:
 RDz project (local) - Entire project or on individual file
 RDz remote file opened in editor session
 Toolbar option across scope defined in configuration

 Review results and fix problems
 Double-click error, source file opened, and line containing violation is

highlighted
 Generate HTML or PDF or CSV report from these results

Code Review example

Custom rules support
 Most likely you will have coding standards not covered in our list of pre-built and

custom templates; therefore, you will need to add your own set of custom rules to
the selection lists.

 Process to build your own custom COBOL and/or PLI rule:
 Use RDz wizard (Eclipse PDE new plugin project template) to generate

plugin for custom COBOL and/or PLI rules
 Creates the java plugin project
 Creates new category(s) to hold all your domain specific rules
 Adds rules to the categories
 Creates java class templates for each of your custom rules

 Rule developer fills in the template with java code to implement their
custom rule

 Using RDz published COBOL and PLIApplication Model API

 Package your plugin as P2 update site and install in the RDz Eclipse
environment using Eclipse Software Updater

How to handle “legacy code violations” ?

Within the RDz Client, you can use baselines to filter out previously
existing results using two methods:

1) Create a new analysis configuration of type “Baselined Software Analyzer“ that will use a
baseline archive to filter out results.

2) From within a code editor, select a previous version of the code you are editing to use as a
baseline with your traditional “Software Analysis” configurations.

A ZIP Archive that contains:

–A list of the software analysis results from an analysis job.

–Some metadata about the analysis job such as
• Configuration Name

• Execution Time

• Execution Scope

• Number of Rules in the Configuration

–Any source file that had an analysis rule violation.

 Note: Because a baseline archive contain copies of proprietary source code, it should be
treated with the same care and protections as the actual source code.

What is a “Baseline Archive”?

Using File History as a Baseline

Our second use case supports baselined analysis without the use of a
baseline archive and will work with both local and remote files.

From within a code editor, the context menu allows you to select a version
from local history of the edited file to use as a baseline:

z/OS Batch – Code Review overview
 Separate install

– Rational Developer for System z Host Utilities

Code review functionality targeting COBOL and PL/I source
code located in PDS’s

Runs the same analysis code and produces the same
results as code review on the RDz workstation client

 Implemented as Eclipse-based application running on z/OS

 zIIP/zAAP eligible Java workload

Configure using exported artifacts from RDz workstation
client (property groups, code review rule set, etc.)

 JCL/REXX front end drives batch processing of Eclipse
plug-ins running on Java VM in z/OS UNIX process

JCL REXX Java / Eclipse

A single PDS member
specified; artifacts
exported from RDz
workstation client specified
as DD’s.

Simple Batch example

Output reports and
logs written to DD’s.

Simple Batch example

Reports generated are the same
format as reports generated by RDz
workstation client with command
line invocation (XML report shown).

Simple Batch example

Purpose and Presentation flow

21

• Purpose … to present the features in Rational
Developer for System z that help organizations
enhance code quality and streamline the delivery of
new functions into existing code.

• Flow
• Code quality and governance

• Importance of code quality and governance
• Tools available

• Unit testing
• Why Unit test ?
• Tools available

The value of early and extensive testing

During the
Coding or
Unit Testing
phases

$80/defect

During the
BUILD phase

$240/defect

During
Quality Assurance
or the System Test
phases

$960/defect

Once released
into production

$7,600/defect
+
Law suits, loss
of customer trust,
damage to brand

“80% of development costs are spent identifying and
correcting defects” **

**National Institute of Standards & Technology

Source: GBS Industry standard study

Defect cost derived in assuming it takes 8 hours to find, fix and repair a defect when found in code and unit test.
Defect FFR cost for other phases calculated by using the multiplier on a blended rate of $80/hr.

Unit Testing Focusses on...

23

Creation,
Automation of
testing during the
CODING phase

What is Unit Testing?
Unit Testing is a software testing
method by which individual units of
source code, sets of one or more
computer program modules together
with associated control data, usage
procedures, and operating
procedures are tested to determine if
they are fit for use. Wikipedia

An individual unit of software is a single
test-able logic construct or routine within a
call-able program:

•Date validation

•Credit Card number look-up

•Tax computation

•Co-pay calculation

This method of testing is sometimes

called “white Box testing”

(See Slide Notes for more on White Box Testing)

http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/White-box_testing

Why bother to Unit Test?
By testing individual logic routines in your programs:
•You can move through the lifecycle more quickly, because you have precise
feedback about separate logic routines

• So you can better understand cause & effect

• And you know that your code works and you know how your code works,
which gives you confidence to make enhancements and modifications

•Because you execute zUnit Tests through JCL:

• The testing can be automatedautomated

• The end-to-end process takes less time than interactive
debugging.

• And it can be more systematic systematic

•By isolating and verifying code fragments Unit Testing allows
you to understand “cause & effect” in your program logic

 An xUnit instance for Enterprise COBOL and PL/I on System z.

 Test cases can be written in either COBOL or PL/I.

 Provides generation of COBOL or PL/I test case templates.

 Can run a sequence of test cases, mixing COBOL and PL/I is OK.

 Test cases must be LE-enabled batch applications and built into PDSEs.

 Provides a simple fail-type assertion API for COBOL and PL/I.

 Simple test runner configuration XML specifies which test cases to run.

 Comprehensive test runner results XML provides detailed test results.

 Eclipse viewers/editors for the configuration and results XML formats.

The zUnit feature of Rational Developer for System z provides a code-driven unit
testing framework for Enterprise COBOL and PL/I. zUnit provides an automated
solution for executing and verifying Enterprise COBOL and PL/I unit test cases that
are written using the zUnit framework.

How do we unit test ?

zUnit Architecture

 zUnit Test Runner

• Runs on z/OS

• Installed and configured on z/OS as part of RDz Host install and
customization

• Fetches and runs the test cases referred to in the configuration file that is
the input to test runner

 zUnit Wizards to generate test cases

• Client feature

• Eclipse based wizards that allow creation of

• Template COBOL or PLI test cases

• Complete COBOL test cases

• Identify the interface or set of copy book(s)

• Generate XML Schema to represent the interface

• Generate XML files to specify the test input and expected output

• Generate a test case based on the XML file

• (Optionally) Generate stubs for called programs

zUnit capabilities

Module level testing

Source Program to be tested

SORTCHAR

ANAGRAMIO
ANAGRA2

FIRST-WORD-LEN

SECOND-WORD-LEN

WORD-BUF-1

WORD-BUF-2

Test Data Schema wizard

Generating XML files for test Data

Test case creation wizard

Test case creation wizard

Generated Test case & Stub

Code Coverage in the IDE

Code Coverage in the IDE

38

 z/OS application development and maintenance can
greatly be enhanced by utilizing the Code quality tooling to
achieve:
– Automation

– Maintainable code

– Structured code

 More productive development enabling faster turn-around
on fixes, changes, and enhancements

Summary

Questions ?

39

40

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

