

Mainframe Networking 101 Share Session 15422

Laura Knapp
WW Business Consultant
Laurak@aesclever.com
ipv6hawaii@outlook.com

Agenda

- Requirements for Communication
- What are Networking Architectures?
- Networking Architectures on System z
- •z Hardware Platform Support of Network Architectures

- Networking Applications
- Security Implementations
- References

General Model for Sending Messages

- Format of a Destination address in the USA:
 - Name of Recipient
 - Street Address (Number + Name)
 - · City, State
 - · ZIP Code

Dead Letter Office

Post Office for ZIP Code

Street Address

General Model for Sending Messages

Requirements for Successful Communication

- Communication Protocols
 - Naming and Addressing Conventions
 - Rules for organizing the network topology: nodes and links
 - Rules for connecting communication partners: communication setup and takedown
 - Rules for routing the information
 - Rules for managing performance on the connection

Basics Components of a Computing Platform

Laptop/Desktop/Tablet Mainframe

CPU CPU

Memory Main Storage
Cache Memory Cache Storage

Disk/CD Rom DASD

Ethernet Port OSA Adapter Serial, USB, etc Ports

Operating Systems
Middle Ware
Application Software
File Management
Access Methods

.

Specialty processors

Agenda

- Requirements for Communication
- What are Networking Architectures?
- Networking Architectures on System z
- •z Hardware Platform Support of Network Architectures
- Networking Applications
- Security Implementations
- References

Foundations of Communications Across Networks

- Guided by communication architectures
 - Pre 1995: SNA, BNA, DECnet, etc
 - Post 1995: TCP/IP (Transmission Control Protocol / Internet Protocol)
- Protocols (Controls or Rules) for Communication in General
 - •Roles of the participants (primary, sender, receiver, client, server, peers, etc.)
 - Rules for starting and ending communication
 - Rules for identifying hardware or software participants
 - •(names, network IDs, addresses, etc.)
 - •Rules for **locating** participants (finding a route or path between them)
 - Rules for managing the performance characteristics of the networking path
 - •Rules for **recovering** interrupted communications
- Controls or Rules for Communication over the Hardware Components:
 - Engineering and Signaling over the Data Links
 - Channel Cables
 - Serial Cables
 - •SDLC
 - Fiber Channel
 - Ethernet

TCP/IP Networking

TCP/IP Layered Architecture

Browser

WWW, mail, file transfer, remote access
Application interfaces
End-to-end delivery
Best effort delivery
Physical connection

Network

Interface and hardware

TCP/IP Stacks

TCP/IP Network Interface Layer

7(8) Layer OSI Model Layer Function

8 End User (Politics)
7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
Physical

4 layer TCP/IP Model

IP Protocol Header

Version

Version of IP Protocol. 4 and 6 are valid. This diagram represents version 4 structure only.

Header Length

Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

Protocol

IP Protocol ID. Including (but not limited to):

- 1 ICMP 17 UDP 57 SKIP 2 IGMP 47 GRE 88 EIGRP 6 TCP 50 ESP 89 OSPF
- 9 IGRP 51 AH 115 L2TP

Total Length

Total length of IP datagram, or IP fragment if fragmented. Measured in Bytes.

Fragment Offset

Fragment offset from start of IP datagram. Measured in 8 byte (2 words, 64 bits) increments. If IP datagram is fragmented, fragment size (Total Length) must be a multiple of 8 bytes.

Header Checksum

Checksum of entire IP header

x D M

x 0x80 reserved (evil bit) D 0x40 Do Not Fragment M 0x20 More Fragments follow

IP Flags

RFC 791

Please refer to RFC 791 for the complete Internet Protocol (IP) Specification.

IP Flows

Dynamic path selection for every datagram

Handles datagram fragmentation & reassembly

TCP Flows

Connection established

End-to-end acknowledgments

Orderly delivery of datagrams to application

Error and flow control

Connection takedown

TCP Segment

ECN (Explicit Congestion Notification). See RFC 3168 for full details, valid states below.

Congestion Notification

Packet State	DSB	ECN bits
Syn	00	1 1
Syn-Ack	00	0.1
Ack	0 1	0 0
No Congestion	0 1	0.0
No Congestion	10	0.0
Congestion	1.1	0.0
Receiver Response	11	0 1
Sender Response	1 1	11

TCP Options

- 0 End of Options List
- 1 No Operation (NOP, Pad) 2 Maximum segment size
- 3 Window Scale
- 4 Selective ACK ok
- 8 Timestamp

Checksum

Checksum of entire TCP segment and pseudo header (parts of IP header)

Offset

Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

RFC 793

Please refer to RFC 793 for the complete Transmission Control Protocol (TCP) Specification.

TCP Connection Setup – Three Way Handshake

TCP Connection Close

Client

Ok! FIN-WAIT2

You're done!

OK! **TIME-WAIT**

Connection Closed

TCP Acknolodgements

Sends datagram Starts timer

Host A

Acknowledgment was not received

Timer expires and datagram retransmitted

Host A receives acknowledgment, resets timer, and clears buffer

Host B

Host B receives datagram and acknowledges receipt

UDP – User Datagram Protocol

Program to program datagram transfer

Fast mechanism

Used for management frames, streaming audio

UDP Header

TCP/IP Sockets/Ports

Sockets

Network I/O for UNIX
Library of C routines
Berkeley UNIX (BSD) API

Also called Ports
Well known 0 – 1023
Registered 1024 – 49151
Dynamic 49152 - 65535
(also called Private)

Application address

IP Address
Protocol (TCP or UDP)
Port Number

Application code								
Port Number	Protocol	l Application						
20	TCP	FTP-data						
21	TCP	FTP-control						
23	TCP	Telnet						
25	TCP	SMTP						
53	TCP/UDI	P DNS						
70	TCP	Gopher						
79	TCP	Finger						
80	TCP	HTTP						
110	TCP	POP3						
161	UDP	SNMP						
162	UDP	SNMP-trap						
520 1435	UDP TCP/UDI	RIP P IBM CICS						
1525	TCP/UDI							
10007	TCP/UDI							
		P MVS Capacity						
	_							
TCP		UDP						
IP								

Encapsulation of Application Data

Source: http://uw713doc.sco.com/en/NET_tcpip/tcpN.tcpip_stack.html

IP Addressing

IP address is 32 bits long

Expressed as 4 decimal numbers

Format: 24.25.20.137

Your Network = Your Computer = 192.168.100.24 192.168..0 Your home router = 192.168.1.1/24.25.20.137

Network = 66.0.0.0

lauraknapp.com = 66.175.58.9

IP Address Assignment

Public network addresses originally assigned to using organizations

Today regional authority assigns to Internet Service Providers (ISPs)

Network Address Translation

Hides internal addresses and systems From outsiders

Use private IP address internally

Everything appears to be coming from the firewall

High performance

Transparent to clients

Configuration options on mapping internal to

External addresses implemented in firewall or router

Name and Address Resolution

How does my URL get transformed into an IP address?

DNS – Domain Name Server

DNS - Domain Name System Domain edu net th nected nstda Subdomain

DNS Root Servers

http://www.root-servers.org/map/

DHCP Servers

IP Routing

IP Routing Flows

The routing function is performed by the IP protocol and routers

RIP - Routing Information Protocol OSPF - Open Shortest Path First IGRP - Interior Gateway Routing Protocol

IP Alternate Routes

IP Family

Telnet	FTP	SMTP	НТТР	POP	DNS	Most comm apps	Real time apps RTP/RTCP	DNS	NFS RPC	SNMP	RSVP	
TCP				UDP								
	IP						ICMP	ARP	RARP			
Token-F	Token-Ring, Ethernet, FDDI, Frame Relay, Dial, Leased Line, ATM, ISDN, SMDS, SONET, X.25, Fibre Channel, PPP, SLIP											

IP - Internet Protocol

ICMP - Internet Control Message Protocol ARP -

Address Resolution Protocol

RARP - Reverse Address Resolution Protocol TCP -

Transmission Control Protocol

UDP - User Datagram Protocol POP - Post Office Protocol

DNS - Domain Name System

Telnet - Teletype Network FTP - File Transfer Protocol

SMTP - Simple Mail Transfer Protocol

HTTP - Hypertext Transport Protocol

NFS - Network File System RPC - Remote Procedure Call

SNMP - Simple Network Management Protocol

Agenda

- Requirements for Communication
- What are Networking Architectures?
- Networking Architectures on System z
- •z Hardware Platform Support of Network Architectures

- Networking Applications
- Security Implementations
- References

SNA

VTAM = Virtual
Telecommunications Access
Method

NCP = Network Control
Program (runs in a physical
Front-End Processor (FEP)
called a 3745/6 or an
emulated 3745/6 called
Communication Controller on
Linux (CCL) in System z)
Offloads processing
from the VTAM in a partition to
the FEP.

SNI=SNA Network Interconnect (to establish connections between partners in different NETIDs)

Evolution of SNA

SNA originally consisted of subarea protocols

- Advanced Peer to Peer networking (APPN) introduced mid 1980s
- High Performance Routing (APN/HPR)introduced in 1990s
- Enterprise Extender (EE; HPR over UDP) introduced in 1999

Enterprise Extender – SNA over IP

TCP/IP on System z

Agenda

- Requirements for Communication
- What are Networking Architectures?
- Networking Architectures on System z
- •z Hardware Platform Support of Network Architectures

- Networking Applications
- Security Implementations
- References

Overall Network Perspective

Switching vs. Routing

- A Switch connects multiple LAN Segments into a single logical LAN.
 - We have one LAN with network address of 192.168.20.0 / 24

- A Router connects multiple distinct LAN Segments to create a routing path.
 - We have two LANs -- each with a separate network address. Nodes in LAN A can communicate over the router with Nodes in LAN B.

Virtual Local Area Networks

- A Switch connects multiple LAN Segments into a single logical LAN.
 - We have one LAN with network address of 192.168.20.0 / 24

A single physical Ethernet Cable on the left can be subdivided into multiple VIRTUAL LAN cables to produce multiple VLAN connections to different subnets.

Virtual Switch (VSwitch)

Complexity of System z Networking

Channel and Network Interface Structure

The I/O configuration of the central processor complex is defined in a data set called the I/O Configuration Data Set, or IOCDS.

System z: Connectivity Adapters

Virtual IP Address

A timely reroute usually requires a Dynamic Routing Protocol like OSPF in z/OS.

Agenda

- Requirements for Communication
- What are Networking Architectures?
- Networking Architectures on System z
- z Hardware Platform Support of Network Architectures

- Networking Applications
- Security Implementations
- References

TN 3270

System z Security

Security Services and Mechanisms

MANAGEMENT

Authentication	Access Control	Confidentiality	Data Integrity	Non-Repudiation	Governance
Identifying Users/Entities Logon IDs Passwords Pass Tickets Digital Certificates Private Keys Smart Cards and PINs PCMCIA Cards Biometrics	Denying Access to Resources (a.k.a. Authorization) Access Control Lists Security Labels Roles Physical Barriers	Preventing Unauthorized Disclosure of Stored and Transmitted Data Encryption (based on Selected Algorithms, e.g. 3DES, AES, etc.) Data masking	Message integrity integrity	Proof of: ► Origin ► Receipt ► Transaction ► Time • Digital Signatures • Digital Certificates • Trusted Time	Documented Policies Logging and Archiving where Necessary Regular Internal Audits Required External Audits

International Standard ISO 7498-2, "Security Architecture", provides a good starting point

z/OS CS Security Policies

Making sure
high-priority
applications also get
high-priority processing
by the network

Providing secure end-to-end IPSec VPN tunnels on z/OS

Protection against "bad guys"
Trying to attack your z/OS system

outbound interface and route

(Policy-based routing PBR)

CS Security Alphabet Soup

	Stands for:	Designed by:	Main Features:	<u>CS</u> <u>Applications</u>
SSL V2	Secure Sockets Layer	NetScape	Server Authentication	TN3270 Server
SSL V3	Secure Sockets Layer	NetScape	Client Authentication	TN3270 Server, FTP
TLS-enabled Telnet (SSL V3.1)	Transport Layer Security -Enabled Telnet	IETF Draft RFC	Single port for SSL Negotiation or non-SSL	TN3270 Server
TLS 1.0	Transport Layer Security	IETF RFC 2246	Standards-Based; Negotiable TLS or SSL port	FTP Server & Client, TN3270 Server, AT-TLS
TLS 1.1	Transport Layer Security	IETF RFC 4346	Standards-Based; New notes, error handling, notes	Any applications with AT-TLS At V1R11 it is AT-TLS default
AT-TLS	Application- Transparent TLS	IBM; complies with previous standards, incl. de facto	Foundation based on Standards; Application Transparency	Any application; some applications enjoy additional options

Virtual Private Network (VPN) with IPSec

Gateway-to-Gateway: Protection over Untrusted Network Segment

Gateway-to-Host: Protection over Untrusted Network Segment

REFERENCES

References

For More Information

- IBM z/OS Communications Server Product Manuals
 - Resource Link
- IBM Redbooks on http://www.redbooks.ibm.com/
 - z/OS Communications Server
 - OSA-Express
 - IBM System z Connectivity Handbook
- Web Document z/OS V1R11 Communications Server Scalability, performance, constraint relief, and accelerator
 - http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/topic/com.ibm.iea.co mmserv_v1/commserv/1.11z/hardware/perf.pdf
- Web Documents on ATS TechDocs web site
 http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs
 - FLASH10744 QDIO OSA Definition Migration: Device/Link to Interface
 - WP101327 Performance and Capacity Planning Information for z/OS Communications
 Server
 - PRS1707 z/OS OMPROUTE Hints and Tips -- Focus on OSPF
 - PRS4927 Ordering OSA Adapters with Multiple Ports per CHPID? Don't Make these Mistakes!!
 - PRS3950 Avoiding the Pitfalls of an OSA-E3 or OSA-E4S Migration (z/OS Examples)
 - PRS3296 Understanding VLANs when Sharing OSA Ports on System z

URLs

- http://www-01.ibm.com/support/docview.wss?uid=swg27020466&aid=3
 - OSA Performance Improvements
- http://www-01.ibm.com/support/docview.wss?uid=swg27005524
 - •z/OS Communications Server Performance Index
- http://www-947.ibm.com/support/entry/portal/
 - http://www- 947.ibm.com/support/entry/portal/overview//software/other_software/z~os_communications_server
 - •IBM Support Assistant
- http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp
 - IBM Education Assistant