
zHISR: Improving Application
Performance using Hardware
Instrumentation

Ed Jaffe
Phoenix Software International

10 March 2014
Session Number 15379

Insert
Custom
Session
QR if
Desired.

What is zHISR?

2

zHISR is an interactive application
execution profiler that allows
developers, performance analysts
and others to easily interface with
System z Hardware Instrumentation
to perform near-zero overhead,
high-resolution hot spot analysis of
programs running under z/OS.

Software Timer-based Sampling
Technologies
• Most commercial application profilers use software timer-

based sampling to obtain the data upon which to perform
the analysis.
• STIMER(M), TIMER DIE (Disabled Interrupt Exit), etc.

• The timer routines themselves are dispatched by z/OS.
Therefore, they become part of the application execution
path as seen by the system and its accounting routines.

• Sampling this way can be expensive in terms of CPU
consumption and is one reason that the use of application
profilers is often strictly controlled.

3

STIMER-Based Sampling

4

TCB

PRB

• Normal condition of task-based execution:
• Program executes under a Program Request Block (PRB)

Application Program

STIMER-Based Sampling

5

• When timer interrupt occurs, the operating system:
• Schedules an SRB into the target address space
• The SRB schedules an IRB to run the timer exit
• The timer exit collects the PSW from the PRB

TCB

PRB Application Program Old PSW

IRB Profiler’s Timer Exit

Timer DIE-Based Sampling
• The operating system provides authorized programs with

the Timer DIE (Disabled Interrupt Exit) function.
• The Timer DIE gets control directly from the SLIH when

the timer interrupt is handled. This can occur in any
address space and within any unit of work (task or SRB) in
the system.

• The DIE executes disabled (must not create a page fault)
and cannot obtain locks or reference private area storage.

• The DIE can schedule (or resume) an SRB to do whatever
collection is necessary.

6

Timer DIE-Based Sampling

7

FLIH

SLIH

Issue IEAMSCHD (SCHEDULE)
or RESUME SRB

DIE

Timer
Interrupt

Dispatch

SRB

Collect PSWs

Most Obvious Disadvantages of
Software Timer-based Sampling
• z/OS timer services are efficient, but they are not designed

for sampling. Significant CPU is consumed.
• Dispatch latency is unpredictable.
• Timer resolution higher than 100 samples per second adds

significant complexity and even higher CPU consumption.
• Sampling code must make an educated “guess” at what

the dispatcher would have run, if the sampling code was
not there, and record those assumed PSWs.

• SRB routines (especially non-preemptible SRBs) are
difficult to sample.

• Cycles Per Instruction (CPI) information is not available.

8

System z Hardware Instrumentation
• Hardware Instrumentation is a mainframe hardware facility

that was introduced long before System z, but was
accessible only to IBM internal tooling through activation of
a special diagnostic mode on the machine.

• The facility was first externalized to customers with the z10
family of processors (z10EC and z10BC).

• Sampling using Hardware Instrumentation is almost “free.”
There is no appreciable overhead.

• The default sampling frequency is 800,000 samples per
minute. That’s 13,333 samples per second – PER CPU!

• Cycles Per Instruction (CPI) information is available if you
know how to calculate it.

9

System z Hardware Instrumentation
• The first operating system release to support Hardware

Instrumentation was z/OS 1.9. For five releases, the IBM
Hardware Instrumentation Services (HIS) address space
performed all data collection and mapping activities.
• Functionality extremely limited: only one data collection per

system at a time, jobs to be mapped had to be running and
execute for the entire duration, no recording of fetch/unfetch
activities – mapping was a “snap shot” at the end.

• In z/OS 2.1, the capabilities of HIS were greatly expanded
to allow authorized applications to become profilers.

• zHISR leverages these new HIS capabilities as well as
other operating system functions to create an easy to use,
near-zero overhead application profiler.

10

Cycles Per Instruction
• If you have an increase in CPU cost in a module, it's often

useful to know if the module or a loop in the module is
executed more frequently (higher path length) or if the
average instruction cost has gone up (higher CPI).

• Years ago, when instructions executed one at a time on a
CPU, a signal called Instruction First Cycle (IFC) was
turned on for the first cycle of an instruction.

• IFC allowed us to estimate the average Cycles Per
Instruction (CPI) in a module.

11

𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐼𝐼𝐼𝐼𝐶𝐶𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

Cycles Per Instruction
• Samples provide an indication of CPU cost in a module or

section of code. IFCsamples provided an indication of
frequency of various paths in the code. Regardless of how
long the instruction took to execute, the IFC signal was
only on for one cycle, providing instruction frequency, not
instruction execution time.

• Today, things are not so simple. Groups of instructions
execute at the same time (superscalar) and OOO, but we
still want the useful information from the old IFC signal.

• The Unique Instruction counts captured by Hardware
Instrumentation are used by zHISR to calculate CPI for
each execution analysis unit. The result is presented in
terms of a ratio relative to the owning section or module.

12

zHISR Data Collection Flow

13

Hardware Instrumentation

CP0 CP1 CP2 … CPn

SDB SDB SDB … SDB

HIS Profiler Exit Driver

zHISR Server

System z Hardware

Fixed memory blocks on z/OS
populated with sample data

SDB full condition
generates interrupt

zHISR quickly copies SDBs to
its private area and schedules
high-speed write to disk files

zHISR HIS Profiler Registration
• The first data collection registers zHISR’s HIS Profiler.
• Additional data collections do not register additional HIS

Profilers. Only one is ever registered.
• When no more data collections are running, zHISR’s HIS

Profiler is deregistered.
• This approach ensures the “performance” path, i.e., when

copying the populated SDBs to zHISR’s private area in
response to the full-SDB interrupt, is as short as possible.

• The private area SDB copies are simultaneously written to
disk, for each running data collection that needs them, and
then made available for future copy/write operations.

14

zHISR HIS Profiler Registration

15

Advancing Time

USER1
START USER2

START

USER1
END USER2

END

zHISR Server

HIS

REGISTER SDB Handling DEREGISTER

zHISR Fetch/Unfetch Monitoring
• Native HIS maps modules only at data collection end time.
• In many applications, modules are fetched and unfetched

throughout execution. A newly-loaded module can occupy
the address range previously occupied by another module.

• In some applications (e.g., CICS) “directed load”
techniques are used. No CDE is created.

• zHISR monitors module fetch/unfetch activity, including
“directed” loads. The HIS module mapping format has
been compatibly extended to record necessary timings.

• At analysis time, a time-oriented module matrix is created
and used to ensure samples are attributed to the proper
module instance.

16

ModC

zHISR Fetch/Unfetch Monitoring

17

Advancing Time

ModG

Samples

ModE ModD ModF
Virtual
Address ModB

ModA

ModE ModD

ModH

Which Jobs are Monitored and Mapped?
• All jobs are always monitored when a collection is running.

• That’s just how Hardware Instrumentation works! 
• Already-running jobs for which module mapping is desired

can be identified by an ASID list and/or job name mask list.
• A list of job names owned by a given userid can be

generated for you on request.
• The Auto Start Id and Match Limit parameters allow

collections to be deferred until a named job actually starts.
• Parameters similar to SLIP ID= and MATCHLIM= keywords.
• Makes it possible to monitor/map short-running batch jobs.

• A program can invoke the zHISR API to start/stop/pause
its own data collection to target only a subset of its code.

18

zHISR Server Characteristics
• Service access via space-switching PC routine interface.
• Server fully supports ASN/LX reuse (REUSASID=YES).
• Command interface allows full start/stop/modify control of

data collections from MCS console.
• End-user data collection management is via EMCS console.

• Data collections are fully multi-tasked to minimize latency.
• Files can be written to zFS using z/OS UNIX file system

interfaces or to classic, multivolume MVS data sets using
Phoenix Software International’s proprietary STARTIO
driver, which performs like NO OTHER. 

• STARTIO driver fully supports advanced channel program
technologies including ZHPF. Same driver used for (E)JES! 

19

Files Created by zHISR
• zHISR creates sample and map files, no counters.
• Sample data format is identical to z/OS 2.1 HIS.
• Map data format is upward compatible to z/OS 2.1 HIS.

• A format which is totally incompatible with earlier releases of
z/OS HIS. :-/

• This means existing customer code that processes z/OS
2.1 HIS sample and map files can process zHISR sample
and map files, unless the code is sensitive to record length
or other things to which it should not be sensitive.

20

Starting a zHISR Data Collection

21

Starting a zHISR Data Collection Run

22

Displaying zHISR Data Collection Status

23

Stopping a zHISR Data Collection Run

24

Stopping a zHISR Data Collection Run

25

zHISR Data Collection Analysis Wizard

26

Navigate
File Tree

Select Files,
Time Range,
Unit Size*

PASN
Chooser

Module
Chooser

Section
Chooser

Boundary
Chooser

Fast-path
Range, Module,

Section Chooser

Interactive
Analysis Reports

F2=Anal

F5=Next

F5=Next

F5=Next

Optional

F5=Next

* Unit size can be any
 power of two, 8 thru 4K.
 Default is 64 bytes.

Select File, Choose Analysis Unit Size

27

Specify Time Period and Included CPUs

28

Primary ASN Chooser

29

Proceed directly to
Fast-path Range,
Module, Section
Chooser

Module Chooser

30

Control Section Chooser

31

Virtual Storage Boundary Chooser

32

Fast-path Range, Module, Section Chooser

33

Press <F2> to
Create Interactive
Analysis Reports

Press <F9> to include
all virtual storage
ranges. Useful when
nothing else has been
selected previously.

Interactive Analysis Report Navigation
• The Full Analysis shows all execution analysis units with

the most frequently-executed at the top of the display.
• Control section, module and boundary are displayed for

every execution analysis unit.
• Change sort order as desired using cursor-based selection.

• Use cursor-based selection to drill down to the Spot
Analysis, where all execution analysis units for a given
control section, module or virtual storage boundary are
shown.

• From there, you can display control section source code
with execution analysis unit highlighted – if ADATA or
COBOL SYSDEBUG information is available.

34

Full Analysis

35

Click for Spot Analysis
of Section, Module or

Boundary.

Point and <F6> for
Location Pop-Up

Press <F9> to
rotate through
available sorts.

Full Analysis with Location Pop-up

36

Press <F6>
repeatedly to step
through Location

Pop-Ups

Spot Analysis for Control Section

37

Click here to
show source

code via ADATA

ADATA Location Prompt

38

ADATA Library Concatenation Prompt

39

Scrollable ADATA with Highlighted
Code from Execution Analysis Unit

40

Print, Save or Export Results
• The Full Analysis, Spot Analysis and ADATA source code

reports can be printed or saved. These reports are text
versions of the 3270-based reports – all rows shown.

• Exporting the Full Analysis or Spot Analysis report to a
CSV (comma-separated values) file allows you to easily
import the data into your favorite spreadsheet or charting
utility.

41

Print, Save or Export Results

42

Import CSV File into Your Spreadsheet

43

44

Questions?

	zHISR: Improving Application Performance using Hardware Instrumentation
	What is zHISR?
	Software Timer-based Sampling Technologies
	STIMER-Based Sampling
	STIMER-Based Sampling
	Timer DIE-Based Sampling
	Timer DIE-Based Sampling
	Most Obvious Disadvantages of Software Timer-based Sampling
	System z Hardware Instrumentation
	System z Hardware Instrumentation
	Cycles Per Instruction
	Cycles Per Instruction
	zHISR Data Collection Flow
	zHISR HIS Profiler Registration
	zHISR HIS Profiler Registration
	zHISR Fetch/Unfetch Monitoring
	zHISR Fetch/Unfetch Monitoring
	Which Jobs are Monitored and Mapped?
	zHISR Server Characteristics
	Files Created by zHISR
	Starting a zHISR Data Collection�
	Starting a zHISR Data Collection Run�
	Displaying zHISR Data Collection Status�
	Stopping a zHISR Data Collection Run�
	Stopping a zHISR Data Collection Run�
	zHISR Data Collection Analysis Wizard�
	Select File, Choose Analysis Unit Size�
	Specify Time Period and Included CPUs�
	Primary ASN Chooser�
	Module Chooser�
	Control Section Chooser�
	Virtual Storage Boundary Chooser�
	Fast-path Range, Module, Section Chooser�
	Interactive Analysis Report Navigation
	Full Analysis�
	Full Analysis with Location Pop-up�
	Spot Analysis for Control Section�
	ADATA Location Prompt�
	ADATA Library Concatenation Prompt�
	Scrollable ADATA with Highlighted�Code from Execution Analysis Unit�
	Print, Save or Export Results
	Print, Save or Export Results�
	Import CSV File into Your Spreadsheet�
	Slide Number 44

