
®

IBM Software Group

© 2013 IBM Corporation

Enterprise PL/I 4.4 Highlights

March 10, 2014

Peter Elderon

elderon@us.ibm.com

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

2

Enterprise 4.4

 performance

 middleware support

 usability

®

IBM Software Group

© 2013 IBM Corporation

performance

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

4

Listing generation

 The code in the backend to generate the pseudo-assembler listing has been
significantly improved

 It is much faster and will use much less cpu

 This change was also included in 4.3 in a PTF

IBM Software Group | Rational software

5

More DFP exploitation in PICTURE conversions

 When converting PICTURE to FIXED BIN and the source precision was 9 or
less, then DFP was used as intermediary (rather than FIXED DEC)

 This provided a performance boost in 4.3

 It has now been extended to when the source precision is 18 or less

IBM Software Group | Rational software

6

Example: Picture to Fixed Bin(63)

 So, for example, when given this code to convert PICTURE to FIXED BIN

 pic2int: proc(ein, aus) options(nodescriptor);

 dcl ein(0:100_000) pic'(15)9' connected;

 dcl aus(0:hbound(ein)) fixed bin(63) connected;

 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);

 aus(jx) = ein(jx);

 end;

 end;

IBM Software Group | Rational software

7

Example: Picture to Fixed Bin(63)

 Under 4.3 or ARCH(9), the heart of the loop consists of these 8
instructions

F27E D0A8 4000 PACK #pd580_1(8,r13,168),_shadow2(15,r4,0)

D207 D0B0 D0A8 MVC #pd581_1(8,r13,176),#pd580_1(r13,168)

D100 D0B7 200C MVN #pd581_1(1,r13,183),+CONSTANT_AREA(r2,12)

F8F7 D0B8 D0B0 ZAP #pd582_1(16,r13,184),#pd581_1(8,r13,176)

D20F D098 D0B8 MVC _temp1(16,r13,152),#pd582_1(r13,184)

E300 D098 000E CVBG r0,_temp1(,r13,152)

1820 LR r2,r0

EB00 0020 000C SRLG r0,r0,32

IBM Software Group | Rational software

8

Example: Picture to Fixed Bin(63)

 While under 4.4 and ARCH(10), it consists of 6 instructions and uses DFP in
several of them – but since only the new CXZT instruction refers to storage,
the loop runs almost twice as fast

 ED0E 1000 00AB CXZT f0,#AddressShadow(15,r1,0),b'0000'

 B914 0000 LGFR r0,r0

 B3FE 0000 IEXTR f0,f0,r0

 B3E9 9010 CGXTR r1,b'1001',f0

 1841 LR r4,r1

 EB11 0020 000C SRLG r1,r1,32

IBM Software Group | Rational software

9

Decimal-Floating-Point Zoned-Conversion Facility

 To summarize some of the lessons from this and the last release:

A longer set of instructions may be faster than a shorter set

Reducing storage references helps performance

Eliminating packed decimal instructions can help performance

Using decimal-floating-point may improve your code’s performance even
in program’s that have no floating-point data

The 4.3 PL/I compiler knows when these new ARCH(10) instructions will
help and will exploit them appropriately for you

IBM Software Group | Rational software

10

Inlining of FIXED to WIDECHAR

 For “nice” FIXED, conversion to WIDECHAR will be inlined by converting to
ASCII and then converting the ASCII to WIDECHAR – in 4.3 a library call was
made, so this code is much faster

“nice” FIXED BIN is (UN)SIGNED REAL FIXED BIN(p,0)

“nice” FIXED DEC is REAL FIXED DEC(p,q) with 0 <= q and q <= p

 For FIXED BIN to WIDECHAR, the conversion is done via

CVD
EDMK (using special characters in the edit pattern)
NC (to complete the conversion to ASCII)
ASCII to UTF-16

IBM Software Group | Rational software

11

Other UTF-8 and UTF-16 improvements

 When possible, MVC, rather than MVCLU, is now used in assignments of
WIDECHAR to WIDECHAR

 The following built-in functions are now collapsed, when their arguments
are restricted expressions, at compile-time

Ulength, Ulength8, Ulength16
Usubstr
Usupplementary
Upos, Uwidth

 So, these functions may all be used in restricted expressions themselves

®

IBM Software Group

© 2013 IBM Corporation

Middleware improvements - SQL

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

13

SQL preprocessor error handling

 Starting with the 4.2 release, the SQL preprocessor always keep track of the
PL/I block structure of the program (so that name resolution is correct)

 This is a plus for you – as long as your code is syntactically valid

 But for some invalid programs, the error messages produced by the SQL
preprocessor were not very helpful

 This situation has been vastly improved with the 4.4 release

 This is RFE 31207 from IBM Japan (and requested by other customers, too)

IBM Software Group | Rational software

14

SQL preprocessor error handling

 So, instead of this 4.2 listing and its one unhelpful message

 1.0 SQLTEST: PROC(XML_PTR;)

 2.0 EXEC SQL INCLUDE SQLCA;

 3.0 BEGIN OPTIONS(INLINE;)

 4.0 END;

 5.0 IF NOT SW1 ! SW2 THEN DO;

 6.0 END;

 7.0 PUT SKIP LIST('test';)

 8.0 EXEC SQL COMMIT;

 9.0 END;

 IBM3332I W 9.0 The END statement has no matching BEGIN, DO,

 PACKAGE, PROC, or SELECT. This may indicate a

 problem with the syntax of a previous statement.

IBM Software Group | Rational software

15

SQL preprocessor error handling

 Under 4.4, you would get these much more helpful messages

 IBM3985I S 1.0 Semicolon found before required closing right

 parenthesis.

 IBM3987I S 1.0 Statement must start with a keyword or assignment

 target.

 IBM3985I S 3.0 Semicolon found before required closing right

 parenthesis.

 IBM3987I S 3.0 Statement must start with a keyword or assignment

 target.

 IBM3986I S 5.0 IF statement syntax is invalid.

 IBM3985I S 7.0 Semicolon found before required closing right

 parenthesis.

 IBM3987I S 7.0 Statement must start with a keyword or assignment

 target.

 IBM3332I W 9.0 The END statement has no matching BEGIN, DO,

 PACKAGE, PROC, or SELECT. This may indicate a

 problem with the syntax of a previous statement.

IBM Software Group | Rational software

16

SQL EMPTYDBRM option

 With 4.2, the SQL preprocessor invokes the DB2 backend only if the code
contains at least one EXEC SQL statement

 This makes it much faster when the code contains no EXEC SQL

 But it also means that no DBRM will be created if there is no EXEC SQL –
rather than create an empty DBRM

 Some users want an empty DBRM when there is no EXEC SQL, and the new
SQL preprocessor option EMPTYDBRM will insure this

 The default option is NOEMPTYDBRM

IBM Software Group | Rational software

17

SQL structures with arrays

 The 4.2 and 4.3 SQL preprocessor produced an S-level message if a
structure containing an array was used as a host variable

 It will now accept this usage as long as the host variable is not followed by
an indicator variable

 This change is available in 4.2 and 4.3 via APAR PM95407

IBM Software Group | Rational software

18

Commented SQL statements

 The 4.2 and 4.3 SQL preprocessor includes the original SQL statement in a
comment and prevents any contained comments from causing problems by
changing any / to \ (a hex E0)

 But this included / characters that were in strings in the SQL statement

 This would make the listing appear incorrect

 Now it changes only */ and then to *>

 This change is available in 4.2 and 4.3 via APAR PM95593

®

IBM Software Group

© 2013 IBM Corporation

Middleware improvements - IMS

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

20

Introduction, part 1

 The PL/I IMS importer makes use of base 64 encodings to transport some
data and also does a lot of work with XML

 Each instance contained copies of (sometimes large) functions to help with
these tasks, but that limited the number of importers that could be active

 So, several new functions have been added to PL/I

 These functions are also generally useful outside of IMS

IBM Software Group | Rational software

21

Base 64

 Base 64 is used to encode binary data as text

 The first 62 “digits” are

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789

 The final 2 vary according to the encoding scheme. A common choice and
the one used by PL/I is to use the “digits”

+/

 All of these 64 characters are code page invariant and from the pure ASCII
code page – so they can survive transport unchanged

IBM Software Group | Rational software

22

Base 64

 The encoding of data to base 64 and decoding from base 64 back is non-
trivial

 So, with 4.4, PL/I has made available 2 sets of 2 built-in functions

base64encode8(p, m, q, n)
base64decode8(p, m, q, n)

base64encode16(p, m, q, n)
base64decode16(p, m, q, n)

 This is RFE 31216 from Credit-Suisse

IBM Software Group | Rational software

23

Base 64

 Base64encode8 will write UTF-8 (ASCII, in fact) to the target buffer

 Base64decode8 requires that the source buffer came from base64encode8

 Base64encode16 will write UTF-16 to the target buffer

 Base64decode16 requires that the source buffer came from base64encode16

IBM Software Group | Rational software

24

Base 64

 All the functions have 4 similar parameters, e.g. base64encode8(p, m, q, n)

p specifies the address of the target buffer
m specifies the size in bytes of the target buffer
q specifies the address of the source buffer
n specifies the size in bytes of the source buffer

 If the address of the target buffer is zero, the number of bytes that would be
written is returned.

 If the target buffer is not large enough, a value of -1 is returned.
 If the target buffer is large enough, the number of bytes written to the buffer

is returned

IBM Software Group | Rational software

25

Base 64

 Note that If the source length in bits is not a multiple of 6, the result
concludes with one or two = symbols

 So under base64encode8,

The 6 byte source ‘please’E will produce the 8 byte UTF8(‘l5OFgaKF’)

IBM Software Group | Rational software

26

Base 64

 Note that If the source length in bits is not a multiple of 6, the result
concludes with one or two = symbols

 So, for example, base64encode8 would produce these results for these 3
strings

Source
length

Source
value

Result
length

Result value

 6 ‘please’E 8 UTF8(‘l5OFgaKF’)

 5 ‘pleas’E 8 UTF8(‘l5OFgaI=’)

 4 ‘plea’E 8 UTF8(‘l5OFgQ==’)

IBM Software Group | Rational software

27

XML normalization

 Two new built-in functions help “normalize” a buffer containing XML:

 WHITESPACEREPLACE replaces any of \t, \f, \v, \n, and \r by a UTF blank

 WHITESPACECOLLAPSE does that plus it

Trims all leading and trailing blanks
Reduces any other sequences of blanks to a single blank

 The source buffer must contain UTF-16, not UTF-8

 This is RFE 31214 from Credit-Suisse

IBM Software Group | Rational software

28

XML normalization

 The functions have the usual 4 parameters:

p specifies the address of the target buffer
m specifies the size in bytes of the target buffer
q specifies the address of the source buffer
n specifies the size in bytes of the source buffer

 If the address of the target buffer is zero, the number of bytes that would be
written is returned.

 If the target buffer is not large enough, a value of -1 is returned.
 If the target buffer is large enough, the number of bytes written to the buffer

is returned

IBM Software Group | Rational software

29

XML cleaning

 The new XMLCLEAN built-in functions “cleans” a buffer containing XML by

 Replacing any invalid UTF by a UTF blank
 Replacing any carriage-returns by 
 Replacing any of the characters for quote, apostrophe, ampersand, less-

than, and greater-than by their predefined entity references

e.g. & is replaced by &

 The source buffer must contain UTF-16, not UTF-8

 This is RFE 31214 from Credit-Suisse

IBM Software Group | Rational software

30

XML cleaning

 The function has the usual 4 parameters:

p specifies the address of the target buffer
m specifies the size in bytes of the target buffer
q specifies the address of the source buffer
n specifies the size in bytes of the source buffer

 If the address of the target buffer is zero, the number of bytes that would be
written is returned.

 If the target buffer is not large enough, a value of -1 is returned.
 If the target buffer is large enough, the number of bytes written to the buffer

is returned

IBM Software Group | Rational software

31

Introduction, part 2

 To reduce the dynamic storage needed and transmitted by the PL/I IMS
importers, we have introduced a radically new language feature

 Again, it is generally useful even outside of IMS

 This feature addresses the problem of “sparse” arrays

 This is RFE 29703 from Credit-Suisse

IBM Software Group | Rational software

32

Introduction, part 2

 For example, 61204 bytes will be allocated for this structure - even though
many of the varying strings might be much smaller than the maximum

 dcl
 1 xmit based(p) unal,

 2 dcount fixed bin(31),

 2 data(dx refer(dcount)),

 3 name char(100) varying,

 3 street char(100) varying,

 3 city char(100) varying;

 dcl p pointer;

 dcl dx fixed bin(31);

 dx = 200;

 allocate xmit;

IBM Software Group | Rational software

33

Introduction, part 2

 You could change each of the CHAR(100) VAR fields into a POINTER, but

 1) then to assign a string to one of these fields, you would first have to
allocate a based string and then do the assignment

 2) And perhaps more importantly, if the structure contains pointers, then you
cannot usefully write it to a file or transfer it to another address space

 Using an OFFSET instead of a POINTER helps with 2) but still leaves 1) as a
problem

IBM Software Group | Rational software

34

LOCATES attribute

 The new LOCATES attribute and associated built-in functions and
pseudovariables help address these issues

 The LOCATES attribute essentially turns an OFFSET attribute into a typed
offset (but the type must be a string type)

 And the LOCVAL built-in function and pseudovariable let you dereference it

IBM Software Group | Rational software

35

LOCATES attribute

 For example, you could change the earlier declare to

 dcl
 1 xmit based(p) unal,

 2 dcount fixed bin(31),

 2 data(dx refer(dcount)),

 3 name offset(pool) locates(char(100) varying),

 3 street offset(pool) locates(char(100) varying),

 3 city offset(pool) locates(char(100) varying),

 2 pool area(64000);

IBM Software Group | Rational software

36

LOCATES attribute

 Then to assign to the first name field, you could write

call locnewvalue(‘Sherlock Holmes’, name(1), pool);

 But since NAME is declared as OFFSET(POOL), you could write the simpler

call locnewvalue(‘Sherlock Holmes’, name(1));

 Or, you could let the compiler generate this call for you and write simply

name(1) = ‘Sherlock Holmes’;

IBM Software Group | Rational software

37

LOCATES attribute

 So, to fill out the first data item, you could write

name(1) = ‘Sherlock Holmes’;
street(1) = ‘221B Baker Street’;
city(1) = ‘London’;

 This is exactly what you would write if no OFFSET was involved!

 So, to fill the whole array, you would not even need to know that there was
any indirection going on

IBM Software Group | Rational software

38

LOCATES attribute

 However, for other references to the fields, you would have to use the
LOCVAL built-in function to dereference the offset. For example

put skip list(name(1));
if city(1) = ‘London’ then

 Would be rejected by the compiler as severe errors. You would have to write
instead

put skip list(locval(name(1)));
if locval(city(1)) = ‘London’ then

 etc

IBM Software Group | Rational software

39

LOCATES attribute

 But, if the OFFSET has an implicit qualifying area, then LOCVAL can be
omitted when the OFFSET is used as the (first) argument to

 INDEX(R), SEARCH(R), VERIFY(R)
LENGTH
MAXLENGTH
TALLY
TRIM

 MAXLENGTH will always be a constant

 For all the other functions, if the offset is zero, then the result would be zero

IBM Software Group | Rational software

40

LOCATES attribute

 Note that the statement

call locnewvalue(‘Sherlock Holmes’, name(1));

 Will get only enough room from the area to hold the new value – this is great
if the string is written to only once

 If you want to get enough space to hold the maxlength, you should use the
LOCNEWSPACE function and then use the LOCVAL pseudovariable. E.g.

call locnewspace(name(1));
locval(name(1)) = ‘Sherlock Holmes’;

IBM Software Group | Rational software

41

LOCATES attribute

 If you compare this declare to its original, you might notice that it uses more
storage than the original

 dcl
 1 xmit based(p) unal,

 2 dcount fixed bin(31),

 2 data(dx refer(dcount)),

 3 name offset(pool) locates(char(100) varying),

 3 street offset(pool) locates(char(100) varying),

 3 city offset(pool) locates(char(100) varying),

 2 pool area(64000);

IBM Software Group | Rational software

42

LOCATES attribute

 However, in the IMS importer scenario (and other scenarios), the
data is assigned once and then never changed

 Hence when the structure is transferred to another address space
(or written to a file), only the currently used part of the area is
important

 In particular, the amount of storage that needs to be transported is
given by the simple formula

loc(pool) + cstg(pool)

 Although we could optimize this calculation if we introduced a new
built-in function to do it

IBM Software Group | Rational software

43

LOCATES attribute

 Also, if you look at this structure, you might ask how big should the area be
and could the compiler calculate the needed size?

 dcl
 1 xmit based(p) unal,

 2 dcount fixed bin(31),

 2 data(dx refer(dcount)),

 3 name offset(pool) locates(char(100) varying),

 3 street offset(pool) locates(char(100) varying),

 3 city offset(pool) locates(char(100) varying),

 2 pool area(64000);

IBM Software Group | Rational software

44

LOCATES attribute

 For that purpose, we have introduced the last of the new built-in
functions to support LOCATES, namely the LOCSTG function

 LOCSTG returns the number of bytes needed to hold all the storage
required if all the elements using LOCATES had storage allocated

 For a BASED with REFER, the structure doesn’t need to be allocated,
but the compiler must be able to calculate the initial REFER values

 In our example, this means the DX value must be set

 And LOCSTG would return 61200

®

IBM Software Group

© 2013 IBM Corporation

Increased Usability

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

®

IBM Software Group

© 2013 IBM Corporation

Language enhancements

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

47

UTF-16 pictures

 PICTURE numeric variables hold FIXED DEC and FLOAT values as CHAR

 The new WIDEPIC variables hold these values as WIDECHAR except

The picture specification must not contain any A or X (i.e. it must be numeric)

The picture specification must not contain any currency symbols

The picture specification must not contain any overpunch symbols

 WIDEPIC variables can be used in arithmetic calculations in the same way
that the equivalent PIC variables can be used

IBM Software Group | Rational software

48

UTF-16 pictures

 WIDEPIC allows PIC to become UTF-16 just as WIDECHAR did for CHAR

 so, given

 declare wp widepic’9V(4)9’ init(3.1415)

 wp could be overlaid with WIDECHAR(5)

 wp holds the bytes ‘0033_0031_0034_0031_0035’wx

 This is RFE 27954 from Allianz

IBM Software Group | Rational software

49

INDEXR built-in function

 The new INDEXR built-in function does for INDEX what SEARCHR bzw
VERIFYR do for SEARCH bzw VERIFY

 Namely, INDEXR searches for the first occurrence of one string within
another when searching from the right

 So while INDEX(‘Berg auf, Berg ab’, ‘Berg’) returns 1

 INDEXR(‘Berg auf, Berg ab’, ‘Berg’) returns 11

IBM Software Group | Rational software

50

DEFAULT statement

 The DEFAULT statement has been expanded both to conform to the original
PL/I standard, but more importantly to address the problems caused by
statements such as

DEFAULT RANGE(I) INIT((*) ‘’);

 This statement wants to initialize any variable whose name starts with I to
zero (or blanks if character or widechar)

 This is a perfectly good idea, except the following program will get an E-
level compiler message:

IBM Software Group | Rational software

51

DEFAULT statement

 talk: proc options(main);

 default range(i) init((*) '');

 display(test('31415'));

 test: proc(input) returns(fixed bin(31));

 dcl input char(*);

 dcl ix fixed bin(31);

 ix = input;

 return(ix);

 end;

 end;

 IBM2432I E 8.0 The attribute INITIAL is invalid with parameters and is ignored.

IBM Software Group | Rational software

52

DEFAULT statement

 The DEFAULT statement in the original PL/I standard allows a more powerful
predicate clause

 Rather than just the RANGE specification, you can specify a parenthesized
logical expression using attribute keywords (including RANGE and the
pseudo-attribute MEMBER)

 So now you could do what you could change this example to

DEFAULT (RANGE(I) & ^ INITIAL) INIT((*) ‘’);

IBM Software Group | Rational software

53

DEFAULT statement

 This expanded statement is very powerful and could be used to describe the
language defaults. For example, for FLOAT

DEFAULT (FLOAT & BIN) PREC(21);
DEFAULT (FLOAT & DEC) PREC(6);

 And for FIXED under RULES(IBM)

DEFAULT (FIXED & BIN) PREC(15);
DEFAULT (FIXED & DEC) PREC(5);

IBM Software Group | Rational software

54

ALLOCATE built-in function

 The ALLOCATE built-in function now accepts an optional second argument
which must specify an AREA from which to allocate the specified number of
bytes

 So, while ALLOCATE(1000) obtains 1000 bytes from HEAP storage and
returns a pointer to the allocated storage

if the requested storage is not available, the STORAGE condition is raised

 ALLOCATE(1000, X) obtains 1000 bytes from the AREA X and returns the
offset into X of the allocated storage

If the requested storage is not available, the AREA condition will be raised

IBM Software Group | Rational software

55

CALL statement in macros

 Given a preprocessor procedure such as

 %DCL QSUB ENTRY;
 %QSUB: PROC;
 ANSWER('/* in QSUB */') SKIP;
 %END QSUB;

 You could invoke it in your code via the simple

 QSUB

IBM Software Group | Rational software

56

CALL statement in macros

 But if you tried to invoke it from another a preprocessor procedure such as

 %DCL PSUB ENTRY;
 %PSUB: PROC;
 ANSWER('/* in PSUB */') SKIP;
 QSUB;
 %END PSUB;

 The preprocessor would object with an S-level message

 But since QSUB is a procedure (i.e. it does not RETURN anything), you
should be able to invoke via a CALL statement

IBM Software Group | Rational software

57

CALL statement in macros

 The 4.4 compiler now lets you do this

 %DCL PSUB ENTRY;
 %PSUB: PROC;
 ANSWER('/* in PSUB */') SKIP;
 CALL QSUB;
 %END PSUB;

 This is RFE 32334 from Telcordia

IBM Software Group | Rational software

58

CANCEL THREAD

 The new CANCEL THREAD statement does exactly that

 It lets you cancel a thread that you have attached

 This was a FITS requirement from La Caixa

®

IBM Software Group

© 2013 IBM Corporation

Miscellaneous user requirements

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

60

Recommending STATIC

 Many user programs contain declares which are arrays or structures that are
declared with INIT attributes and never changed. This is perfectly ok if the
STATIC attribute is specified, but very bad if not

 For example

 DCL BVSFS (3,0:100,15) FIXED DEC (3,2) INIT ((15) 1.00,
 (15) 1.00, (15) 1.00, (15) 1.00, (15) 1.00, (15) 1.00,

 (15) 1.00, (15) 1.00, (15) 1.00, (15) 1.00, (15) 1.00,

 (15) 1.00, (15) 1.00, (15) 1.00, (15) 1.00,

 0.94,0.95 ,0.95 ,0.95 ,0.95 ,0.96 ,0.96 ,0.95 ,0.95 ,0.95 ,0.95 ,0.95,

 0.95, 0.95, 0.95,

 0.88,0.89 ,0.89 ,0.90 ,0.90 ,0.91 ,0.91 ,0.91 ,0.91 ,0.91 ,0.91 ,0.90,

 0.90, 0.90, 0.91, . . .

IBM Software Group | Rational software

61

Recommending STATIC

 This will generate a vast amount of code that will be executed every time the
containing procedure is called. This is terrible for run-time performance

 It also stresses the compiler under the optimize option because the compiler
use a lot of time and space trying to optimize the thousands of generated
assignment statements.

 This “variable” should be declared as STATIC

 Even better would be to declare it as STATIC NONASGN

IBM Software Group | Rational software

62

Recommending STATIC

 The 4.4 compiler will now issue a W-level message for any declares

with more than 100 INITIAL items
but with a storage class other than STATIC

 This should help you identify possibly poor code

 Change it and you improve compile-time and run-time performance

 This is RFE 30159 from NY Life

IBM Software Group | Rational software

63

NOINCLUDE option

 The new NOINCLUDE option specifies that the MACRO preprocessor must
be invoked if there are any %INCLUDE or %XINCLUDE statements in the
source

 The new INCLUDE option specifies that the final compiler pass can handle
%INCLUDE and %XINCLUDE statements

 This matches the old OS PL/I compiler’s INCLUDE option

 INCLUDE is the default

 This is RFE 31140 from Credit-Suisse

IBM Software Group | Rational software

64

NULLSTRPTR option

 The NULLSTRPTR suboption of the DEFAULT option specifies via the
SYSNULL bzw NULL suboption whether the assignment/comparison of ‘’ to
a pointer results in SYSNULL bzw NULL being assigned/compared to the
pointer.

 The new suboption STRICT will cause such assignments and comparisons
to be flagged as invalid

 The default remains NULLSTRPTR(NULL)

 This is RFE 28536 from Raiffeisen IT

IBM Software Group | Rational software

65

STMT option

 When this program is compiled under 4.3 with the STMT option

 talk: proc(rc) returns(char(6));

 declare rc fixed bin;

 select(rc);

 when(00) return('ok');

 when(04) return('warning');

 when(08) return('error');

 when(12) return('severe');

 otherwise return('???');

 end;

 end;

IBM Software Group | Rational software

66

STMT option

 It produces a message that refers to stmt 7, but there is no stmt 7 in the listing!

 Compiler Source

 Line.File Stmt

 1.0 1 talk: proc(rc) returns(char(6));

 2.0 2 declare rc fixed bin;

 3.0 3 select(rc);

 4.0 4 when(00) return('ok');

 5.0 6 when(04) return('warning');

 6.0 8 when(08) return('error');

 7.0 10 when(12) return('severe');

 8.0 12 otherwise return('???');

 9.0 14 end;

 10.0 15 end;

 Message Statement Message Description

 IBM1185I W 7 Source in RETURN statement has length greater than

 that in the corresponding RETURNS attribute.

IBM Software Group | Rational software

67

STMT option

 To help with this situation, under the STMT option the 4.4 compiler will
include line.file numbers in the message listing (along with the statement
number)

 This is RFE 35961 from Danske Bank

IBM Software Group | Rational software

68

STMT option

 So, with the 4.4 compiler, the listing would look like

 Compiler Source

 Line.File Stmt

 1.0 1 talk: proc(rc) returns(char(6));

 2.0 2 declare rc fixed bin;

 3.0 3 select(rc);

 4.0 4 when(00) return('ok');

 5.0 6 when(04) return('warning');

 6.0 8 when(08) return('error');

 7.0 10 when(12) return('severe');

 8.0 12 otherwise return('???');

 9.0 14 end;

 10.0 15 end;

 Message Statement Line.File Message Description

 IBM1185I W 7 5.0 Source in RETURN statement has length greater than
that

 in the corresponding RETURNS attribute.

IBM Software Group | Rational software

69

%INCLUDE in the listing

 When the macro preprocessor is used to compile this program

 test: proc;

 %include file1;

 end;

IBM Software Group | Rational software

70

%INCLUDE in the listing

 the beginning and end of the include are marked by comments in the listing

 Compiler Source

 Line.File

 1.0 test: proc;

 2.0

 3.0 /* BEGIN %INCLUDE FILE1 */

 1.1 dcl a1 fixed bin(15);

 2.1

 3.1 a1 = 17;

 3.0 /* END %INCLUDE FILE1 */

 4.0 end;

IBM Software Group | Rational software

71

%INCLUDE in the listing

 But if the macro preprocessor is not used, the 4.3 listing is not so nice

 Compiler Source

 Line.File

 1.0 test: proc;

 2.0

 3.0 %include file1;

 1.1 dcl a1 fixed bin(15);

 2.1

 3.1 a1 = 17;

 3.0

 4.0 end;

IBM Software Group | Rational software

72

%INCLUDE in the listing

 But the 4.4 listing is much better (thanks to RFE 31139 from Credit-Suisse)

 Compiler Source

 Line.File

 1.0 test: proc;

 2.0

 3.0 %include file1;

 1.1 /*** Begin %include DD:SYSLIB(FILE1) ***/

 1.1 dcl a1 fixed bin(15);

 2.1

 3.1 a1 = 17;

 3.1 /*** End %include DD:SYSLIB(FILE1) ***/

 3.0

 4.0 end;

®

IBM Software Group

© 2013 IBM Corporation

Migration considerations

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

74

ARCH level

 The compiler is itself compiled with ARCH(7)

 But it still supports generating code with the ARCH(6) option

 However, support for ARCH(6) is likely to end in the near future

IBM Software Group | Rational software

75

WIDECHAR and SQL

 WIDECHAR host variables will now always be assigned a codepage of 1200

 The CCSID0 and NOCCSID0 option will no longer have any effect on the
codepage assigned to WIDECHAR host variables

 This change will probably be backfit to the 4.2 and 4.3 compilers

IBM Software Group | Rational software

76

Compilation return code changes

 The message flagging declares that “should” be STATIC is a W-level
message

 This means some compiles may end with a return code of 4 rather than 0

IBM Software Group | Rational software

77

Listing changes

 If the STMT option is specified, the source listing will now include both the
logical statement number and the source line-and-file numbers

 If the final compiler pass (rather than a MACRO pass), processes any
%INCLUDE or %XINCLUDE statements, then the listing will now contain a
comment at the start and at the end of the included source

®

IBM Software Group

© 2013 IBM Corporation

UTF-8 source

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

79

UTF-8 source

 Almost all the RDz tools work with UTF-8

 This includes RTC – text files stored in RTC are stored as UTF-8

 But the Windows PL/I compiler works only with ASCII source

 So, when an RDz compile is done, the file is extracted from RTC and
converted to ASCII – and the same is done for all include files

 This slows down the compile process, and it can also create problems if the
wrong ASCII codepage is used

IBM Software Group | Rational software

80

UTF-8 source

 The Windows PL/I compiler in RDz now supports UTF-8 source under the
option ENCODING(UTF8) (with ENCODING(ASCII) as the default)

 Under ENCODING(UTF8), in MARGINS(n,m), the values n and m refer to
counts of UTF-8 characters, not bytes

 So, if a source line contained pure ASCII except for one ä, then under
MARGINS(2,72), bytes 2 through 73 would contain the compiler source

 Under ENCODING(UTF8), the NAMES option has to specify UTF-8 values for
the lowercase and uppercase extralingual characters allowed

®

IBM Software Group

© 2013 IBM Corporation

Im Ueberblick

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

82

performance

 Faster listing generation
 More DFP exploitation in conversions from PIC
 Inlining of FIXED to WIDECHAR
 Other improvements to UTF-8 and UTF-16

IBM Software Group | Rational software

83

middleware support

 Improved SQL support

More helpful messages from the SQL preprocessor
EMPTYDBRM option
Structures with arrays supported
Nicer commenting out of SQL statements

IBM Software Group | Rational software

84

middleware support

 Improved IMS support

Base 64 encoding and decoding functions
XML normalization and cleaning functions
LOCATES attributes and associated functions for sparse arrays

IBM Software Group | Rational software

85

usability

 WIDEPIC attribute
 INDEXR built-in function
 DEFAULT statement expanded
 ALLOCATE n bytes from an AREA
 CANCEL THREAD statement
 Nicer handling of INCLUDEs
 Compiler will recommend when to change dcl’s to STATIC

IBM Software Group | Rational software

86

© Copyright IBM Corporation 2008. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any
kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor
shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use
of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or
capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product
or feature availability in any way. IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business
Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

Learn more at:
 IBM Rational software
 IBM Rational Software Delivery Platform
 Process and portfolio management
 Change and release management
 Quality management

 Architecture management
 Rational trial downloads
 developerWorks Rational
 IBM Rational TV
 IBM Rational Business Partners

http://www.ibm.com/software/rational
http://www-306.ibm.com/software/info/developer/index.jsp
http://www-306.ibm.com/software/rational/offerings/lifecycle.html
http://www-306.ibm.com/software/rational/offerings/scm.html
http://www-306.ibm.com/software/rational/offerings/testing.html
http://www-306.ibm.com/software/rational/offerings/design.html
http://www.ibm.com/developerworks/rational/downloads/?S_TACT=105AGX23&S_CMP=RCD
http://www.ibm.com/developerworks/rational
http://www-306.ibm.com/software/info/television/index.jsp?cat=rational&media=video&item=en_us/rational/xml/M259765N40519Z80.xml
http://www-306.ibm.com/software/rational/partners/

	Enterprise PL/I 4.4 Highlights March 10, 2014
	Enterprise 4.4
	performance
	Listing generation
	More DFP exploitation in PICTURE conversions
	Example: Picture to Fixed Bin(63)
	Slide 7
	Slide 8
	Decimal-Floating-Point Zoned-Conversion Facility
	Inlining of FIXED to WIDECHAR
	Other UTF-8 and UTF-16 improvements
	Middleware improvements - SQL
	SQL preprocessor error handling
	Slide 14
	Slide 15
	SQL EMPTYDBRM option
	SQL structures with arrays
	Commented SQL statements
	Middleware improvements - IMS
	Introduction, part 1
	Base 64
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	XML normalization
	Slide 28
	XML cleaning
	Slide 30
	Introduction, part 2
	Slide 32
	Slide 33
	LOCATES attribute
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Increased Usability
	Language enhancements
	UTF-16 pictures
	Slide 48
	INDEXR built-in function
	DEFAULT statement
	Slide 51
	Slide 52
	Slide 53
	ALLOCATE built-in function
	CALL statement in macros
	Slide 56
	Slide 57
	CANCEL THREAD
	Miscellaneous user requirements
	Recommending STATIC
	Slide 61
	Slide 62
	NOINCLUDE option
	NULLSTRPTR option
	STMT option
	Slide 66
	Slide 67
	Slide 68
	%INCLUDE in the listing
	Slide 70
	Slide 71
	Slide 72
	Migration considerations
	ARCH level
	WIDECHAR and SQL
	Compilation return code changes
	Listing changes
	UTF-8 source
	Slide 79
	Slide 80
	Im Ueberblick
	Slide 82
	middleware support
	Slide 84
	usability
	Slide 86

