
DB2 11 *NEW* Availability Functions
and Features

John Iczkovits
IBM (iczkovit@us.ibm.com)

March 13, 2014
15276

Test link: www.SHARE.org

Insert
Custom
Session
QR if
Desired.

Agenda

� Availability for BIND/REBIND/DDL to break-in persistent
threads

� Availability enhancement in On-line schema changes
• Drop Column
• Online Alter Partition Limit Keys
• Allow PIT recovery before materialized deferred alters

� Defer Define Object Enhancement
� Work file Enhancement
� Save old compression dictionary to support IFICID 306
� Avoid rebuild index after LPL/GRECP recovery

BIND/REBIND/DDL and Persistent Threads user
story (prior to DB 2 11)
� A persistent thread that has package bind with RELEASE

(DEALLOCATE) accessing DB2

DBADBADBADBA

Time out

Package bind
with RELEASE
(DEALLOCATE)

DB2

BIND/REBIND, DDL or
REORG is waiting for x-
package lock

� As a DBA, I need to deploy a
new application which requires
BIND REPLACE or REBIND
PACKAGE

� As a DBA, I need to run DDL or
online REORG to materialize
pending ALTERS for tables/indexes
accessed by the persistent threads

Holding “S” package
lock or high level
intent lock

Benefit of using RELEASE DEALLOCATE
1. Avoid allocating / de-allocating package on every

commit
2. Avoid acquiring lock / unlock on every commit
3. May gain CPU saving up to 20%

3

Note : RELEASE(DEALLOCATE) Packages
Behavior Prior To DB2 11

� Used for frequently accessed performance sensitive applications
• CICS/IMS persistent threads
• High performance data base application threads in DB2

� Used to avoid allocating and de-allocating package on every commit

• S package locks will be kept until the thread is terminated

� Use to avoid acquiring and releasing high level locks

• Such as table space/table/partition intent locks on every commit

• Table space/table/partition intent locks are held until thread

terminated

� As the result, CPU saving can be up to 20% compared to

RELEASE(COMMIT)
4

� Requires more thread storage

• 90-95% thread storage has been moved above the bar in DB2 10

� BIND/REBIND can’t break in due to S package locks

• BIND/REBIND acquire X package locks to quiesce applications

� DDL or REORG utility can’t break in

• Due to incomparable with S package lock or

• Due to incomparable table/partition intent lock

� Any operation has contention to the package or intent lock requires the

persistent thread to be cancelled

NOTE: RELEASE(DEALLOCATE) Packages side
effects prior to DB2 11

5

DB2 V11 CM allows break-in Behavior

� A persistent thread that has package bind with RELEASE (DEALLOCATE)
accessing DB2

RELEASE(DALLOCATE)

DB2 V11 CM

Any lock
waiter

Commit process

IRLM

Continue to hold locks &
completed commit process

YES

NO
Release locks &
process commit

DBA
BIND
Waiting for
locks

� A new ZPARM parameter PKGREL_COMMIT with YES as the default 6

� Starts V11 CM, DB2 allows BIND/REBIND/DDL/REORG to break into

RELEASE(DEALLOCATE) packages accessed by persistent thread

� DB2 handles break-in during commit process of persistent thread that has

RELEASE(DEALLOCATE) package

• DB2 uses a IRLM fast path to query outstanding request

• If there is a waiter, temporary switch the package to RELEASE(COMMIT)

� Release S package lock

� Release table space/table/partition locks if table is not accessed by other

� De-allocate package

• When package resumes after commit, it is being accessed as
RELEASE(DEALLOCATE) again

� A new ZPARM parameter PKGREL_COMMIT with YES as the default

Allow Break-in to Persistent Thread behavior

7

1

Break into Idle thread

� Idle thread does not entering commit process, so it can not detect waiter

� With the following apars, bind and DDL will be much more likely to break into
a system with idle threads …

• PM95929 – V11 early code support

If this is not applied, break in for idle threads is not supported

• PM96001 – V11 DB2 toleration code

This must be applied to all members prior to applying PM96004

• PM96004 – V11 DB2 enabling code.

Once PM96001 applied to all members, this may be applied to any
member.

Without this applied to all members, break in may not be possible but will
still be attempted.

� Available in NFM and with V11 early code at the required maintenance level

� Package with RELEASE(DEALLOCATE) cannot allow break in If…
• Package bound with KEEPDYNAMIC=YES

• Package has open and held cursor

• Commit issued within a stored procedure

� Detecting waiter (release package lock and table space/table/index intent lock) is
during thecommit process of the persistent thread
• Frequent commit will help with the break in

� May help by allowing longer waiting period for break-in to happen
• Increase DDL timeout value (zparmDDLTOX / DATA DEF TIMEOUT)

• IRLM timeout value (zparmIRLMRWT / RESOURCE TIMEOUT)

• Caution – zparm DDLTOX and IRLMRWT are system parameter

� Still possible to get resource not available
• Commit is not done frequently

• Wait time expired

Things to think about

9

� Availability enhancement - Online schema changes
• Drop Column
• Online Alter Partition Limit Keys
• Allow PIT recovery before materialized deferred alters

DBA issues
Alter

Overview of Pending Alter

Catalog
Table

SYSPENDINGDDL

Applications

Continue to access
data in the old
schema

REORGTable Space
With

Defined
schema

Table Space
With

New defined
schema

ALTER TABLE …

�At ALTER time :
� authorization checks
� SYSPENDINGDDL entries
� Table space set in AREOR

REORG

materialized the new definition

Unload

Data

Inline
Image
copy

11

DB2 10 Online Schema Enhancements

Pending Change PBG UTS PBR UTS XML TS LOB TS

Alter Segment Size X X X

Alter Data Set Size
X X X X

Alter BP T/S Page Size X X X

Alter BP Index Page X X

Alter Member Cluster X X

Convert Classic 1- Table
Part. T/S to UTS PBR

X X

Convert single table Classic
Simple T/S

X

Convert single table Classic
Segmented T/S

X

12

DB2 11

DB2 10

13

ALTER TABLE xxx COLUMN

ALTER TABLE

ADD COLUMN

ALTER COLUMN

RENAME COLUMN

DROP COLUMN

Changes on column level of existing tables

sc1.table1 in DB1.TS1
Col_1 Col_2 Col_3

Data_1 Data_2 Data_3

Data_1 Data_2 Data_3

�Columns become redundant as applications change

�DBA, error on CREATE or ALTER TABLE

�Could the column be left?

• An abandoned column costs

� Real space in every row stored in the table
� Real space in every Image Copy of the table space
� Potential space taken up in the log records written for the table
� Additional CPU and elapsed time in all aspects of accessing and

maintaining the data
� DBA time “remembering” that the column is redundant
� Developer time analyzing usage of the column

14

Why DROP COLUMN?

sc1.table1 in DB1.TS1
Col_1 Col_2 Col_3 Col_4

Data_1 Data_2 Data_3 Data_4

Data_1 Data_2 Data_3 Data_4

�Before DB2 V11
• You have to DROP and recreate the Table to remove Col_3

15

How DROP COLUMN works

Schedule an
Outage Unload Data Drop Table Alter DDL Create Table Load Data

sc1.table1 in DB1.TS1

Col_1 Col_2 Col_3 Col_4

Data_1 Data_2 Data_3 Data_4

Data_1 Data_2 Data_3 Data_4

sc1.table1 in DB1.TS1

Col_1 Col_2 Col_4

Data_1 Data_2 Data_4

Data_1 Data_2 Data_4

Application Outage /
Scheduled

Maintenance

Improvements in DB2 11 – DROP COLUMN

ALTER TABLE Online REORG

Application Table

Col_1 Col_2 Col_3 Col_4

Data_1 Data_2 Data_3 Data_4

Data_1 Data_2 Data_3 Data_4

Application Table

Col_1 Col_2 Col_4

Data_1 Data_2 Data_4

Data_1 Data_2 Data_4

�DB2 11 NFM
ALTER TABLE sc1.table1 DROP COLUMN Col_3 RESTRICT

REORG TABLESPACE DB1.TS1 SHRLEVEL REFERENCE/CHANGE

Application Outage /
Scheduled

MaintenanceX

♦ Pending alter is recorded
♦ Object is in AREOR

16

�A pending alter
• Status is recorded in the SYSIBM.SYSPENDINGDDL catalog

table
• COLUMN_KEYWORD is „DROP“

�Advisory REORG Pending state(AREOR) is set for the table
space

�Materialize drop column at the next table space level
REORG
• Online Reorg with SHRLEVEL CHANGE|REFERENCE on the

entire tablespace materializes this pending alteration
• Invalidation of all packages which reference the table

DROP COLUMN Alter Statement

17

DROP COLUMN Syntax

�ALTER TABLE …DROP COLUMN …RESTRICT
• RESTRICT is a required keyword – RESTRICT semantics

means
� Drop a simple column without any dependent objects (e.g. views,

indexes, triggers, RI, unique/check constraints, row
permissions, column masks, etc.)

• Only one column per each ALTER statement

�After the drop is materialized, the column will be
completely removed from the catalog and data. It will be as
if the column never existed.

�Packages and dynamic cached statements that are
dependent on the table are invalidated

18

DROP COLUMN Restrictions

� DROP COLUMN only applies to UTS only

� Can not drop the column

• On MQT or table referenced by MQT (Materialized

Query Table)

• Tables with EDITPROC or VALIDPROC

• Create Global Temp Tables

• If the column is a Partitioned Key Column

• If the column is a Hash Key Column

• The last remaining column of the table

• DOCID Column

• ROWID Column with

“GENERATED BY DEFAULT”

or with a dependent LOB

• Security Label Column

19

20

New SQL Codes

SQLCODE -195 (note – last remaining column, not the last column at the end)

LAST COLUMN OF table-name CANNOT BE DROPPED

Explanation
An attempt was made to drop a column using an ALTER TABLE statement. The column
cannot be dropped from table table-name because at least one of the existing columns must
be preserved when altering a table.

SQLCODE -196

COLUMN table-name.column-name CANNOT BE DROPPED. REASON = reason-code.

Explanation
The column cannot be dropped for one of the following reasons:

** See Information Centre or Manuals for the full list

�If a pending ALTER needs to be cancelled before the
materializing REORG...

�NOTE: This removes ALL pending changes associated wi th the
table space or any objects within the table space

21

Removing a Pending DROP COLUMN

ALTER TABLE DROP
COLUMN

ALTER TABLESPACE
DROP PENDING

CHANGES

Time

� RECOVER
• Recover to PIT prior to materializing REORG is not allowed
• SYSCOPY record with

� ICTYPE=A (=alter)
� STYPE=C (=column)
� TTYPE=D (=drop)

• DSNU556I and RC8
• An inline copy will be taken by the REORG

� This single image copy is the only base for recovery

22

Impact on Utilities

ALTER issued

1 REORG
materialises changes

2

Change deferred RECOVER to
PiT start

3

X
Not Allowed

� UNLOAD
• UNLOAD will not be able to unload from an Image Copy which

contains data for columns which no longer exist in the catalog
because they were dropped.
� DSNU1227I and RC8

� RUNSTATs
• Should be run after materializing REORG
� Ensures statistics are current for BIND/REBIND or PREPARE

23

Impact on Other Utilities - continued

Online Alter Partition Limit Keys

Partition 1DSNUM 2

DSNUM 3

DSNUM 4

DSNUM 1

logial viewphysicalview

Partition 2

Partition 3

Partition 4

Alter Table ... Alter Partition 2 Ending At 350 Inclusive

REORP

REORP

DSNUM 2

DSNUM 3

DSNUM 4

DSNUM 1

50, 125, 150, 175, 200

225, 250, 275, 300

325, 350, 375, 400

425, 450, 475 500

50, 125, 150, 175, 200

225, 250, 275, 300,
325, 350

375, 400

425, 450, 475 500

keysstatus
DB2 Catalog

Partition 1

Partition 2

Partition 3

Partition 4

Any Reorg including physical part 3 and 4 must run to remove the REORP status

Part-

ition

Logical_

Part

Limitkey_I

nternal

2 1 200

3 2 300

4 3 400

1 4 500

350

SYSIBM.SYSTABLEPART

� Prior to V11 behavior

• Affected partitions are set to
REORP.

• These partitions could not be
accessed.

• Any REORG could be run to
redistribute the data and remove
the status. 25

physical view

Alter Table ... Alter Partition 2 Ending At 350 Inc lusive

AREOR

AREOR

Partition 1DSNUM 2

DSNUM 3

DSNUM 4

DSNUM 1

logial view

Partition 2

Partition 3

Partition 4

50, 125, 150, 175, 200

225, 250, 275, 300

325, 350, 375, 400

425, 450, 475 500

keys
statusDB2 Catalog

DSNUM 3

DSNUM 4

225, 250, 275, 300,
325, 350

375, 400

Partition 2

Partition 3

Online Reorg including physical part 3 and
4 must run to materialize the Alter

Part-

ition

Logical_

Part

Limitkey_I

nternal

3 2 300

SYSIBM.SYSTABLEPART

Option_

Value

Part-

ition

…350 3

SYSIBM.SYSPENDINGDDL

Part-

ition

Logical_

Part

Limitkey_I

nternal

3 2 350

SYSIBM.SYSTABLEPART

Materialization takes place in the
SWITCH phase

�SYSIBM.SYSPENDINGDDL is empty

DB2 V11 :

26

ALTER TABLE … ALTER PARTITION integer ENDING AT
…
� Prior to V11 : Affected partitions are set to REORP

• These partitions could not be accessed
• Any REORG could be run to redistribute the data and remove the status

� V11 NFM, improves object availability
• Alter limit key is treated as a pending alter
• The affected partitions are set to AREOR
• Online REORG must run to materialize the pending changes

� REORG SHRLEVEL NONE does not materialize these changes
• Supported table spaces types are:

� UTS – partitioned by range (PBR)
� Classic partitioned table spaces (table controlled partitioning)

�Objects, in which the partitioning is index controlled, must be first
converted to table controlled partitioning

• The new limit keys are materialized in SYSTABLEPART in the SWITCH
phase (new message DSNU2916I: PENDING ALTER LIMIT KEY value are
being materialized).

Summary – Alter Partition limit key

27

Allow PIT recovery before materialized deferred alters

DB2 10 PIT RECOVERy with Pending Alter

29

time

Pending
ALTER issued

REORG
Materialize changes

0

1

Change deferred

2

3
RECOVER to

PIT started

4
Earliest PIT

RECOVER point
(“Brick Wall”)

���

Enhanced PIT RECOVERy with Pending Alter in
V11 NFM

30

time

Pending
ALTER issued

REORG
Materialize changes

0

1

Change deferred

2

3 RECOVER to
PIT start

4

Earliest PIT
RECOVERy point

�
����

� Supports in NFM only

• A new record is inserted into SYSPENDINGDDL table
after RECOVER

• Table space is in restrictive status: REORG-pending

After PIT Recovery prior to REORG

• At end of RECOVER to PIT prior to the materializing REORG:
• REORG to finalize the PIT recovery process is MANDATORY

• REORG must be on ENTIRE table space
• SHELEVEL NONE is not supported
• SHRLEVEL CHANGE is overridden by SHRLEVEL REFERENCE

� Before the subsequent REORG to materialize the RECOVER
• No CREATE/ALTER/RENAME/DROP TABLE on the TS or AUX objects
• All other utility job fails: DSNU933I (REORG required)
• No other PITR during this period prior to subsequence REORG

� Only REORG/REPAIR DBD/REPORT RECOVERY or RECOVER to the
same PIT are permitted

� Where there were pending changes on LOB table space:
• First REORG the LOB table space
• Then REORG the base table space

31

PITR of pending ALTER – Things to think about

� Schema definition is not recoverable

• Only data is recovered to PIT

� Pending alter can be dropped any time before REORG
� When recover pending alter to PITR after materializing REORG :

• Recovering an index is not supported

• Entire table space must be recovered

• There must be NO other Pending changes when RECOVER starts

32

PIT RECOVERy with immediate ALTERs

33

time

Pending
ALTER issued

REORG
materialises changes

0

1

Change deferred

2

3

RECOVER to
PiT start

5
Earliest PiT

RECOVERy point

Immediate ALTERs

4

Pending ALTERs that has PIT Recovery support

� Table spaces type that has PITR capability after REORG materialized the pending
ALTER :

• LOB, XML and Partition by Range (PBR) Universal Table Space

� Pending Alter has PIT recover support :

• Table space attribute alters (also with immediate ALTERs in the window between

the materializing REORG and the PITR)

� RECOVER utility will issue message DSNU556I (recover cannot proceed), RC8
and terminate

Defer Define

CREATE TABLESPACE MyTS IN MyDB
NUMPARTS 454
………
DEFINE NO
………………….

� Prior to V11
• Many objects (Tables space) created with defer define option in the same

DBD
• Could encounter lock time out on DBD during the first insert/LOAD

� DBD lock is not released until the commit
� Long running UR holds the lock while other UR is waiting

� Solution in V11:
• Release DBD lock as soon as data set is created and catalog is updated

before UR commits
• PM80967 retro-fit this function back to V10

Defer Define Enhancement

Table
Space 1

Table
Space 2

My
Database

DBD
lock

36

Workfile
Enhancements

DGTT

workfileworkfile

WORKFILE DATABASE (WFDB)

� Currently, each DB2 subsystem, or member of a data sharing group,
has a single Workfile Database (WFDB).
• E.g. DSNDB07, DB2PWORK, DB3PWORK, etc.

� WFDB used by DB2 for two purposes:
• Declared Global Temporary Tables (DGTTs)

� Declared by external applications
� DB2 internal Static Scrollable Cursors
� DB2 internal Instead of Triggers
� Etc.

• Non-DGTT temporary data held in ‘workfiles’
� Created Global Temporary Tables (CGTTs)
� DB2 work data in support of:

�Sort
�Materialized temporary results
�Materialized views
�Etc.

DGTT

workfiles

38

WFDB Table Spaces (TS)

� WFDB can hold up to 500 table spaces (TS) for all types of temporary
data

� Each WFDB TS can hold multiple DGTTs and/or workfiles
• Number depends on size of the DGTTs and/or workfiles

� Data for a single workfile can reside in multiple WFDB table spaces
� A single DGTT cannot span multiple table spaces

• DGTT limited to assigned TS only
• For large DGTTs, secondary quantity

allows table space to grow
� For example UTS PBG

� If a DGTT is assigned to a TS also shared by
workfiles, the DGTT can run out of space

WFDB TS1

WFDB TS2

DGTT 1

DGTT 2

workfileworkfile

39

WORKFILE DATABASE (WFDB) in V 11

�DB2 11 improves application availability and performance
by enhancing Workfile Database management
• Instrumentation in DB2 Data Manager Statistics Trace record
• DSNZPARM parameters
• Warning messages at thresholds of agent or system use of

Workfile Database (WFDB) storage

�Using these features, DB2 system administrators can
monitor storage use and prevent application failures due
to insufficient storage

40

�Add additional instrumentation data in DB2 statistics trace
records (QIST) :
• Total configured DASD storage for a work file database

(QISTWSTG)
• Current storage used and Maximum total storage ever used

(include DGTTs): available in DB2 10
• Maximum total storage even used by non-DGTT

(QISTWFMXU)
• Current storage used by non-DGTTs (QISTWFCTO)

� New counter in V11

• Total preferred configured storage for DGTTs
(QISTDGTTSTG)

• Maximum total storage ever used by DGTTs since DB2 is up
(QISTDGTTMXU)

• Current storage used by DGTTs (QISTDGTTCTO)
� New counter in V11

Workfile Statistics trace records

41

� DB2 11 adds two new parameters to define space use thresholds
• Issue a warning message when the total amount of in-use work file

storage (including DGTT) has reached a storage shortage
threshold (e.g.10% of total configured storage)

• Once the warning message has been issued, DB2 will wait for 30
system check points before issuing another same warning
message

• WFSTGUSE_AGENT_THRESHOLD
� Agent level space usage alert threshold
� Online-updateable
� Percentage in range 0 to 100
� Default = 0

• WFSTGUSE_SYSTEM_THRESHOLD
� System level space usage alert threshold
� Online-updateable
� Percentage in range 0 to 100
� Default = 90

DB2 11: DSNZPARMS, Instrumentation

Agent

System

42

User story:

� The replication products (e.g. Q-Rep) is unable to retrieve compressed

rows when a new dictionary is built by LOAD/REORG.

Behavior prior to Sequoia :
� The old dictionary is saved in memory for the data sharing member
where LOAD or REORG operates.
� IFCID 306 will decompress logs with the dictionary in memory
� Dictionary in memory cannot be shared with different data sharing
members

43

Compression Dictionary Availability for IFCID 306

Old
Dictionary

pages

�LOAD/REORG will write the old
decompression dictionary to the log
when a new dictionary is created by
REORG or LOAD REPLACE – CDC
tables only.

�IFCID 306 will decompress logs with the proper
dictionary saved in logs.

� SYSCOPY records:
• The RBA/LRSN value of the old dictionary will be

recorded in SYSCOPY records.
• ICTYPE = “J” – a new dictionary was built by

REORG/LOAD
• START_RBA – point to the log that contains an old

decompression dictionary
SYSCOPY

Solution for Availability on IFCID 306

LOGs

44

45

Avoiding rebuild index after LPL/GRECP recovery

User story:
� If an index was marked in LPL/GRECP during an index split/merge, a
subsequent LPL/GRECP recovery could mark the index in rebuild pending

• An index will be marked in rebuild pending when processing the
first physical UNDO log (i.e. logs to rollback an incomplete index
split/merge) after applying any logical compensation redo logs
(i.e. LCLR)

• LCLR – logical compensation redo logs written when index
pages were not accessible (e.g. LPL/GRECP)

Index rebuild pending after LPL/GRECP
recovery

Prior to V11

� If an index was marked in LPL/GRECP during an index split/merge, a

subsequent LPL/GRECP recovery could mark the index in rebuild

pending

Time line
LPL/GRECP

Undo process
Undo log record
apply logically

for the insert

Insert

Index split

Physical does
not apply log
record for index

split

Rebuild
pending

LPL log phase 1

Place index in rebuild pending 46

Avoid rebuild index after LPL/GRECP recovery
Solution in V11:

�LPL/GRECP recovery will defer process logical
compensation redo logs after rollback an incomplete index
split/merge
• LCLRs will be processed by the second pass with a DSNI051I

message

Time line
LPL/GRECP

Undo process

Skip applying Logical

log record for the insert

Insert

Index split

Physical not applying

log record for index split

LPL log phase 1

apply log record

physically for index split

applying Logical log

record for the insert
LPL log scan
phase 2 47

48

Pseudo delete cleanup

DB2 11 Auto Pseudo Delete Cleanup

• Up to 39% DB2 CPU reduction per transaction in DB2 11 compared to DB2 10
• Up to 93% reduction in Pseudo deleted entries in DB2 11
• Consistent performance and less need of REORG in DB2 11

0

500000

1000000

1500000

2000000

2500000

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Day1 Day2 Day3 Day4 Day5

#
o

f
p

se
u

d
o

_
d

e
le

te
d

 e
n

tr
ie

s

C
P

U
 t

im
e

 (
se

c)

WAS Portal Workload 5 Days Performance

V10 Total CPU time

V11 Total CPU time

V10 sum of REORGPSEUDODELETES

V11 sum of REORGPSEUDODELETES

50

Pseudo -deleted Index Entries

• Pseudo-delete process
• When table rows are deleted, index RIDs are pseudo-

deleted, unless the delete process has locked the entire table

TAB 1 ID LName Resp

Row 1 1234 Smith Mgr

Row 2 2468 Doe DBA

Row 3 3579 Brown Cons

Row 4 4826 Jones DBA

Dupl IX KEY 2 RID 1 RID 2RID 2 RID 3

KEY 1Unique IX RID 1 KEY 2 RID 2 KEY 3 RID 3 KEY 4 RID 4

DELETE FROM TAB1
WHERE RESP = ‘DBA’;
- Row 2 and Row 4 deleted
- 4 RIDS pseudo-deleted PD

51

Pseudo -deleted Index Entries

• Effects of pseudo-deletions
• Index size grows with increasing number of pseudo-deleted

index entries
• More getpages and lock requests required
• Increased CPU cost and possibly longer elapsed times for

access via index search

• Applications may encounter deadlocks and timeouts during
INSERT/UPDATE/DELETE
• Collisions with committed pseudo-deleted index entries
• RID reuse by INSERT following DELETE => deadlock

52

Mainline logic that cleans up pseudo
deletes

• Prior to DB2 for z/OS V11 , DB2 removes pseudo deleted entries during
mainline operations

• Insert / delete operations remove pseudo deleted entries from index pages
• SQL with isolation level RR removes pseudo deleted entries.

• Pages that only contain pseudo-deleted index entries are called pseudo empty
pages

• DB2 attempts to clean up pseudo empty index pages as part of DELETE processing

• This is a partial solution, because
• Performed under application thread, so extra application cost if aggressive

cleanup
• Cannot clean up uncommitted pseudo deletes

• The transaction that created the pseudo deletes can not clean them up
• Has to rely on another transaction to clean up .

• REORG INDEX removes pseudo empty index pages and pseudo deleted
entries that were not cleaned up by the mainline processing

53

DB2 11: Pseudo -deleted Index Entry
Cleanup

• DB2 11 solution, provided in CM
• DB2 automatic cleanup of pseudo-deleted index entries in

index page
• DB2 automatic cleanup of pseudo empty index pages
• DB2 11 continues to cleanup pseudo deletes and pseudo

empty index pages as part of mainline processing

• Designed to have minimal or no disruption to concurrent
DB2 work

54

Child cleanup
thread IX4

DB2 11: Pseudo -deleted Index Cleanup

• Cleanup process
• Cleanup is done under system tasks, which run as enclave SRBs and are zIIP

eligible, the system doesn't have to be zIIP configured to use this new function.

NAME … NPAGES … REORGPSEUDODELETES

IX1 nn 100 xx 5000

IX2 nn 1000 xx 20000

IX3 nn 500 xx 100000

IX4 nn 2000 xx 75000

SYSIBM.SYSINDEXSPACESTATS

Parent
thread

Index

IX3

IX4

IX2

IX1

SELECT FROM RTS
ORDER BY # OF PDs

Child cleanup
thread IX3

55

DB2 11: Pseudo -deleted Index Cleanup

• Parent thread (one per DB2 member) loops through RTS to find candidate page
• Parent thread starts when DB2 starts and only comes down when DB2 is down or

abend is encountered, CORRELATION ID 014.IDAEMK00
• Checks RTS every several minutes.
• Find the indexes with large number of pseudo deletes , check both the percentage

of the pseudo deletes and the absolute number of pseudo deletes , the threshold
is not documented and could be changed

• Sort the list of indexes based on the number of pseudo deletes, the indexes with
most pseudo deletes get cleaned up first.

• The real cleanup is done by the child threads
• Child cleanup threads only clean up an index if it already is opened for INSERT,

UPDATE or DELETE on the DB2 member, this is to avoid creating GBP
dependency on indexes

• Child cleanup threads commits after cleaning up 64 index
pages.

56

DB2 11: Pseudo -deleted Index Cleanup
• Mainline threads such as SQL using index scan and insert ,

delete , update that modify the indexes will add the index
page with pseudo deletes into an in memory list.

• This list is maintained per index and used by the cleanup child
threads to get the candidate index pages to be cleaned up.

• This avoids scanning the entire index to look for index pages
with pseudo deletes and reduces the impact to system
performance.

• It is possible that multiple members are cleaning up the same
index at the same time. Each member has its own list of the
pages to be cleaned up.

• If a page on the list has been cleaned up by another member,
the cleanup thread will remove this page from the list and
move to the next page

• Index page plock is used to maintain page consistency across
different DB2 members.

57

DB2 11: Pseudo -deleted Index Cleanup

• Cost of cleaning up pseudo-deleted index entries
• Delete processing of pseudo-deleted entries may reduce

concurrency for index based access
• Log volumes will increase as each pseudo-deleted index

page or index entry cleaned up is logged
• Use commit LRSN checking to determine if an index page is

committed, no extra page/row lock acquired to check for
commitness.

• Need to hold index tree lotch when removing a pseudo empty
page from the index tree

• Release index tree lotch if a mainlain application is waiting to
acquire the same lotch.

58

DB2 11: Pseudo -deleted Index Cleanup

• Potential disruption can be minimized by managing
number of cleanup threads or specifying time when
indexes are subject to cleanup

• User can control the number of concurrent cleanup threads or
disable the function using zparm INDEX_CLEANUP_THREADS
(0-128)
• 0 disables index cleanup
• Value can vary between members of a data sharing group
• Default is 10
• Child clean up threads CORRELATION ID = 014.IDAEMK01,

02 ..
• Catalog table SYSIBM.SYSINDEXCLEANUP indicates when

which indexes are enabled or disabled for cleanup

59

SYSIBM.SYSINDEXCLEANUP

• Control of cleanup to avoid disruption
• Object level and timing of cleanup controlled through a new catalog table

• Recommended to use for exceptions only
• If table becomes too big, index cleanup performance may be impacted

• Use SYSIBM.SYSINDEXCLEANUP to specify
• Name of databases and indexes
• Cleanup enabled or disabled
• Day of week or day of month
• Start time and end time

• By default index cleanup is enabled for all indexes
• If INDEX_CLEANUP_THREADS > 0 and SYSIBM.SYSINDEXCLEANUP table is

empty
• Sample to disable cleanup for all indexes

INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE, ENABLE_DISABLE,
MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values (NULL,NULL,‘D', 'W', NULL, NULL, NULL , NULL);

• Delay of up to 10 minutes before DB2 acts upon newly inserted row

60

SYSIBM.SYSINDEXCLEANUP
• SYSIBM.SYSINDEXCLEANUP and levels of control

• Rows in SYSINDEXCLEANUP have effect on indexes as
follows:

• If multiple conflicting rows apply to same index with
overlapping time window
• Rows on index level override rows on database level
• Rows on database level override rows on system level
• Same level: index cleanup disabled during overlapping window

• SYSIBM.SYSINDEXCLEANUP rows apply to all data
sharing members

DBNAME INDEX-
SPACE

Level Effect

NULL NULL System All indexes in the system

Not NULL NULL Database All indexes in this database

Not NULL Not NULL Index This single index

NULL Not NULL invalid N/A

61

Using SYSIBM.SYSINDEXCLEANUP

• Examples
• All index spaces in DB_1234 are enabled for cleanup on

Sundays from 4:30 until noon, except
• Index space IX_9876 is always disabled for cleanup. REORG

INDEX requires specific window determined by DBA

• All index spaces in DB_XYZ disabled for cleanup on
Saturdays, and
• Index space IX_ABC is disabled for cleanup on the 30th of each

month from 1:30 to 7:30

DBNAME INDEX-
SPACE

ENABLE_
DISABLE

MONTH
_WEEK

MONTH DAY START
_TIME

END
_TIME

DB_1234 NULL E W NULL 7 043000 120000

DB_1234 IX_9876 D W NULL NULL NULL NULL

DB_XYZ NULL D W NULL 6 NULL NULL

DB_XYZ IX_ABC D M NULL 30 013000 073000

SYSIBM.SYSINDEXCLEANUP

62

Pseudo -deleted Index Cleanup

• Instrumentation
• IFCID 377 written once per index page being cleaned up

• Includes DBID, PSID, partition number, page number
• Indicates whether pseudo empty page or pseudo-deleted entries
• Includes number of pseudo-deleted entries cleaned up
• Not included in any trace class

• Must turn on IFCID 377 to monitor
• Report with OMPE RECORD TRACE

• DB2 11 Benefits
• Reduce size of some indexes

• Fewer getpages
• Improve SQL performance

• Lower CPU, less elapsed time
• Reduce need to run REORG INDEX

John Iczkovits

iczkovit@us.ibm.com

Title : DB2 11 *NEW* Availability Functions and Fea tures

