
© 2009 IBM Corporation

Introduction to Assembler Programming
Cheat Sheet

Richard Cebula – HLASM



2   © 2009 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

© 2013 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

■ LOAD / STORE Instructions

■ MOVE Instructions

■ Logical Instructions

■ Defining Data and Literals

■ Branch Instructions

■ Arithmetic Instructions

■ BRANCH ON COUNT (Looping)

Introduction to Assembler Programming



3   © 2009 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

© 2013 IBM Corporation

LOAD / STORE Instructions

■ LOAD data from storage to a register
L   1,NUMBER    LOAD REGISTER 1 WITH NUMBER (32-BITS)
LH  1,NUMBER    LOAD REGISTER 1 WITH NUMBER (16-BITS)
LG  1,NUMBER    LOAD REGISTER 1 WITH NUMBER (64-BITS)
LR  1,2         LOAD REGISTER 1 WITH REGISTER 2 (32-BITS)
LGR 1,2         LOAD REGISTER 1 WITH REGISTER 2 (64-BITS)
IC  NUM1,NUM2   INSERT CHARACTER (1 BYTE) 

■ STORE data from a register to storage
ST  1,NUMBER    STORE REGISTER 1 TO NUMBER (32-BITS)
STH 1,NUMBER    STORE REGISTER 1 TO NUMBER (16-BITS)
STG 1,NUMBER    STORE REGISTER 1 TO NUMBER (64-BITS)
STC 1,NUMBER    STORE REGISTER 1 TO NUMBER (1 BYTE)

Introduction to Assembler ProgrammingIntroduction to Assembler Programming



4   © 2009 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

© 2013 IBM Corporation

MOVE Instructions

■ MOVE Data from storage to storage
– Move SOURCE to TARGET – implied length of move is length of TARGET

MVC TARGET,SOURCE    

– Move SOURCE to TARGET – length of move is LENGTH
MVC TARGET(LENGTH),SOURCE

– Move SOURCE to TARGET (with displacements) – length of move is LENGTH
MVC TARGDISP(LENGTH,TARG),DISP(SRC)

Introduction to Assembler ProgrammingIntroduction to Assembler Programming



5   © 2009 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

© 2013 IBM Corporation

Logical Instructions – Result always ends up in 1st operand

■ AND
N   1,NUMBER    AND REGISTER 1 WITH NUMBER (32-BITS)
NG  1,NUMBER    AND REGISTER 1 WITH NUMBER (64-BITS)
NR  1,2         AND REGISTER 1 WITH REGISTER 2 (32-BITS)
NGR 1,2         AND REGISTER 1 WITH REGISTER 2 (64-BITS)
NC  NUM1,NUM2   AND NUM1 WITH NUM2 (UP TO 256-BYTES)    

■ OR
O   1,NUMBER    OR REGISTER 1 WITH NUMBER (32-BITS)
OG  1,NUMBER    OR REGISTER 1 WITH NUMBER (64-BITS)
OR  1,2         OR REGISTER 1 WITH REGISTER 2 (32-BITS)
OGR 1,2         OR REGISTER 1 WITH REGISTER 2 (64-BITS)
OC  NUM1,NUM2   OR NUM1 WITH NUM2 (UP TO 256-BYTES)

■ EXCLUSIVE OR
X   1,NUMBER    XOR REGISTER 1 WITH NUMBER (32-BITS)
XG  1,NUMBER    XOR REGISTER 1 WITH NUMBER (64-BITS)
XR  1,2         XOR REGISTER 1 WITH REGISTER 2 (32-BITS)
XGR 1,2         XOR REGISTER 1 WITH REGISTER 2 (64-BITS)
XC  NUM1,NUM2   XOR NUM1 WITH NUM2 (UP TO 256-BYTES)

Introduction to Assembler ProgrammingIntroduction to Assembler Programming



6   © 2009 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

© 2013 IBM Corporation

Defining Data

■ Define MYNUMBER as a fullword (32-bits) with initial value 0 – note that the label 
MYNUMBER must start in column 1

MYNUMBER DC    F'0'

■ Define MYNAME as a series of bytes with length 20 and initial value “hello” (space padded) 
MYNAME   DC    CL20'hello'

■ Define MYNUMBER as 4 halfwords (16-bits each) with initial value 12 (each)
MYNUMBER DC    4H'12'

■ Define MYTOTAL as some uninitialised storage reserving a fullword (32-bits) for it
MYNUMBER DS    F   

■ Use a literal in an instruction to load value 4097 into register 1
L        1,=F'4097' 

Introduction to Assembler ProgrammingIntroduction to Assembler Programming



7   © 2009 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

© 2013 IBM Corporation

BRANCH Instructions

L   1,NUM1                         LOAD VALUE NUM1 TO REG 1
L   2,NUM2                         LOAD VALUE NUM2 TO REG 2
CR  1,2                            COMPARE THE REGISTERS
BL  ONE_LESS           BRANCH IF REGISTER 1 < REGISTER 2
BG  ONE_MORE           BRANCH IF REGISTER 1 > REGISTER 2
BE  ONE_EQUAL_TWO      BRANCH IF REGISTER 1 = REGISTER 2

Introduction to Assembler ProgrammingIntroduction to Assembler Programming



8   © 2009 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

© 2013 IBM Corporation

Arithmetic Instructions – Result normally ends up in 1st operand

■ ADD and SUBTRACT (Condition code is updated)
A   1,NUM   ADD REGISTER 1 WITH NUM (32-BITS, SIGNED)
AR  1,2     AND REGISTER 1 WITH REGISTER 2 (32-BITS, SIGNED)
SL  1,NUM   REGISTER_1 = REGISTER_1 - NUM (32-BITS, LOGICAL)
SLR 1,2     REGISTER_1 = REGISTER_1 – REGISTER_2

■ MULTIPLY (CC = unchanged)
MR  2,7     MULTIPLY 32-bits in REGISTER 3 by REGISTER 7
Result is stored as:

top 32-bits are in register 2
bottom 32-bits are in register 3

■ DIVIDE (CC = unchanged)
DR  2,7    DIVIDE 64-BITS IN REGISTERS 2 AND 3 BY REGISTER 7
Top 32-bits are in register 2, bottom 32-bits in register 3
Result is stored as:

Quotient is stored in register 3
Remainder is stored in register 2

Introduction to Assembler ProgrammingIntroduction to Assembler Programming



9   © 2009 IBM Corporation

Introduction to Assembler Programming – Cheat Sheet

© 2013 IBM Corporation

BRANCH ON COUNT

Introduction to Assembler ProgrammingIntroduction to Assembler Programming

* SAY “HELLO WORLD” 10 TIMES
          L       1,LOOP_MAX    LOAD LOOP_MAX(VALUE 10) INTO REG 1
LOOP      DS      0H            START OF THE LOOP
          WTO     'HELLO WORLD' SAY HELLO WORLD
          BCT     1,LOOP        BRANCH TO LOOP IF REG 1 > 0


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

