
IBM Software

© 2014 IBM Corporation

REXX Language Coding Techniques
Session 15243

Tracy Dean, IBM
tld1@us.ibm.com

March 2014

IBM Software

© 2014 IBM Corporation2 REXX Language Coding Techniques

Important REXX Compiler Disclaimer

� The information contained in this presentation is p rovided for
informational purposes only.

� While efforts were made to verify the completeness and accuracy
of the information contained in this presentation, it is provided “as
is”, without warranty of any kind, express or impli ed.

� In addition, this information is based on IBM’s cur rent product
plans and strategy, which are subject to change by IBM without
notice.

� IBM shall not be responsible for any damages arisin g out of the use
of, or otherwise related to, this presentation or a ny other
documentation.

� Nothing contained in this presentation is intended to, or shall have
the effect of:
– Creating any warranty or representation from IBM (or its affiliates or its

or their suppliers and/or licensors); or
– Altering the terms and conditions of the applicable license agreement

governing the use of IBM software.

IBM Software

© 2014 IBM Corporation3 REXX Language Coding Techniques

Agenda

� REXX compiler

� External environments and interfaces

� Key functions and instructions – power tools

� REXX data stack vs. compound variables

� EXECIO and stream I/O

� Troubleshooting

� Programming style and techniques

IBM Software

© 2014 IBM Corporation4 REXX Language Coding Techniques

The REXX Products

� IBM Compiler for REXX on zSeries Release 4

– z/VM, z/OS: product number 5695-013

� IBM Library for REXX on zSeries Release 4

– z/VM, z/OS: product number 5695-014

� VSE part of operating system

� IBM Alternate Library for REXX on zSeries Release 4

– Included in z/OS base operating system (V1.9 and later)

– Free download for z/VM (and z/OS)

http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html

IBM Software

© 2014 IBM Corporation5 REXX Language Coding Techniques

REXX Compiler Libraries

� A REXX library is required to execute compiled programs

– Compiled REXX is not an LE language

� Two REXX library choices:

– (Runtime) Library – a priced IBM product

– Alternate library – a free IBM download

• Uses the native system’s REXX interpreter

� At execution, compiled REXX will use whichever librar y is
available:

– (Runtime) Library

– Alternate Library

IBM Software

© 2014 IBM Corporation6 REXX Language Coding Techniques

Why Use a REXX Compiler?

� Program performance

– Known value propagation

– Assign constants at compile time

– Common sub-expression elimination

– stem.i processing

� Source code protection

– Source code not in deliverables

� Improved productivity and quality

– Syntax checks all code statements

– Source and cross reference listings

� Compiler control directives

– %include, %page, %copyright, %stub, %sysdate, %systime, %testhalt

IBM Software

© 2014 IBM Corporation

REXX External Environments

IBM Software

© 2014 IBM Corporation8 REXX Language Coding Techniques

External Environments

� ADDRESS instruction is used to define the external
environment to receive host commands

– For example, to set TSO/E as the environment to receive
commands

ADDRESS TSO

� Several host command environments available in
z/OS

� Other host command environments available in z/VM

IBM Software

© 2014 IBM Corporation9 REXX Language Coding Techniques

Host Command Environments in z/OS

– TSO

• Used to run TSO/E commands like ALLOCATE and TRANSMIT
• Only available to REXX running in a TSO/E address space

• The default environment in a TSO/E address space

• TSO/E REXX Reference (SA22-7790)
• Example:

Address TSO “ALLOC FI(INDD) DA(‘USERID.SOURCE’) SHR ”

– MVS

• Use to run a subset of TSO/E commands like EXECIO and MAKEBUF
• The default environment in a non-TSO/E address space
• TSO/E REXX Reference (SA22-7790)
• Example:

Address MVS “EXECIO * DISKR MYINDD (FINIS STEM MYVA R”

IBM Software

© 2014 IBM Corporation10 REXX Language Coding Techniques

Host Command Environments in z/OS

– ISPEXEC

• Used to invoke ISPF services like DISPLAY and SELECT
• Only available to REXX running in ISPF

• ISPF Services Guide (SC19-3626, SC34-4819)

• Example:

Address ISPEXEC “DISPLAY PANEL(APANEL)”

– ISREDIT

• Used to invoke ISPF edit macro commands like FIND and DELETE
• Only available to REXX running in an ISPF edit session
• ISPF Edit and Edit Macros (SC19-3621, SC28-1312)
• Example:

Address ISREDIT “DELETE .ZFIRST .ZLAST”

IBM Software

© 2014 IBM Corporation11 REXX Language Coding Techniques

Host Command Environments in z/OS …

– CONSOLE

– LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS,
ATTCHPGM

– SYSCALL

– SDSF

– DSNREXX

IBM Software

© 2014 IBM Corporation12 REXX Language Coding Techniques

Host Command Environments in z/OS …

– CONSOLE
• Used to invoke MVS system and subsystem commands
• Only available to REXX running in a TSO/E address space
• Requires an extended MCS console session
• Requires CONSOLE command authority
• TSO/E REXX Reference (SA22-7790)
• Example:

“CONSOLE ACTIVATE”

Address CONSOLE “D A” /* Display system activity */

“CONSOLE DEACTIVATE”

Result:
IEE114I 04.50.01 2011.173 ACTIVITY 602

JOBS M/S TS USERS SYSAS INITS ACTIVE /MAX VTAM OAS

00002 00014 00002 00032 00005 0000 1/00020 00010

IBM Software

© 2014 IBM Corporation13 REXX Language Coding Techniques

Host Command Environments in z/OS …

� LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM
– Host command environments for linking to and attaching unauthorized programs
– Available to REXX running in any address space
– LINK & ATTACH – can pass one character string to program
– LINKMVS & ATTCHMVS – pass multiple parameters; half-word length field

precedes each parameter value
– LINKPGM & ATTCHPGM – pass multiple parameters; no half-word length field
– TSO/E REXX Reference (SA22-7790)

– Example:
“FREE FI(SYSOUT SORTIN SORTOUT SYSIN)”
“ALLOC FI(SYSOUT) DA(*)”
“ALLOC FI(SORTIN) DA('VANDYKE.SORTIN') REUSE”
“ALLOC FI(SORTOUT) DA('VANDYKE.SORTOUT') REUSE”
“ALLOC FI(SYSIN) DA('VANDYKE.SORT.STMTS') SHR RE USE”
sortparm = “EQUALS”
Address LINKMVS “SORT sortparm”

IBM Software

© 2014 IBM Corporation14 REXX Language Coding Techniques

Host Command Environments in z/OS …

– SYSCALL
• Used to invoke interfaces to z/OS UNIX callable services
• The default environment for REXX run from the z/OS UNIX file system
• Use syscalls(‘ON’) function to establish the SYSCALL host environment for a

REXX run from TSO/E or MVS batch
• Using REXX and z/OS UNIX System Services (SA22-7806)
• Example:

call syscalls ‘ON’
address syscall ‘readdir / root.’
do i=1 to root.0

say root.i
End

Result:
…
bin
dev
etc
…

IBM Software

© 2014 IBM Corporation15 REXX Language Coding Techniques

Host Command Environments in z/OS …

– SDSF
• Used to invoke interfaces to SDSF panels and panel actions
• Use isfcalls(‘ON’) function to establish the SDSF host environment
• Use the ISFEXEC host command to access an SDSF panel
• Panel fields returned in stem variables
• Use the ISFACT host command to take an action or modify a job value
• SDSF Operation and Customization (SA22-7670)

• Example:
rc=isfcalls(“ON”)
Address SDSF “ISFEXEC ST”
do ix = 1 to JNAME.0

if pos(“PVANDYK”,JNAME.ix) = 1 then do
say “Cancelling job ID” JOBID.ix “for PVANDYK”

Address SDSF “ISFACT ST TOKEN(‘”TOKEN.ix”’) PARM(NP P)”
end

end
rc=isfcalls(“OFF”)
exit

IBM Software

© 2014 IBM Corporation16 REXX Language Coding Techniques

Host Command Environments in z/OS …

– DSNREXX
• Provides access to DB2 application programming interfaces from REXX
• Any SQL command can be executed from REXX

– Only dynamic SQL supported from REXX
• Use RXSUBCOM to make DSNREXX host environment available
• Must CONNECT to required DB2 subsystem
• Can call SQL Stored Procedures
• DB2 Application Programming and SQL Guide (SC19-4051)

• Example:
RXSUBCOM(‘ADD’,’DSNREXX’,’DSNREXX’)
SubSys = ‘DB2PRD’
Address DSNREXX “CONNECT” SubSys
Owner = ‘PRODTBL’
RecordKey = ‘ROW2DEL’
SQL_stmt = “DELETE * FROM” owner”.MYTABLE” ,

"WHERE TBLKEY = ‘”RecordKey”’”
Address DSNREXX “EXECSQL EXECUTE IMMEDIATE” SQL_stmt
Address DSNREXX “DISCONNECT”

IBM Software

© 2014 IBM Corporation17 REXX Language Coding Techniques

Other External Environments in z/OS

� IPCS
– Used to invoke IPCS subcommands from REXX

– Only available when run from in an IPCS session

– MVS IPCS Commands (SA22-7594)

� CPICOMM, LU62, and APPCMVS
– Supports the writing of APPC/MVS transaction programs

(TPs) in REXX

– Programs can communicate using SAA common
programming interface (CPI) communications calls and
APPC/MVS calls

– TSO/E REXX Reference (SA22-7790)

IBM Software

© 2014 IBM Corporation18 REXX Language Coding Techniques

Other “Environments” and Interfaces in z/OS

� System REXX
– A function package that allows REXX EXECs to be executed outside of

conventional TSO/E and Batch environments
– Can be invoked using assembler macro interface AXREXX or through

an operator command
– Easy way for Web Based Servers to run commands/functions and get

back pertinent details
– EXEC runs in problem state, key 8, in an APF authorized address space

under the MASTER subsystem
– Two modes of execution

• TSO=NO runs in MVS host environment
address space shared with up to 64 other EXECs
limited data set support

• TSO=YES runs isolated in a single address space
can safely allocate data sets
does not support all TSO functionality

– MVS Programming Authorized Assembler Services Guide (SA22-7605)

IBM Software

© 2014 IBM Corporation19 REXX Language Coding Techniques

Other “Environments” and Interfaces . . .

� RACF Interfaces

– IRRXUTIL
• REXX interface to R_admin callable service (IRRSEQ00) extract

request
• Stores output from extract request in a set of stem variables

myrc=IRRXUTIL(“EXTRACT”,”FACILITY”,”BPX.DAEMON”,”RA CF”,””,”FALSE”)
say “Profile name: “||RACF.profile
do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say “ “||RACF.BASE.ACLID.a||”:”||RACF.BASE.ACLACS.a
end

– RACVAR function
• Provides information from the ACEE about the running user
• Arguments: USERID, GROUPID, SECLABEL, ACEESTAT

if racvar(‘ACEESTAT’) <> ‘NO ACEE’ then
say “You are connected to group “ racvar(‘GROUPID’)” .”

– Security Server RACF Macros and Interfaces (SA22-7682)

IBM Software

© 2014 IBM Corporation20 REXX Language Coding Techniques

Other “Environments” and Interfaces . . .

� Other ISPF Interfaces

– Panel REXX
• Allows REXX to be run in a panel procedure
• *REXX statement used to invoke it
• REXX can be coded directly in the procedure or taken from a

SYSEXEC or SYSPROC DD member
• REXX can modify the values of ISPF variables

– File Tailoring Skeleton REXX
• Allows REXX to be run in a skeleton
•)REXX control statement used to invoke it
• REXX can be coded directly in the procedure or taken from a

SYSEXEC or SYSPROC DD member
• REXX can modify the values of ISPF variables

– ISPF Dialog Developer’s Guide and Reference (SC19-3619,
SC34-4821)

IBM Software

© 2014 IBM Corporation21 REXX Language Coding Techniques

Host Command Environments in z/VM

� CMS (default)

– Commands treated as if entered on the CMS
command line

– Same search order as CMS command line

� COMMAND

– Basic CMS CMSCALL command resolution

• To call an EXEC, prefix the command with the word EXEC
• To send a command to CP, use the prefix CP

� CPICOMM, CPIRR, OPENVM

IBM Software

© 2014 IBM Corporation

Key Instructions

IBM Software

© 2014 IBM Corporation23 REXX Language Coding Techniques

Key Instructions – ARG, PULL, and PARSE

� PARSE
– Allows the use of a template to split a source string into multiple components
– Syntax:

� ARG
– Retrieves the argument strings provided to a program or internal routine

• Assigns them to variables
– Short form for PARSE UPPER ARG

� PULL
– Reads a string from the head of the external data queue
– Short form for PARSE UPPER PULL

� Good practice to use full commands vs short forms

IBM Software

© 2014 IBM Corporation24 REXX Language Coding Techniques

PARSE Templates

� Simple template
– Divides the source string into blank-delimited words and assigns them to the

variables named in the template

string = ‘ Parse the blank-delimited string’
parse var string var1 var2 var3 var4 .

var1 -> ‘ Parse’
var2 -> ‘the’
var3 -> ‘blank-delimited’
var4 -> ‘string’

– A period is a placeholder in a template
• A “dummy” variable used to collect unwanted data

string = “Last one gets what's left”
parse var string var1 . var2

var1 -> “Last”
var2 -> “gets what’s left”

• Often used at the end of PARSE statement to take “the rest of the data”

IBM Software

© 2014 IBM Corporation25 REXX Language Coding Techniques

PARSE Templates . . .

� String pattern template
– A literal or variable string pattern indicating where the source string

should be split

string = ‘ Parse the blank-delimited string’

Literal :

parse var string var1 ‘-’ var2 .

Variable :

dlm = ‘-’
parse var string var1 (dlm) var2 .

Result (the same in both cases):

var1 -> ‘ Parse the blank’
var2 -> ‘delimited’

IBM Software

© 2014 IBM Corporation26 REXX Language Coding Techniques

PARSE Templates . . .

� Positional pattern template
– Use numeric values to identify the character positions at which to split data in the

source string

– An absolute positional pattern is a number or a number preceded by an equal sign
----+----1----+----2----+----3----+----4----+

string = ‘Van Dyke Peter Austral ia ’
parse var string 1 surname 20 chrname 35 country 46 .

surname -> ‘Van Dyke ’
chrname -> ‘Peter ’
country -> ‘Australia ’

– A relative positional pattern is a number preceded by a plus or minus sign
• Plus or minus indicates movement right or left, respectively, from the last match

----+----1----+----2----+----3----+----4----+
string = ‘Van Dyke Peter Austral ia ’
parse var string 1 surname +19 chrname +15 country +1 1 .

surname -> ‘Van Dyke ’
chrname -> ‘Peter ’
country -> ‘Australia ’

IBM Software

© 2014 IBM Corporation27 REXX Language Coding Techniques

INTERPRET Instruction

� Expression specified is evaluated

– Resulting value is processed (interpreted)

– Adds an extra level of interpretation

conf = ‘SHARE’
interpret conf "= ‘Anaheim'; say 'Location is' SHAR E"

Result:
Location is Anaheim

– Provides powerful test and debugging capabilities

parse external debug_cmd /* Receive command from use r */

interpret debug_cmd /* Run the user’s command */

– Beware of security concerns

IBM Software

© 2014 IBM Corporation28 REXX Language Coding Techniques

STORAGE Function

� Syntax:

� Returns <length> bytes of data from the specified address in
storage
– Address is a character string containing the hexadecimal

representation of the storage address
– Data is a character string that overwrites the data at address

data = storage(00FDE309,3) /* Get 3 bytes at addr F DE309 */

� A TSO/E external function but can be used in any MV S address
space (TSO/E and non-TSO/E)

� Not all storage is available to access or update
– Virtual storage addresses may be fetch protected, update protected,

or may not be valid
– Null string returned

IBM Software

© 2014 IBM Corporation29 REXX Language Coding Techniques

STORAGE Function . . .

� To process addresses obtained with the STORAGE func tion

– C2D – character to decimal
• Returns the decimal value of the binary representation of a string

C2D('81'X) -> 129

– D2X – decimal to hex
• Returns a string, in character format, that represents a decimal number

converted to hexadecimal

D2X(249) -> 'F9'

– Example – get the Address Space Vector Table address (CVTASVT)
from the Communications Vector Table (CVT)

cvt = STORAGE(10,4) /* Get CVT address */
cvtasvt = STORAGE(D2X(C2D(cvt)+556),4) /* Get CVTAS VT */

IBM Software

© 2014 IBM Corporation30 REXX Language Coding Techniques

STORAGE Function . . .

� To simplify the job of retrieving pointers and othe r data
– PTR() - returns a 4 byte pointer as a decimal value
– STG() - returns an EBCDIC string

• First argument is the decimal value of the address where the data is located
• Second argument is the length of the data to be returned

– Example – get the MVS release and FMID from the CVT prefix area

NUMERIC DIGITS 20 /* Set precision to 20 digits */
cvt = PTR(16) /* Get CVT address */
cvtfixa = cvt-256 /* CVT prefix address */
cvtprod = STG(cvtfixa+216,16) /* MVS product level d ata */
Say 'MVS release and FMID:' cvtprod
PTR: RETURN C2D(STORAGE(D2X(arg(1)),4)) /* Retu rn pointer */
STG: RETURN STORAGE(D2X(Arg(1)),Arg(2)) /* Retu rn storage */

– Result:

MVS release and FMID: SP7.1.0 HBB7750

IBM Software

© 2014 IBM Corporation

Data Stack and Compound Variables

IBM Software

© 2014 IBM Corporation32 REXX Language Coding Techniques

What is a Data Stack?

� An expandable data structure used to temporarily ho ld data items
(elements) until needed

� When an element is needed it is always removed from the top of the stack

� A new element can be added either to the top (LIFO) or the bottom (FIFO) of
the stack
– FIFO stack is often called a queue

LIFO

Stack

FIFO

Stack

(Queue)

IBM Software

© 2014 IBM Corporation33 REXX Language Coding Techniques

Manipulating the Data Stack

� 3 basic REXX instructions
– PUSH - put one element on the top of the stack

elem1 = ‘new top element’
PUSH elem

– QUEUE - put one element on the bottom of the stack

elem2 = ‘new bottom element’
QUEUE elem

– PARSE PULL - remove an element from the (top) of the stack

PARSE PULL elem3

– Result:

elem3 ���� ‘new top element’

� 1 REXX function
– QUEUED() - returns the number of elements in the stack

num_elems = QUEUED()

IBM Software

© 2014 IBM Corporation34 REXX Language Coding Techniques

Why Use the Data Stack?

� To store a large number of data items of virtually unlimited size for later use

� Pass a large or unknown number of arguments between EXECs or routines

� Specify commands to be run when the EXEC ends
– Elements left on the data stack when an EXEC ends are treated as commands
Queue “TSOLIB RESET QUIET”

Queue “ALLOC FI(ISPLLIB) DA(‘ISP.SISPLOAD’ 'SYS1.DFQ LLIB‘) SHR REUSE”

Queue “TSOLIB ACTIVATE FILE(ISPLLIB) QUIET”

Queue “ISPF”

� Pass responses to an interactive command that runs when the EXEC ends
dest = SYSVAR('SYSNODE')"."USERID()

message = “Lunch time”

Queue “TRANSMIT”

Queue dest “LINE”

Queue message

Queue “ ”

IBM Software

© 2014 IBM Corporation35 REXX Language Coding Techniques

Using Buffers in the Data Stack

� An EXEC can create a buffer in a data stack using t he MAKEBUF
command

� All elements added after a MAKEBUF command are plac ed in the
new buffer
– MAKEBUF basically changes where the QUEUE instruction inserts

new elements
• Remember QUEUE inserts at the “bottom” of the stack (or buffer)

IBM Software

© 2014 IBM Corporation36 REXX Language Coding Techniques

Using Buffers in the Data Stack . . .

� An EXEC can use MAKEBUF to create multiple buffers in the data stack
– MAKEBUF returns in the RC variable the number identifying the newly created buffer

� DROPBUF command is used to remove a buffer from the data stack
– Allows an EXEC to easily remove temporary storage assigned to the data stack
– A buffer number can be specified with DROPBUF to identify the buffer to remove

• Default is to remove the most recently created buffer
– DROPBUF 0 results in an empty data stack (use with caution)

� The QBUF command is used to find out how many buffe rs have been created

� The QELEM command is used to find out the number of elements in the most
recently created buffer

� Notes
– When an element is removed from an empty buffer, the buffer disappears.
– To remove a buffer

• Issue DROPBUF, or
• Remove an element (via PARSE PULL) when the buffer is already empty

– The next request to remove an element will move to the next buffer (if there is one)

IBM Software

© 2014 IBM Corporation37 REXX Language Coding Techniques

Protecting Elements in the Data Stack

� An EXEC can use the stack, but protect itself from inadvertently removing
someone else’s data stack elements
– Create a new private data stack using the NEWSTACK command

� All elements added after a NEWSTACK command are pla ced in the new data
stack
– Elements on the original data stack cannot be accessed by an EXEC or any

called routines until the new stack is removed (not just emptied)

– When there are no more elements in the new data stack, information is taken
from the terminal (not the original data stack)

IBM Software

© 2014 IBM Corporation38 REXX Language Coding Techniques

Protecting Elements in the Data Stack . . .

� DELSTACK - removes a data stack

– Removes the most recently created data stack

• Including all remaining elements in the stack

– CAUTION

• If no stack previously created with NEWSTACK, then DELSTACK
removes all the elements from the original stack

� QSTACK - returns the number of data stacks

– Including the original stack

– Puts the value in the variable RC

� NOTE: The QUEUED() function returns the number of
elements in the current data stack

IBM Software

© 2014 IBM Corporation39 REXX Language Coding Techniques

What is a Compound Variable?

� A series of symbols (simple variable or constant) s eparated by periods

� Made up of 2 parts – stem and tail
– stem is the first symbol and the first period

• Symbol must be a name
• Sometimes called the stem variable

– tail follows the stem and comprises one or more symbols separated by periods
• Symbol is often a number, but not required to be

� Variables take on previously assigned values
– If no value assigned, takes on the uppercase value of the variable name

day.1 stem: DAY.
tail: 1

array.i stem: ARRAY.
tail: I

name = ‘Smith’
phone = 12345

employee.name.phone stem: EMPLOYEE.
tail: Smith.12345

IBM Software

© 2014 IBM Corporation40 REXX Language Coding Techniques

Compound Variable Values

� Initializing a stem to some value automatically ini tializes every compound
variable with the same stem to the same value

say month.15 MONTH.15
month. = ‘Unknown’
month.6 = ‘June’
month.3 = ‘March’

say month.15 Unknown
val = 3
say month.val March

� Easy way to reset the values of compound variables

month. = ‘’
say month.6 ‘’

� DROP instruction can be used to restore compound va riables to their
uninitialized state

drop month.
say month.6 MONTH.6

IBM Software

© 2014 IBM Corporation41 REXX Language Coding Techniques

Processing Compound Variables

� Compound variables provide the ability to process o ne-dimensional arrays
– Use a numeric value for the tail
– Good practice to store the number of array entries in the compound variable with a

tail of 0 (zero)
– Often processed in a DO loop using the loop control variable as the tail

invitee.0 = 10
do i = 1 to invitee.0

SAY ‘Enter the name for invitee’ i
PARSE PULL invitee.i

end

� Stems can be used with the EXECIO command to read d ata from and write
data to a data set

� Stems can also be used with the OUTTRAP external fu nction to capture
output from commands

IBM Software

© 2014 IBM Corporation42 REXX Language Coding Techniques

Processing Compound Variables . . .

� The tail for a compound variable can be used as an index to related data

� Given the following input data:

Symbol Atomic# Name Weight
H 1 Hydrogen 1.00794
HE 2 Helium 4.002602
LI 3 Lithium 6.941
. . .

� The unique symbol value can be used as the tail of compound variables
that hold the rest of the symbol’s values

"EXECIO * DISKR INDD (STEM rec. FINIS"
Do i = 2 To rec.0

Parse Var rec.i symbol atomic.symbol name.symbol weight .symbol
End i
Say "Which atomic symbol do you want to learn about ?"
Parse Pull symbol
Say "The name of" symbol "is" name.symbol"."
Say "The atomic number for" symbol "is" atomic.symb ol"."
Say "The atomic weight of" symbol "is" weight.symbo l"."

IBM Software

© 2014 IBM Corporation43 REXX Language Coding Techniques

Data Stack vs Compound Variables

� Data Stack

– Advantages

• Can be used to pass data to external routines
• Able to specify commands to be run when the EXEC ends
• Can provide response(s) to an interactive command that runs

when the EXEC ends

– Disadvantages

• Program logic required for stack management
• Processing needs 2 steps

– Take data from input source and store in stack
– Read from stack into variables

• Stack attributes and commands are OS dependent

IBM Software

© 2014 IBM Corporation44 REXX Language Coding Techniques

Data Stack vs Compound Variables . . .

� Compound Variables
– Advantages

• Basically variables - REXX will manage them like other
variables

• Only one step required to assign a value
• Provide opportunities for clever and imaginative processing

– Disadvantages
• Can not be used to pass data between external routines

� Conclusion
– Try to use compound variables whenever appropriate

• They are simpler

IBM Software

© 2014 IBM Corporation

I/O and Troubleshooting

IBM Software

© 2014 IBM Corporation46 REXX Language Coding Techniques

EXECIO Command

� A TSO/E REXX command that provides record-based pro cessing

– Used to read and write records from/to a sequential data set or
partitioned data set member

– Requires a DDNAME to be specified
• Use ALLOC command to allocate data set or member to a DD

� Records can be read into or written from compound v ariables or
the data stack

� Can also be used to:

– Open a data set without reading or writing any records

– Empty a data set

– Copy records from one data set to another

– Add records to the end of a sequential data set

– Update data in a data set, one record at a time

IBM Software

© 2014 IBM Corporation47 REXX Language Coding Techniques

REXX Stream I/O

� Function package shipped with z/OS

– Also shipped with the IBM Library for Rexx on zSeries

� Allows REXX EXECs to use stream I/O functions to proces s
sequential data sets and partitioned data set members

� Why use stream I/O?

– Extends and enhances I/O capabilities of REXX for
TSO/E

– Shields the complexity of z/OS data set I/O
• (To some degree)

– A familiar I/O concept

– Provides better portability of REXX between OS
platforms

IBM Software

© 2014 IBM Corporation48 REXX Language Coding Techniques

Troubleshooting – Condition Trapping

� CALL ON and SIGNAL ON instructions can be
used to trap exception conditions

� Syntax:

� Condition types:
– ERROR - error upon return (positive return code)

– FAILURE - failure upon return (negative return code)

– HALT - an external attempt was made to interrupt and end execution

– NOVALUE - attempt was made to use an uninitialized variable

– SYNTAX - language processing error found during execution

IBM Software

© 2014 IBM Corporation49 REXX Language Coding Techniques

Troubleshooting – Condition Trapping. . .

� Good practice to enable condition handling to proce ss unexpected errors

� Use REXX provided functions and variables to identi fy and report on
exceptions
– CONDITION function – returns information on the current condition

• Name and description of the current condition
• Indication of whether the condition was trapped by SIGNAL or CALL
• Status of the current trapped condition

– RC variable – return code
• Contains the command return code for ERROR and FAILURE
• Contains the syntax error number for SYNTAX

– SIGL variable – line number of the clause that caused the condition

– ERRORTEXT function – returns REXX error message for a SYNTAX condition
say ERRORTEXT(rc)

– SOURCELINE function – returns a line of source from the REXX EXEC
say SOURCELINE(sigl)

IBM Software

© 2014 IBM Corporation50 REXX Language Coding Techniques

Troubleshooting – Trace Facility

� Provides powerful debugging capabilities

– Displays the results of expression evaluations

– Displays the variable values

– Follows the execution path

– Interactively pauses execution and runs REXX statements

� Activated using the TRACE instruction and function

� Syntax:

IBM Software

© 2014 IBM Corporation51 REXX Language Coding Techniques

Troubleshooting – Trace Facility . . .

� Code example:
A = 1
B = 2
C = 3
D = 4
Trace I
If (A > B) | (C < 2 * D) Then

Say 'At least one expression was true.'
Else

Say 'Neither expression was true.'

� Result:
6 *-* If (A > B) | (C < 2 * D)

>V> "1"
>V> "2"
>O> "0"
>V> "3"
>L> "2"
>V> "4"
>O> "8"
>O> "1"
>O> "1"
- Then

7 *-* Say 'At least one expression was true.‘
>L> "At least one expression was true."

At least one expression was true.

IBM Software

© 2014 IBM Corporation52 REXX Language Coding Techniques

Troubleshooting – Trace Facility . . .

� Interactive trace provides additional debugging power

– Pause execution at specified points

– Insert instructions

– Re-execute the previous instruction

– Continue to the next traced instruction

– Change or terminate interactive tracing

� Starting interactive trace

– ? Option with the TRACE instruction

– EXECUTIL TS command
• Code in your REXX EXEC
• Issue from the command line to debug next REXX EXEC run

– Cause an attention interrupt and enter TS

IBM Software

© 2014 IBM Corporation53 REXX Language Coding Techniques

Programming Style and Techniques

� Be consistent with your style
– Helps others read and maintain your code
– Having style rules will make the job of coding easier

� Indentation
– Improves readability
– Helps identify unbalanced or incomplete structures (DO-END pairs)

� Comments
– Provide them!
– Choices:

• In blocks
• To the right of the code

� Capitalization
– Can improve readability
– Suggestion - use all lowercase except

• Labels
• Calls to internal subroutines

IBM Software

© 2014 IBM Corporation54 REXX Language Coding Techniques

Programming Style and Techniques . . .

� Variable names
– Try to use meaningful names – helps understanding and readability
– Avoid 1 character names – easy to type but difficult to manage and understand

� Subroutines
– Try to avoid the over use of subroutines or functions
– Subroutines are useful, but have performance impact

– If it’s only called once, does it need to be a subroutine?

� Comparisons
– REXX supports exact (e.g. “==“) and inexact (e.g. “=“) operators

– Only use exact operators when appropriate
if a == "SAVE" then …

– Above comparison will fail if a is "SAVE "

– Avoid using the NOT (“¬”) character
• Portability problem when transferring code to an ASCII platform
• Use “<>”, “/=“, or “\=“

IBM Software

© 2014 IBM Corporation55 REXX Language Coding Techniques

Programming Style and Techniques . . .

� Semicolons

– Can be used to combine multiple statements in one line
• DON’T – detracts from readability

– Languages like C and PL/I require a “;” to terminate a line

– Can also be done in REXX
• DON’T – doubles internal logic statement count for interpreted REXX

� Conditions

– For complex statements, REXX evaluates all Boolean expressions,
even if first fails:
if 1 = 2 & 3 = 4 & 5 = 5 then say 'Impossible‘

• Divide-by-zero can still occur if a=0
if a \== 0 & b/a > 1 then ...

• Can be avoided by nesting IF statements:
if a \== 0 then

if b/a > 1 then ...

IBM Software

© 2014 IBM Corporation56 REXX Language Coding Techniques

Programming Style and Techniques . . .

� Literals

– Important to use literals where appropriate

• For example: external commands

– Lazy programming can lead to unfortunate results

• For uninitialized variables: value=name
control errors cancel

• This usually works
– Breaks if any of the 3 words is a variable with value already assigned

• Also a performance cost for unnecessary variable lookups
(20%+ more CPU)

• Instead enclose literals in quotation marks
“control errors cancel”

IBM Software

© 2014 IBM Corporation57 REXX Language Coding Techniques

Open Object REXX

� Open Object REXX is available via open source communit y

– Runs on Linux on on System z

– Many other platforms

� www.oorexx.org

� 90%+ compatible with other System z REXX programs

� Informal testing with SLES on memory and CPU constra ined
system

– Compare PERL and OOREXX – OOREXX is much faster!

– Memory footprint of OOREXX is similar to PERL with
several modules loaded

IBM Software

© 2014 IBM Corporation58 REXX Language Coding Techniques

Additional Information and Contacts

� REXX Compiler User’s Guide and Reference
http://publibfi.boulder.ibm.com/epubs/pdf/h1981605.p df

� IBM REXX Website
http://www.ibm.com/software/awdtools/rexx

� IBM Contacts

– Virgil Hein, vhein@us.ibm.com

• Compiler and Library for REXX on zSeries

– George Kochanowski, jjkoch@us.ibm.com

• REXX Compiler

� Hands-on Lab Exercises

– SHARE Session 14579, Introduction to REXX
Workshop

IBM Software

© 2014 IBM Corporation59 REXX Language Coding Techniques

Thank You

Merci
Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

German

Italian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Tamil

Thai

Korean
Hindi

