z/OS Workload Management (WLM) Update for z/OS V2.1 and V1.13
Horst Sinram
IBM Germany Research & Development
z/OS Workload Management
10 Mar 2014
Session 15214
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

AIX* DS8000* Language Environment* SystemPac* z10
BladeCenter* FICON* Parallel Sysplex* System Storage z10 BC
DataPower* HiperSockets POWER7* System z z10 EC
DB2* Hyperwarp PrintWay System z9 z/OS*
DFSMS IBM* ProductPac* System z10 zEnterprise
DFSMSdss IBM eServer RACF* System z10 Business Class zSeries*
DFSMShsm IBM logo* REXX WebSphere* z9*
DFSMStmm ibm.com RMF
DFSPORT Infiband* ServerPac*
DS6000* InfoPrint

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

InfiniBand is a registered trademark of the InfiniBand Trade Association (IBTA).
Intel is a trademark of the Intel Corporation in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
All other products may be trademarks or registered trademarks of their respective companies.
The Open Group is a registered trademark of The Open Group in the US and other countries.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved.
Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your market.
This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country counsel for compliance with local laws.
Agenda

- z/Enterprise EC12 GA2 Support
- New Classification Qualifiers and Groups
- I/O Priority Groups
- Other z/OS V2.1 Enhancements
- Manage CICS Regions Using Goals Of: “BOTH”
- Response Time Distribution for Velocity Goals
- Service Stream Enhancements
IBM zEnterprise EC12 GA2 Support Overview

- zEnterprise BC12 and EC12 (zEC12) GA2 (firmware driver 15) offer new functions for hard and soft capping:
 - Smoother capping with WLM managed softcapping
 - When IRD weight management is active the group capacity of an LPAR may be derived by the initial weight
 - New “Absolute Capping Limit” LPAR control

<table>
<thead>
<tr>
<th>Function</th>
<th>z/OS release V2.1</th>
<th>V1.13</th>
<th>V1.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoother capping</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group capacity to use initial weight</td>
<td>+</td>
<td>OA41125</td>
<td>OA41125</td>
</tr>
<tr>
<td>Absolute capping</td>
<td>+</td>
<td>OA41125</td>
<td>OA41125</td>
</tr>
</tbody>
</table>
Capping algorithms today

Pattern capping
- Must be used when $\text{MSU@LPARweight} < \text{definedLimit}$
- Periods with LPAR capped at weight and running uncapped
- Can result in “pulsing” potentially impacting online workloads

Phantom weight capping
- Is used when $\text{MSU@LPARweight} \geq \text{definedLimit}$
- Internally PR/SM uses an additional weight to limit LPAR consumption below weight
 - Phantom weight must be non-negative pre-zEC12 GA2
- Results in smooth capping
zEC12 GA2 Negative Phantom Weight

- zEC12 GA2 allows using a negative phantom weight for soft capping

- Therefore, when $MSU@LPARweight < definedLimit$
 WLM can now use a negative phantom weight instead of pattern capping
 - I.e., phantom weight capping becomes the only mechanism

- z/OS V2.1 will exploit this feature
 - Eliminates pulsing effects caused by cap patterns
zEC12 GA2 can use initial weight for group capping

- It is possible to combine IRD weight management with capacity groups
 - IRD changes the –current- weight in order to shift capacity within an LPAR cluster

- However, IRD weight management gets suspended when capping is in effect
 - Because entitlement of an LPAR within a capacity group is currently derived from the current weight the LPAR might get stuck at a low weight
 - Consequently, a low group capacity entitlement can result

- On zEC12 GA2 the initial LPAR weight will be used for group capacity
 - Only if all systems in a capacity group are
 - z/OS V2.1, or
 - z/OS V1.12, V1.13 with OA41125 applied.
 - Results in more predictive and better controllable group capacity entitlement

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval
zEC12 GA2 Absolute Capping Limit

- zEC12 GA2 allows specification of “absolute capping limit”
 - Primarily intended for non z/OS images
 - Expressed in terms of 1/100ths of a processor
 - Can be specified independently from the LPAR weight
 - But recommended to specify absolute cap above weight
 - Therefore, it is insensitive to LPAR (de)activations and less sensitive to capacity changes
 - Can be specified per processor type in image profile and partition controls panel
Unlike initial capping absolute capping may be used *concurrently* with defined capacity and/or group capacity management.

- The respective minimum becomes effective.
- WLM/SRM recognizes new cap, e.g. for routing decisions.
- RCTIMGWU = MIN(absolute cap, defined capacity, group cap) when all capping types are in effect
 - RMF provides RCTIMGWU in SMF70WLA
 - In addition, SMF70HW_Cap_Limit value in hundredths of CPUs
zEC12 GA2 Absolute Capping Limit - Examples

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval
Agenda

- z/Enterprise EC12 GA2 Support
- New Classification Qualifiers and Groups
- 3000 Application Environments
- I/O Priority Groups
- Other z/OS V2.1 Enhancements
- Manage CICS Regions Using Goals Of: “BOTH”
- Response Time Distribution for Velocity Goals
- Service Stream Enhancements
New Classification Qualifiers and Groups: Overview

• With z/OS V2R1, WLM/SRM introduces
 • New classification group type, and
 • Some new and modified work qualifier types for use in classification rules in the WLM service definition

• These can be used to improve readability of the WLM service definition for work when there is no naming convention that allows masking or wild-carding

• New and modified qualifier types allow better classification of new DB2 and DDF workload

• More notepad information about a service definition allowed
New Classification Qualifiers and Groups

- z/OS V2.1 extends classification groups for all non-numeric work qualifier types.
- For long qualifier types, a start position for group members, and nesting is allowed.
- **New Groups:**

 - Accounting Information Group
 - Client Accounting Information Group
 - Client IP Address Group
 - Client Transaction Name Group
 - Client Userid Group
 - Client Workstation Name Group
 - Collection Name Group
 - Correlation Information Group
 - Procedure Name Group
 - Process Name Group
 - Scheduling Environment Group
 - Subsystem Collection Group
 - Subsystem Parameter Group
 - Sysplex Name Group
New Classification Qualifiers and Groups

• Subsystems (DB2) require longer and additional work qualifiers:
 • Work qualifier type “Package Name”: 128 characters (instead of 8)
 • Work qualifier type “Procedure Name”: 128 characters (instead of 18)

• New work qualifier types:
 • Client Accounting Information (max. 512 characters)
 • Client IP Address (max. 39 characters)
 • Client Transaction Name (max. 255 characters)
 • Client User ID (max. 128 characters)
 • Client Workstation Name (max. 255 characters)

• The maximum number of “Notepad” lines has been increased from 500 to 1000 lines

• Note: New and modified work qualifier types are only supported by the new 64-bit classify IWM4CLSY (planned to be used by DB2 V11).
WLM ISPF application enhancements

• Option 5 Classification Groups: Groups can be defined for all non-numeric work qualifier types.
• Exceptions: Priority (numeric), zEnterprise Service Class
WLM ISPF application samples

Use to group work when there is no naming convention that allows for masking or wild-carding.

Use a start position for each group member to indicate how far to index into the character string for a match. The start position may differ across group members.
Use of New Groups and Qualifiers in the WLM Administrative Application

New work qualifier types:
- Client Accounting Information
- Client IP Address
- Client Transaction Name
- Client User ID
- Client Workstation Name

Groups of long work qualifier types can be nested.

Increased maximum length for work qualifier types: Package Name and Procedure Name.
Classification via new groups: Examples

- '040375,SHIPPING' → FAST.
- '030275,D71ITDEP' → FAST.
- '020175,CONTROL' → SLOW, because the department is not contained in the FASTDEPT group.
- '020177,SALES' → MEDIUM, because the account number does not match group SLOWACCT, and therefore no sub-rules are checked.
How WLM matches qualifier values

- When matching on qualifier values shorter than 8 characters, WLM treats long and short qualifier types differently:
 - **Short qualifier types**: Value padded with blanks to be 8 characters, blanks used for matching
 - **Long qualifier types with start position**: Value padded with blanks to be 8 characters, blanks used for matching
 - **Long qualifier types without start position**: Value matched according to the number of characters specified

- Example:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Start</th>
<th>Service</th>
<th>Class</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>DIRS</td>
<td>0</td>
<td>MEDIUM</td>
<td>SLOW</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>DIRS*</td>
<td>8</td>
<td>FAST</td>
<td>FAST</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>0201</td>
<td></td>
<td>FAST</td>
<td>SLOW</td>
<td></td>
</tr>
<tr>
<td>UI</td>
<td>HUGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 1st rule matches accounting information with the 8 characters 'DIRS____' starting in the 8th position
- 2nd rule matches accounting information with the 4 characters 'DIRS' starting in the 8th position
- 3rd rule matches accounting information starting with the 4 characters '0201'
- 4th rule matches user ID equal to the 8 characters 'HUGO____'
Coexistence and migration considerations for new classification qualifiers and groups

- Apply toleration APAR OA36842 to z/OS V1.10 through V1.13 to handle service definitions with functionality level 29 introduced by use of z/OS V2R1 functionality
 - Service definitions with functionality level 29 cannot be extracted, displayed, modified, installed or activated in a back-level WLM Administrative Application
 - But they can be activated in a mixed z/OS V1.10 through V2.1 Sysplex using
 - The WLM Administrative Application on the z/OS V2.1 system
 - Console command “v wlm,policy=<pol>” on the z/OS V2.1 system
 - WLM service IWMPACT on the z/OS V2.1 system
 - WLM then runs with this service definition on all systems
 - However, the new groups and new and modified qualifier types are not honored for workload classification on pre-z/OS V2.1 systems
Coexistence and migration considerations for new classification qualifiers and groups

- If you plan to use more than 500 lines of notepad information, re-allocate the WLM couple data set on the z/OS V2R1 system before installing the service definition
 - By using z/OS V2.1 to allocate the WLM couple data set, the space allocated is sufficient for the increased notepad size
 - Else you may receive error message “WLM couple data set is too small to hold the service definition. (IWMAM047)"

<table>
<thead>
<tr>
<th>Function</th>
<th>z/OS release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V2.1</td>
</tr>
<tr>
<td></td>
<td>V1.13 – V1.10</td>
</tr>
<tr>
<td>Groups of SPM rules & new classification qualifiers</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Toleration OA36842</td>
</tr>
</tbody>
</table>
Agenda

• z/Enterprise EC12 GA2 Support
• New Classification Qualifiers and Groups
• I/O Priority Groups
• Other z/OS V2.1 Enhancements
• Manage CICS Regions Using Goals Of: “BOTH”
• Response Time Distribution for Velocity Goals
• Service Stream Enhancements
I/O Priority Groups

• **Rationale**
 - I/O Priority is used to control DASD I/O queuing.
 - WLM dynamically adjusts the I/O priority based on goal attainment and whether the device can contribute to achieve the goal.
 - Every 10 minutes, WLM determines which service classes use which devices and builds so called device sets.
 - Typically, different workloads use distinct device sets and WLM changes I/O priorities between service classes using the same device set.
 - If a workload starts to use a device outside from its previously used device sets and experiences significant I/O delay, it may take up to 10 minutes until WLM refreshes the device sets and adapts the I/O priority of the corresponding service class.

• **Solution:**
 - Important service classes which are sensitive to I/O delay can now be assigned to priority group HIGH which ensures that they get always higher I/O priorities than the service classes assigned to group NORMAL.

![Diagram of I/O Priority Groups](image)
I/O Priority Groups Specification in WLM ISPF Application

Specify the I/O Priority Group in the WLM ISPF Administrative Application:

Create a Service Class

Command ===>

Service Class Name (Required)
Description .
Workload Name (name or ?)
Base Resource Group (name or ?)
Cpu Critical . NO_ (YES or NO)
I/O Priority Group NORMAL (NORMAL or HIGH)
I/O Priority Groups – Validation

Group HIGH is only honored by WLM if “I/O priority management” and “I/O priority groups” are enabled:

<table>
<thead>
<tr>
<th>Service Coefficient/Service Definition Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O priority management</td>
</tr>
<tr>
<td>Enable I/O priority groups</td>
</tr>
<tr>
<td>Dynamic alias tuning management</td>
</tr>
</tbody>
</table>

The “Validate definition” option can be used to check whether service classes assigned to I/O priority group HIGH although I/O priority management is not enabled.

<table>
<thead>
<tr>
<th>Service Definition Validation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMAM918W Service class(es) assigned</td>
</tr>
<tr>
<td>to I/O priority group HIGH but</td>
</tr>
<tr>
<td>I/O priority management or I/O priority</td>
</tr>
<tr>
<td>groups are not enabled. The I/O priority</td>
</tr>
<tr>
<td>group will not be honored.</td>
</tr>
</tbody>
</table>
I/O Priority Groups – Specification in z/OSMF

z/OSMF Workload Management task provides new option, too.
I/O Priority Groups – Callable Services

- The WLM services **IWMDEXTR** or **IWMDINST** allows extracting or installing a service definition in XML format.
- The layout of the XML service definition (DTD) is extended as follows. The entire DTD is described in Appendix C of the WLM Services Guide.

```xml
<!ELEMENT ServiceClass ( Name, Description?, CreationDate, CreationUser, ModificationDate, ModificationUser, CPUCritical?, IOPriorityGroup?, ResourceGroupName?, Goal ) >

<!ELEMENT ServiceClassOverride ( ServiceClassName, CPUCritical?, IOPriorityGroup?, ResourceGroupName?, Goal ) >

<!ELEMENT IOPriorityGroup ( #PCDATA ) >

<!ELEMENT ServiceOptions ( IOPriorityManagement, DynamicAliasManagement?, IOPriorityGroupsEnabled? ) >

<!ELEMENT IOPriorityGroupsEnabled ( #PCDATA ) >
```
I/O Priority Groups – Callable services

• The RASD parameter list of SYSEVENT REQASD and REQFASD is extended to return information about the I/O priority group of the address space. Additional flags are added to field RASDFLAGS1.

• IWMRQRY is the interface reporting products should use to obtain address space related general execution delays. The answer area mapped by IWMWRQAA is enhanced according to REQFASD. An additional flag is added to field RQAEFLG1.

• IWMPQRY is the interface to return a representation of the active policy. The answer area mapped by IWMSVPOL is extended. An additional flag is added to SVPOLCFL of the service class definition section SVPOLC.
I/O Priority Groups – SMF record type 72.3

RMF's record types 72 subtype 3 and SMF 79 subtypes 1 and 2 are extended to indicate assignment to the I/O priority group.

<table>
<thead>
<tr>
<th>Offsets</th>
<th>Name</th>
<th>Len</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>R723MSCF</td>
<td>1</td>
<td>Binary</td>
<td>Service/Report class flags. Bit 0-6: Meaning not changed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 7: Indicator for I/O priority group HIGH</td>
</tr>
</tbody>
</table>
I/O Priority Groups – SMF record type 79

RMF's record types 72 subtype 3 and SMF 79 subtypes 1 and 2 are extended to indicate assignment to the I/O priority group.

| SMF record 79 subtype 1 (Address space state data) – ASD data section |
|--------------------------|------------------|----------------|-------------|
| Offsets | Name | Len | Format | Description |
| 236 | EC | R791FLG3 | 1 | Binary | Additional flags.
Bit 0: Service class assigned by classification or
RESET SRVCLASS belongs to I/O priority group HIGH in the active policy
Bit 1: I/O priority group HIGH was assigned either to the address space or to transaction service classes served by the space
Bit 2-7: Reserved |

| SMF record 79 subtype 2 (address space resource data) – ARD data section |
|--------------------------|------------------|----------------|-------------|
| Offsets | Name | Len | Format | Description |
| 224 | E0 | R792FLG3 | 1 | binary | Additional flags.
Bit 0: Service class assigned by classification or
RESET SRVCLASS belongs to I/O priority group HIGH in the active policy
Bit 1: I/O priority group HIGH was assigned either to the address space or to transaction service classes served by the space
Bit 2-7: Reserved |
I/O Priority Groups – RMF: Workload Activity Report

- Postprocessor Workload Activity (WLMGL) report is extended.
- If service class is assigned to I/O priority group HIGH, an indication is displayed in the SERVICE CLASS(ES) and SERVICE CLASS PERIODS sections.

```
I/O PRIORITY GROUP=HIGH

REPORT BY: POLICY=WLMPOL   WORKLOAD=ONLINE   SERVICE CLASS=ONLTOP   RESOURCE GROUP=*NONE

CRITICAL =CPU+STORAGE
DESCRIPTION =Batch Workload

---TRANSACTIONS-- TRANS-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE--- SERVICE TIME ---APPL %--- --PROMOTED-- ----STORAGE----
AVG     0.74  ACTUAL                 0  SSCHRT   0.0  IOC     0   CPU    6.429  CP      0.66  BLK    0.000  AVG     7663.01
MPL     0.74  EXECUTION              0  RESP     0.0  CPU    287332   SRB    0.000  AAPCP   0.00  ENQ    0.000  TOTAL   5698.61
ENDED   0 QUEUED                    0  CONN     0.0  MSO    537297   RCT    0.002  IIPCP   0.00  CRM    0.000  SHARED  0.00
```
Use of I/O Priority Ranges

The table below shows the use of I/O Priority Ranges with I/O Priority Management set to YES.

<table>
<thead>
<tr>
<th>Priority</th>
<th>I/O Priority Groups NOT enabled</th>
<th>I/O Priority Group enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>SYSTEM</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>FE</td>
<td>SYSSTC</td>
<td>SYSSTC</td>
</tr>
<tr>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Discretionary</td>
<td>Discretionary</td>
</tr>
</tbody>
</table>

Dynamically managed

Priority Group = HIGH

Priority Group = NORMAL
I/O Priority Groups require some migration and coexistence considerations

- Toleration **APAR OA37824** required on z/OS V1R12 and z/OS V1R13 systems because dynamic I/O priority management is a sysplex-wide function.
- Turn on I/O priorities only if all systems sharing disk systems run on z/OS V2R1 or on z/OS V1R12 / R13 with OA37824.
- When the Enable I/O Priority Groups option is turned on in one sysplex, turn it also on in other sysplexes even if they do not exploit I/O priority group HIGH.
 - Ensures that all systems sharing a disk system work with an identical range of I/O priorities.
- Assigning service classes to I/O priority group HIGH is only possible with the z/OS V2R1 WLM ISPF Application or z/OSMF V2R1.
- If a service class is assigned to I/O priority group HIGH, the functionality level of the service definition is increased to **LEVEL029**.
 - A service definition at functionality level 29 cannot be extracted, displayed, modified, installed, or activated by an WLM Application prior z/OS V2R1.
- RMF support is only available with z/OS V2R1.
Agenda

• z/Enterprise EC12 GA2 Support
• New Classification Qualifiers and Groups
• I/O Priority Groups
• Other z/OS V2.1 Enhancements
 • Improved granularity for resource groups
 • 3000 Application Environments
• Manage CICS Regions Using Goals Of: “BOTH”
• Response Time Distribution for Velocity Goals
• Service Stream Enhancements
Improved granularity for resource group capping

- To enforce resource group capping dispatchable units are marked non-dispatchable or dispatchable (awake slice) for some time
- Smallest resource group limit and granularity that can be enforced depends on
 - Processor speed/capacity
 - Number logical processors in system or Sysplex, and number of dispatchable units of the work to be capped
 - Service consumed at higher priority than capped work
- With z/OS V2.1 the number of time slices for resource group management was quadrupled
 - From 1/64th to 1/256th of elapsed time
 - Allows for more fine grain control of resource groups
More than 999 Application Environments

• A —static— application environment is a named entity in the WLM service definition that allows WLM to start server address spaces for scalable client/server type applications.
 • One of the main exploiters of this function are DB2 Stored Procedures

• Large DB2 installations may have a requirement to define more than 999 static Application Environments
 • Typically, these are SAP installations where the WLM service definition is shared across many systems and Sysplexes

• With z/OS V2.1 WLM increases the limit from 999 to 3000.
More than 999 Application Environments: Coexistence considerations

- As soon as more than 999 AEs are defined, the functionality level of the service definition is raised to **LEVEL029**
 - Can use z/OS V2.1 WLM ISPF Application or z/OSMF V2.1
 - Any service definition at functionality level 29 cannot be extracted, displayed, modified, installed, or activated by an WLM ISPF Application prior z/OS V2R1
 - If a service definition at LEVEL029 is installed to the WLM Couple Data Set by z/OS V2R1, systems with z/OS V1R12 and V1R13 of the same Sysplex can activate the policy

- APAR OA36842 for toleration of level 29 policies required on z/OS V1R12 and V1R13
More than 999 Application Environments: Migration considerations

- Customers with a need for more than 999 AEs must allocate a Couple Data Set for WLM which can hold the required number of AE objects
 - This is achieved by performing the **Allocate couple data set using CDS values** task in the WLM ISPF application
 - If a service definition with more AEs than allowed for the current WLM couple data set would be installed, the WLM ISPF application displays message **IWMAM047 WLM couple data set is too small to hold the service definition**
 - Alternatively, it is possible to allocate a WLM couple data set by running a job as provided in SYS1.SAMPLIB(IWMFTCDS)
Agenda

- z/Enterprise EC12 GA2 Support
- New Classification Qualifiers and Groups
- I/O Priority Groups
- Other z/OS V2.1 Enhancements
- Manage CICS Regions Using Goals Of: “BOTH”
- Response Time Distribution for Velocity Goals
- Service Stream Enhancements
Manage Regions Using Goals Of: “BOTH”: New management option for CICS environments

• **Problem:**
In environments with pre-dominant CICS workloads it is possible to observe contention problems as described in the following sample test scenario

• **Example:**
Workload: Websphere → CICS → DB2
 • Websphere receives work, sends it to CICS TORs which send it to AORs which execute DB2 calls
 • Classification: Websphere Imp=2 and all CICS Imp=3, managed towards response time goals

• **Symptoms:**
 • Low system throughput
 • Relatively high response times
 • System utilization can hardly be increased beyond (in this scenario) 80%
Manage Regions Using Goals Of: “BOTH”

- Problem Analysis
 - TORs and AORs run at the same dispatch priority
 - AORs heavily consume CPU. TORs compete against AORs and need to wait too long to receive work and return results to the caller fast enough
 - Hiperdispatch can amplify the situation because it runs the work at higher utilization

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval
Manage Regions Using Goals Of: “BOTH”
Sample test results

<table>
<thead>
<tr>
<th></th>
<th>Completed Transactions/sec</th>
<th>Avg. RespTime/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o „BOTH“</td>
<td>9765</td>
<td>0.197</td>
</tr>
<tr>
<td>„BOTH“</td>
<td>12463</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Throughput enhancement and significant response time reduction.

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval
Manage Regions Using Goals Of: “BOTH”

• **Two possible alternatives:**
 (Move TORs to a service class with higher importance than AORs)

 • **Option 1**: Exempt **all** regions from being managed to response time goals and classify TORs to a service class with higher importance than AORs.

 Disadvantage: No response time data present

 • **Option 2**: Exempt only AORs and move them to a service class with lower importance than the CICS service classes with response time goals.

 Disadvantage: Response time data cover only a small portion of the execution path because AORs consume much more than TORs.
Define STC service class for TORs which has a higher importance than the CICS service class with response time goals for the CICS work and AORs

TOR: “Manage Regions by Goals Of: BOTH” option in WLM service definition

AOR: “Manage Regions by Goals Of: TRANSACTION” (the default)

Result:

- WLM will manage the TORs towards the goals of the STC service class
- **And** WLM will ensure bookkeeping of transaction completions to the correct CICS response time service class
- The CICS transactions are managed towards CICS response time goals and the AORs are also managed towards these goals like today
Agenda

- z/Enterprise EC12 GA2 Support
- New Classification Qualifiers and Groups
- 3000 Application Environments
- I/O Priority Groups
- Manage CICS Regions Using Goals Of: “BOTH”
- Response Time Distribution for Velocity Goals
- Service Stream Enhancements
Response Time Distribution for Velocity Goals

• Before this support, WLM reporting did not provide a response time distribution (ended transactions) for workloads with velocity goals

• Sometimes it is desirable to have a response time distribution for all transactional workloads, even if they have a velocity goal
 • More data to analyze workload behavior and to detect problems
 • Better support for migration of goal definitions to response time goals

• With z/OS V1.13
 • the IWMRCOLL answer area IWMWRCAA provides also a response time distribution for service class periods with an execution velocity goal
 • the RMF Postprocessor Workload Activity report (WLMGL) displays the new response time distributions
The Mid-Point Change Algorithm

Response Time Distribution for Velocity Goals

- Response Time goals use the goal as "reference" (bucket 6)
- Velocity goals do not have a "reference" response time
- The mid-point (MP) is calculated based on workload

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval
Response Time Distribution for Velocity Goals

RMF Postprocessor Workload Activity Report:

REPORT BY: POLICY=DAYPOL WORKLOAD=BATCH SERVICE CLASS=SBATPMD RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=4

<table>
<thead>
<tr>
<th>CRITICAL</th>
<th>--TRANSACTIONS--</th>
<th>TRANS-TIME</th>
<th>HH.MM.SS.TTT</th>
<th>--DASD</th>
<th>I/O--</th>
<th>---SERVICE---</th>
<th>SERVICE TIME</th>
<th>---APPL %---</th>
<th>---PROMOTED---</th>
<th>----STORAGE----</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>AVG</td>
<td>1.70</td>
<td>ACTUAL</td>
<td>4.06.826</td>
<td>SSCHRT</td>
<td>1467 IOC</td>
<td>133593 CPU</td>
<td>64.577 CP</td>
<td>8.94 BLK</td>
<td>0.00 AVG</td>
</tr>
<tr>
<td></td>
<td>MPL</td>
<td>1.70</td>
<td>EXECUTION</td>
<td>28.632</td>
<td>RESP</td>
<td>0.1 CPU</td>
<td>1770K SRB</td>
<td>8.644 AAPCP</td>
<td>0.00 ENQ</td>
<td>1.480 TOTAL</td>
</tr>
<tr>
<td></td>
<td>ENDED</td>
<td>44</td>
<td>QUEUED</td>
<td>1.639 CONN</td>
<td>0.0 MSO</td>
<td>0 RCT</td>
<td>0.007 ITPCP</td>
<td>0.00 CRM</td>
<td>0.000 SHARED</td>
<td>11.66</td>
</tr>
<tr>
<td></td>
<td>END/S</td>
<td>0.05</td>
<td>R/S AFFIN</td>
<td>0 DISC</td>
<td>0.1 SRB</td>
<td>236535 IIT</td>
<td>7.204 LCK</td>
<td>1.167 PAGE IN RATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*SNAPS</td>
<td>2</td>
<td>INELIGIBLE</td>
<td>3.36.554</td>
<td>Q+PEND</td>
<td>0.1 TOTAL</td>
<td>2140K HST</td>
<td>0.000 AAP N/A</td>
<td>0.000 SUP</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>EXCTD</td>
<td>0</td>
<td>CONVERSION</td>
<td>47 IOSQ</td>
<td>0 /SEC</td>
<td>2378 AAP N/A ITP 0.00</td>
<td>SINGLE 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVG ENC</td>
<td>0.00</td>
<td>STD DEV</td>
<td>5.39.053</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BLOCK 0.0</td>
</tr>
<tr>
<td></td>
<td>REM ENC</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHARED 0.0</td>
</tr>
<tr>
<td></td>
<td>MS ENC</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HSP 0.0</td>
</tr>
</tbody>
</table>

| GOAL: EXECUTION VELOCITY 20.0% | VELOCITY MIGRATION: | I/O MGMT 81.2% | INIT MGMT 78.2% |

SYSTEM: SYS1 | INTERVAL: 00.15.00.000 | ---MRT CHANGES: 0 ---

<table>
<thead>
<tr>
<th>HH.MM.SS.TTT</th>
<th>CUM TOTAL</th>
<th>IN BUCKET</th>
<th>CUM TOTAL</th>
<th>IN BUCKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 00.00.16.994</td>
<td>21</td>
<td>21</td>
<td>84.0</td>
<td>84.0</td>
</tr>
<tr>
<td><= 00.00.20.393</td>
<td>22</td>
<td>1</td>
<td>88.0</td>
<td>4.0</td>
</tr>
<tr>
<td><= 00.00.23.792</td>
<td>24</td>
<td>2</td>
<td>96.0</td>
<td>8.0</td>
</tr>
<tr>
<td><= 00.00.27.191</td>
<td>24</td>
<td>0</td>
<td>96.0</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.00.30.590</td>
<td>24</td>
<td>0</td>
<td>96.0</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.00.33.989</td>
<td>25</td>
<td>1</td>
<td>100</td>
<td>4.0</td>
</tr>
<tr>
<td><= 00.00.37.387</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.00.40.786</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.00.44.185</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.00.47.584</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.00.50.983</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.01.07.978</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.02.15.956</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>> 00.02.15.956</td>
<td>25</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SYSTEM: SYS2 | INTERVAL: 00.15.00.000 | ---MRT CHANGES: 0 ---

<table>
<thead>
<tr>
<th>HH.MM.SS.TTT</th>
<th>CUM TOTAL</th>
<th>IN BUCKET</th>
<th>CUM TOTAL</th>
<th>IN BUCKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 00.05.32.317</td>
<td>4</td>
<td>4</td>
<td>21.1</td>
<td>21.1</td>
</tr>
<tr>
<td><= 00.06.38.781</td>
<td>4</td>
<td>0</td>
<td>21.1</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.07.45.244</td>
<td>4</td>
<td>0</td>
<td>21.1</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.08.51.708</td>
<td>5</td>
<td>1</td>
<td>26.3</td>
<td>5.3</td>
</tr>
<tr>
<td><= 00.09.58.171</td>
<td>5</td>
<td>0</td>
<td>26.3</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.11.04.635</td>
<td>11</td>
<td>6</td>
<td>57.9</td>
<td>31.6</td>
</tr>
<tr>
<td><= 00.12.11.098</td>
<td>15</td>
<td>4</td>
<td>78.9</td>
<td>21.1</td>
</tr>
<tr>
<td><= 00.13.17.562</td>
<td>17</td>
<td>2</td>
<td>89.5</td>
<td>10.5</td>
</tr>
<tr>
<td><= 00.14.24.025</td>
<td>17</td>
<td>0</td>
<td>89.5</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.15.30.489</td>
<td>17</td>
<td>0</td>
<td>89.5</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.16.36.952</td>
<td>18</td>
<td>1</td>
<td>94.7</td>
<td>5.3</td>
</tr>
<tr>
<td><= 00.17.02.920</td>
<td>19</td>
<td>1</td>
<td>100</td>
<td>5.3</td>
</tr>
<tr>
<td><= 00.18.09.384</td>
<td>19</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.19.16.847</td>
<td>19</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td><= 00.20.23.310</td>
<td>19</td>
<td>0</td>
<td>100</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval
Agenda

• z/Enterprise EC12 GA2 Support
• New Classification Qualifiers and Groups
• I/O Priority Groups
• Other z/OS V2.1 Enhancements
• Manage CICS Regions Using Goals Of: “BOTH”
• Response Time Distribution for Velocity Goals
• Service Stream Enhancements
OA42185OA44337: Uneven HiperDispatch Balancing on VERY large systems

- Symptom: On very large systems HiperDispatch may utilize affinity nodes unevenly:
 - Some nodes may be “overloaded” showing an MVS busy near 100%, while other nodes have plenty of free capacity.
 - Can typically be seen only with very stable workloads utilizing ≥ 30 CPs.
- WLM HiperDispatch balancing algorithms are responsible for assigning work to affinity nodes every 2 sec.
- z/OS dispatcher responsibility is to schedule the work units on the logical processors that make up the affinity node. Overloaded processors can receive help from less loaded processors.
- The WLM algorithms were changed to more aggressively balance the work unit as the number of processors grow - resulting in a more even distribution of work across nodes.
 - Note: It is perfectly fine to see uneven processor utilization within nodes, for I/O enabled processors and also some uneven utilization across nodes (without overloading nodes, though)
- z/OS V2.1: OA42185; z/OS V1.13: OA44337

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval
Service Stream Enhancements for “Unused Capacity”
OA37736 (z/OS V1R12, z/OS V1R13)

- Problem addressed:
 - If a large LPAR consumes below its weight-entitlement it is possible that a low-weight LPAR unparks many Vertical Low (VL) processors
 - Therefore a small LPAR could “dominate” larger LPARs because those could not unpark their VLs (additional VL would appear to be inefficient)

- Solution:
 - HiperDispatch considers now also the “unused” capacity share for a partition to unpark VLs
 - This share is calculated by dividing the unused capacity (guaranteed but not used) of all partitions in the CEC by the share of the partitions which can use more capacity
Service Stream Enhancements for “Unbound Servers”
OA43538 (z/OS V1.12, z/OS V1.13, V2.1)

• Problem addressed:

• Server address spaces, such as for DB2 Application Environments were not started due to incorrect assessment of available capacity
 • Symptom could be DB2 stored procedure timeouts with SQLCODE -471

• Could occur even when minimum number of servers were requested via MNSPAS=n parameter
Service Stream Enhancements for more aggressive Blocked Workload support (OA44526)

• Problem addressed:
 • The current minimum value that can be specified for the Blocked Workload interval threshold BLWLINTHD is 5 sec. DB2 could profit from earlier or more frequent trickling.

• More aggressive specifications will be enabled by OA44526 (currently open)
 • BLWLINTHD default and BLWLTRPCT remain unchanged
 • Consider lowering BLWLTRPCT with very small BLWLINTHD values if amount of trickle cycles that may be handed out is a concern.
z/OS Workload Management
- More Information -

- z/OS WLM Homepage:
 http://www.ibm.com/systems/z/os/zos/features/wlm/

- z/OS MVS documentation
 - z/OS MVS Planning: Workload Management:
 http://publibz.boulder.ibm.com/epubs/pdf/iea2w1c0.pdf
 - z/OS MVS Programming: Workload Management Services:
 http://publibz.boulder.ibm.com/epubs/pdf/iea2w2c0.pdf

- IBM Redbooks publications:
 - System Programmer's Guide to: Workload Manager:
 - ABCs of z/OS System Programming Volume 12