
z/OS UNIX Systems Services Security Best Practices

Vivian W Morabito

March 12, 2014

8:00AM – 9:00AM

Session Number 15119

morabito@us.ibm.com

Important to have a well designed security environment for
UNIX System Services

Often this is not the case…

Sometimes due to:

• Misunderstanding

• Lack of awareness

Frequently due to:

• Little attention being given to thoroughly designing the
security environment.

• UNIX System Services provides a full set of UNIX

capabilities to z/OS

• z/OS UNIX System Services is fully POSIX compliant

• z/OS UNIX provides significant extra controls to restrict,

limit, and divide authorities to protect against mis-use and

prevent security and integrity breaches.

To assist in the overall z/OS UNIX
Security Design

• z/OS UNIX Security Fundamentals REDP-4193

• This book may be obtained at:

http://www.redbooks.ibm.com/abstracts/redp4193.html?Open

• A new Redbook is being written: Security on the IBM Mainframe: A

Holistic Approach to reduce Risk and improve Security which will

include information on z/OS UNIX Security.

http://www.redbooks.ibm.com/abstracts/redp4193.html?Open

z/OS UNIX Security:
The view from 15000 feet

• The standard UNIX stuff:

• File / Directory ownership

• File permissions

• UID 0

• z/OS UNIX Differentiators include:

• UNIX related FACILITY & SURROGAT class profiles (BPX.*)

• UNIXPRIV Classes

• Access Control Lists

• Security Auditing

• Filesystem Access Prevention / Monitoring

• Automatic Assignment of UIDs / GIDs

• MLS / Security labels

Traditional & z/OS UNIX: file permissions

• z/OS UNIX, as a POSIX compliant system, provides all of the file

permission support available in traditional UNIX implementations.

• In a nutshell, every file (directory) in the filesystem has permission bits

giving it read, write, & execute (search) “rwx” permissions for the

owning user, owning group, and others

• ls –l output shows:

-rw-r—r-- 1 john1 staff 355 Jan 22 13:23 myfile

• Owner (john1) can read and write myfile

• Anyone in the group staff can read myfile, as can anyone else

(others)

• Often expressed in their octal format (644 for above example)

z/OS UNIX: users and groups
• All users and programs that need access to z/OS UNIX must

 have a RACF user profile defined with an OMVS segment,

 which contains 9 fields:

• UID - 0 to 2147483647

• HOME - directory in file system that becomes current when user

goes into the shell

• PROGRAM - Name of the program that will be started when user

logon

• CPUTIMEMAX, ASSIZEMAX, FILEPROCMAX, PROCUSERMAX,

THREADSMAX, and MMAPAREAMAX

• RACF commands to define users and groups:

• ADDUSER (AU) and ADDGROUP (AG)

• To modify - ALTUSER (ALU) and ALTGROUP (ALG)

• To assign OMVS Segment to existing user:

• alu joe omvs(uid(4670) home('/u/joe') program('/bin/sh'))

z/OS UNIX

RECOMMENDATION:

Overall z/OS UNIX Security design should pay careful

attention to the implementation of user and group IDs, and

group membership, and the permissions granted to these

users and groups.

Be aware of the umask setting when creating new files!!

• Traditional UNIX systems let superusers (UID 0) do any

and all tasks requiring authorization

• Allowing all UID 0 grants too much unlimited authority for

a z/OS system

z/OS UID 0 Superuser Authority

• Passes all z/OS UNIX Security checks

• Perform administrative activities

• Install products

• Can access and modify any files and directories

• Not Limited to only z/OS UNIX component

• Manages all z/OS UNIX processes

• Can run unlimited number of processes concurrently

• Propagates superuser privileges to forked child process

• Can change identity

z/OS: Defining full superuser privileges

• Assigning UID=0 in the RACF OMVS segment

• READ access to BPX.SUPERUSER profile in RACF

FACILITY class

BPX.SUPERUSER

• profile in the FACILITY class

• Allows non-UID 0 to su to become UID 0

• RECOMMENDATION:

• Limit using BPX.SUPERUSER to those requiring it for

installation purposes

• Keep careful track of who this has been granted to – use a

group to grant access rather than to individual users

• Log successful accesses

z/OS: Limiting users with superuser authority

• z/OS provides multiple facilities which:

• Grant superuser privileges with a high degree of granularity

to users who do not have superuser authority.

• Allows the creation of users which have limited authority.

• Minimize the number of superusers at an installation

• Reduce risk!!

UNIX related FACILITY & SURROGATE
class profiles

• All start with prefix BPX

• Define with UACC(NONE) and then PERMIT groups the

minimum access needed.

• Generally, authorized users must have a least READ

access to be able to use the specific UNIX function

protected

• AVOID defining the generic profile BPX.**

BPX.DAEMON

• BPX.DAEMON controls which users are allowed to take on

the identity of other users

• Any superuser permitted to BPX.DAEMON profile has the

daemon authority to change MVS identities via z/OS UNIX

services without knowing the target uid’s password

• Requires a Must Stay Clean Environment - all MVS and

z/OS UNIX programs that are loaded or executed must be

program controlled

• If BPX.DAEMON is not defined then all superusers have

daemon authority!!

BPX.SERVER

• BPX.SERVER regulates the security environment of
servers running on z/OS.

• BPX.SERVER restricts the use pthread_security_np()
which creates or deletes the security environment for the
caller's thread.

• Restricts the use of the BPX1ACK service, which
determines access authority to z/OS resources

• Requires a Must Stay Clean Environment - all MVS and
z/OS UNIX programs that are loaded or executed must be
program controlled

RECOMMENDATION

• Always define the profiles BPX.DAEMON and

BPX.SERVER in the FACILITY CLASS.

• Restrict access to these profiles to those with an absolute

need.

• This is not expected to include human users, just userids

for servers and daemons.

UNIXPRIV

• Profiles in UNIXPRIV grant RACF authorization for various z/OS UNIX

privileges

• Always define with UACC(NONE) and then PERMIT users the

minimum access needed.

• Allows superuser privileges to be granted with a high level of

granularity

• Minimizes the number of users with superuser authority

• REDUCES SECURITY RISK!!

UNIXPRIV

CHOWN.UNRESTRICTED
Allows users to use the chown command to transfer ownership of their

own files

With APAR OA41364 applied:

READ: change the user owner to a non-UID 0 -or-
 change the group owner to the GID of a group to

 which they are not connected.

UPDATE: change the user owner to a UID value of 0
(superuser)

RECOMMENDATION:

• Not recommended

• If needed, only give READ or UPDATE access to system
programmers/administrators.

UNIXPRIV

SUPERUSER.FILESYS.MOUNT

Allows users to mount a filesystem.

READ: mount a filesystem with the nosetuid option.

 chmount to change mount attributes of a nosetuid mounted
 filesystem

UPDATE: mount a filesystem with the setuid option.

 chmount to change mount attributes of a filesystem mounted
 with the setuid option.

RECOMMENDATION:

• If needed, grant access at lowest level of authority and
limit the number of users with authority.

UNIXPRIV

SUPERUSER.FILESYS.USERMOUNT

Allows nonprivileged users to mount and unmount file
systems with the nosetuid option.

• READ is the only access level

• User must also have:

• Read-write-execute (rwx) access to the directory that the file
system will be mounted on, which must be empty.
• If sticky bit is on, on, the user must be the owner of that dir

• Read-write-execute (rwx) access to the file system root.

• Provides convenience – moves management of user data
away from the system administrator into the hands of the
users that own the data.

UNIXPRIV

SHARED.IDS

Enforces unique UNIX identifiers (UID & GID)

• Prevents assignment of an ID which is already in use

• Does not affect pre-existing shared IDs

• SHARED operand allows identifiers to be shared (must
have READ access)

RECOMMENDATION:

• Define SHARED.IDS profile UACC(NONE)

• Provide READ access to a very limited number of trusted
administrator

Prevention of shared IDs ...

SHARED.IDS

RDEFINE UNIXPRIV SHARED.IDS

UACC(NONE)

SETROPTS RACLIST(UNIXPRIV)

REFRESH

ADDUSER MARCY OMVS(UID(12))

ADDGROUP ADK OMVS(GID(46))

BRADY

OMVS
UID=12

RACF DB

PATS

OMVS
GID=46

IRR52174I Incorrect UID 12. This value is already in use by BRADY.

IRR52174I Incorrect GID 46. This value is already in use by PATS.

Prevention of shared IDs ...

Override using SHARED

PERMIT SHARED.IDS CLASS(UNIXPRIV)

ID(UNIXGUY) ACCESS(READ)

SETROPTS RACLIST(UNIXPRIV) REFRESH

BPXOINIT

OMVS

UID=0

RACF DB

IRR52175I You are not authorized to specify the SHARED keyword.

AU OMVSKERN OMVS(UID(0) SHARED)

AU MYBUDDY OMVS(UID(0) SHARED)

UNIXGUY

OK!

MVSGAL

z/OS: Automatic Assignment of UIDs & GIDs

• A user must have a specific UID and GID to access the

z/OS UNIX Environment

• RACF can automatically generate a unique ID value in the

OMVS segment upon your request, using the

BPX.NEXT.USER profile and the AUTOUID & AUTOGID

operands of the add/altuser and add/altgroup commands

• Pre-requisites:

• Define SHARED.IDS profile in the UNIXPRIV class, which

will enforce unique UIDs & GIDs

• Define BPX.NEXT.USER profile also in UNIXPRIV class with

the APPLDATA field which specifies a starting value, or

range of values, from which RACF will derive unused UID

and GID values

BPX.UNIQUE.USER

• OMVS segment generation is enabled when the BPX.UNIQUE.USER
profile is defined in the FACILITY class.

• An optional model user can be specified by the APPLDATA field for
BPX.UNIQUE.USER.

• The OMVS segment from the model user is used to initialize new
OMVS segments for the user profile, this includes all attributes
(HOME, PROGRAM and user limits) except the UID.

• no passwords or pass-phrases on the model user!

• BPX.UNIQUE.USER uses BPX.NEXT.USER to derive un-used UIDs
and GIDs

• with APAR OA42554 on R12/13, the home directory string can
specified with &racuid to have RACF substitute the user's id when
defining the home directory string in the OMVS segment.

FSACCESS Class Profile

• Acts as a “gatekeeper” to zFS filesystems

• After user granted access to the filesystem, subsequent decisions are

based on permissions & ACLs

• Access check is based solely on the user’s z/OS userid – meaning that

the superuser authority will not be used or influence the outcome of

this access control check.

• Only zFS filesystems supported

• Root filesystem & zFS-es mounted NOSECURITY excluded

• . RECOMMENDATION:

FSACCESS may be of use for RACF administrator to prevent access to

filesystem(s)

RECOMMENDATION

Define resources with UACC(NONE)

Keep the access lists of these resources to an absolute

minimum.

Document all cases where these privileges have been

granted, with the reasons.

filesystem security recommendations

• Public filesystems /tmp and /var should be mounted with

NOSETUID in PARMLIB member BPXPRMxx

• Automount policy should explicitly set “setuid no”

• Automount policy files (e.g. /etc/u.map) should not specify

<uc_name> or <asis_name> as first qualifier of filesytem

datasets.

• Note: filesystem create / delete may have to be done by an

administrator.

THINGS TO BE AWARE OF

Some software packages for z/OS USS have been ported
from other UNIX systems, where using UID 0 for
authorization is the standard way of operating.

You only have a few options here:

• Run the package with UID 0 and accept the risk

• Find out what services it uses that require superuser
authority, and if a profile exists for that service use it.

• Put pressure on the vendor to change the way he operates

• Reject the package in favor of one that meets your security
requirements

THINGS TO BE AWARE OF

• Remove old versions of software products.

• Many products install their latest release in a new directory

and the old directory will still be there with the old

executables that do not have the latest security fixes.

z/OS: Access Control Lists

• Access Control Lists (ACLs) are a common feature in most

UNIX implementations, including z/OS UNIX

• Used in conjunction with permission bits

• Provide more granular security than POSIX permission

bits

• ACLs exist in the filesystem associated with each file.

ACLs on z/OS UNIX

• Supported on zFS, HFS, and TFS filesystem

• ACLs are created and checked by RACF and not the

kernel or filesystem.

• Must either be UID 0 or have READ access to

SUPERUSER.FILESYS.CHANGEPERMS in UNIXPRIV to

define ACLs, or be the file owner

• Must activate the FSSEC class before ACLs can be used

in making access decisions

• SETROPTS CLASSACT(FSSEC)

ACLs on z/OS….

• ACLs can both restrict & grant access to files & directories

• 3 types of ACLs:

• Access: used to provide protection for file system object

• File Default: -- inherited by new files

• Directory Default: – inherited by new sub-directories

• 2 types of ACL Entries:

• Base ACL Entries: same as POSIX permission bits!

• Can be set / changed either via chmod or setfacl

• Extended ACL Entries: are entries for individual users or

groups.

35

z/OS Commands for ACLs
Shell Commands:

setfacl set, remove, modify ACL entries

getfacl display owner, group, ACL entries

ls + indicates if extended ACL entries exist

find -acl option to find objects with ACLs

df determine if filesys supports ACLS

getconf determine if filesys supports ACLS & max # of ACLs

pax, tar store / restore ACL info in an archive

cp –p, mv –Z preserve ACLs for files & directories

filetest, test tests files & dirs for extended and / or default ACLs

C / C++ Calls

Various C calls are available to add, delete, update, get, sort ACLs

REXX, ISHELL interfaces are available

ACL tool available

Tool available which will:

• set ACLs for a directory and everything underneath

• show ACLs for a file or directory

ftp://public.dhe.ibm.com/s390/zos/tools/wjsacl/wjsacl.txt

z/OS UNIX Security Auditing

• File level auditing

• File-level Audit Attributes set via chaudit command

• fileowner / superuser: non-auditor-requested audit attributes

• Only users with auditor authority can change auditor-requested

audit attributes

• File-level Audit Attributes displayed via ls –W

• displays both owner & auditor options

• Resource class level auditing

• Controlled by 7 UNIX Audit Classes

z/OS UNIX Audit Classes

Class SETROPTS AUDIT SETROPTS LOGOPTIONS

FSOBJ Creation and deletion of all file

system objects

Access to files

DIRACC N/A Read/write access to directories

DIRSRCH N/A Search access to directories

FSSEC N/A Changes to security data of all file system objects

PROCESS Dubbing and undubbing of

processes

Changes to process identity (UID and GID)

PROCACT N/A Functions that inspect (e.g. getpsent) or update (e.g. kill,

ptrace) other processes

IPCOBJ Creation and deletion of

InterProcess Communication

objects

Access to IPC objects, and changes to permissions and

ownership

 Auditing UNIX Files:

 compared with data sets
DATASET auditing UNIX file auditing

SETROPTS LOGOPTIONS for

DATASET class controls access logging

SETROPTS LOGOPTIONS for FSOBJ,

DIRACC, and DIRSRCH classes contols

access logging

SETROPTS AUDIT(DATASET) audits

profile creation/deletion

SETROPTS AUDIT(FSOBJ) audits file

creation/deletion

SETROPTS AUDIT(DATASET) audits

changes to RACF profiles

SETROPTS LOGOPTIONS for FSSEC

audits changes to file owner, permission

bits and audit settings

Profile-level auditing can be specified by

profile OW NER (AUDIT option of

ALTDSD)

File-level auditing can be specified by file

owner (chaudit command)

Profile-level auditing can be specified by

auditor (GLOBALAUDIT option of

ALTDSD)

File-level auditing can be specified by

auditor (chaudit command with -a option)

DATASET auditing UNIX file auditing

SETROPTS LOGOPTIONS for

DATASET class controls access logging

SETROPTS LOGOPTIONS for FSOBJ,

DIRACC, and DIRSRCH classes contols

access logging

SETROPTS AUDIT(DATASET) audits

profile creation/deletion

SETROPTS AUDIT(FSOBJ) audits file

creation/deletion

SETROPTS AUDIT(DATASET) audits

changes to RACF profiles

SETROPTS LOGOPTIONS for FSSEC

audits changes to file owner, permission

bits and audit settings

Profile-level auditing can be specified by

profile OW NER (AUDIT option of

ALTDSD)

File-level auditing can be specified by file

owner (chaudit command)

Profile-level auditing can be specified by

auditor (GLOBALAUDIT option of

ALTDSD)

File-level auditing can be specified by

auditor (chaudit command with -a option)

 Auditing UNIX Files:

 compared with data sets ...
DATASET auditing UNIX file auditing

LOGOPTIONS with ALW AYS and

NEVER overrides profile settings

same for file settings

LOGPTIONS with SUCCESSES or

FAILURES merged with profile-level

settings

same for file settings

LOGOPTIONS with DEFAULT uses the

profile-level settings

same for file settings

Default profile setting is READ failures for

owner options, and no settings for auditor

options (implies UPDATE, CONTROL,

and ALTER failures too)

Default is read, write, and execute failures

for owner settings (note that UNIX

permissions are not hierarchical - these

are separate settings for each access type)

Display profile options with LISTDSD Display file options with ls -W

DATASET auditing UNIX file auditing

LOGOPTIONS with ALW AYS and

NEVER overrides profile settings

same for file settings

LOGPTIONS with SUCCESSES or

FAILURES merged with profile-level

settings

same for file settings

LOGOPTIONS with DEFAULT uses the

profile-level settings

same for file settings

Default profile setting is READ failures for

owner options, and no settings for auditor

options (implies UPDATE, CONTROL,

and ALTER failures too)

Default is read, write, and execute failures

for owner settings (note that UNIX

permissions are not hierarchical - these

are separate settings for each access type)

Display profile options with LISTDSD Display file options with ls -W

z/OS: Security Auditing Recommendations

• Use file-level audit settings to log successful accesses to

sensitive files, such as configuration files

• Do use SETROPTS LOGOPTIONS(ALWAYS(FSSEC))

• Will record all attempts to change security info for files / dirs

• Do use SETROPTS LOGOPTIONS(FAILURES(PROCESS PROACT)

• Logs failed attempts:

• to change process UID/GID

• inspect / affect processes other than their own

• (these are not logged by default)

• Do use SETROPTS LOGOPTIONS(FAILURES(IPCOBJ))

• Logs failed attempts to access in-memory IPC objects (these

are not logged by default)

z/OS: Security Auditing Recommendations…

• Don’t use BPX.SAFFASTPATH if you ever need

successful file access audit records created

• Don’t turn on successful directory search (DIRSRCH):

• too much information produced!!

• Could be done on an exception basis using file level settings

• Download available on the RACF web site which dumps

security-relevant file system information into a flat file and

allows the same query ability as the RACF IRRDBU00

(database unload) and IRRADU00 (SMF Unload) utilities

http://www-03.ibm.com/systems/z/os/zos/features/racf/downloads/irrhfsu.html

43

z/OS: Multilevel security (MLS)

 Multilevel security is a security policy that allows the classification
of data and users based on a system of hierarchical security
levels combined with a system of non-hierarchical security
categories.

 In a multilevel security z/OS UNIX environment, authorization
checks are performed for security labels in addition to POSIX
permissions, to provide additional security.

See Planning for Multilevel Security and the Common Criteria GA22-7509-13

References

• z/OS V2R1.0 UNIX System Services Planning GA32-0884-00

• z/OS V2R1.0 UNIX System Services User’s Guide SA23-2279-00

• z/OS Security Server RACF Security Administrator's Guide

 SA23-2289-00

• z/OS Security Server RACF Auditor's Guide SA23-2290-00

• Planning for Multilevel Security and the Common Criteria
 GA22-7509-13

45

Connect with IBM System z on social media!

Subscribe to the new IBM Mainframe Weekly digital newsletter to get the latest
updates on the IBM Mainframe!

Include the hashtag #mainframe in your social media activity and #mainframe50 in 50th
anniversary activity

System z Advocates **
IBM Mainframe- Unofficial Group

IBM System z Events
Mainframe Experts Network

SHARE

IBM System z **
IBM System z Events

Destination z
SHARE

System z SMEs and Executives:
Deon Newman - @deonnewm

Steven Dickens - @StevenDickens3
Michael Desens - @MikeDesens

Patrick Toole - @Pat_Toole_II
Kelly Ryan - @KellykmRyan
Richard Gamblin - @RichGx

IBM System z **
IBM Master the Mainframe Contest

IBM Destination z
SHARE Inc.

 Blogs

IBM Mainframe Insights **
Millennial Mainframer
#MainframeDebate blog
SHARE blog
IBM Destination z

IBM System z **
Destination z

IBM Mainframe50

http://paper.li/IBM_System_z/1386866312
http://paper.li/IBM_System_z/1386866312
http://www.linkedin.com/groups?mostPopular=&gid=155723
http://www.linkedin.com/groups?gid=670987&trk=myg_ugrp_ovr
http://www.linkedin.com/groups?gid=670987&trk=myg_ugrp_ovr
http://www.linkedin.com/groups?gid=670987&trk=myg_ugrp_ovr
http://www.linkedin.com/groups?gid=670987&trk=myg_ugrp_ovr
http://www.linkedin.com/groups/IBM-System-z-Events-3053018?trk=myg_ugrp_ovr
http://www.linkedin.com/groups/Mainframe-Experts-Network-55779?trk=myg_ugrp_ovr
http://www.linkedin.com/groups?trk=myg_ugrp_ovr&gid=1803278
https://twitter.com/IBM_System_z
https://twitter.com/SystemZEvents
https://twitter.com/myzcommunity
https://twitter.com/sharehq
https://twitter.com/deonnewm
https://twitter.com/StevenDickens3
https://twitter.com/MikeDesens
https://twitter.com/Pat_Toole_II
https://twitter.com/KellyKmryan
https://twitter.com/RichGx
http://www.facebook.com/IBMsystemz?ref=tn_tnmn
http://www.facebook.com/MasterTheMainframe?fref=ts
http://www.facebook.com/IBMDestinationz
https://www.facebook.com/SHAREonSocial
https://www-304.ibm.com/connections/blogs/systemz/?lang=en_us
http://www.millennialmainframer.com/
http://mainframedebate.blogspot.co.uk/
http://www.share.org/p/bl/et/
http://www.destinationz.org/Community.aspx
http://www.youtube.com/user/IBMSystemz
http://www.youtube.com/user/destinationz1
http://ibmmainframe50.tumblr.com/

