
The Future of PDSE:
The Version 2 Format

Speaker: Thomas Reed

IBM Corporation

Session: 15083

Agenda

• The PDSE Version 2 Rationale

• Version 2 Architecture Changes

• Performance Improvements

• New Feature: PDSE Member Generations

• What is it?

• Generations Structure

• Working with Generations

• Version 2 Usage and Considerations

What is a PDSE?

• PDSE: Partitioned DataSet Extended

• A PDSE is a collection of directory and data pages

• At V2R1 there are 2 dataset formats V1 and V2 PDSEs

• PDSE server consists of one or two address spaces
(SMSPDSE and SMSPDSE1)

• The SMSPDSE(1) address spaces serve client access

requests for PDSE datasets

• Under the hood SMSPDSE(1) also manages PDSE

serialization and buffering

PDSE User Needs

• Users want to be able to better reclaim space from PDSE

datasets that is allocated but unused

• Users want to reduce PDSE I/O usage

• Users want to reduce PDSE CPU usage

PDSE Version 2 Format: Rationale

• Streamlining of the PDSE format

• Enables multiple improvements over Version 1

• Enhanced Partial Release

• Consolidation of directory pages

• Enhanced read performance

• Reduced virtual storage utilization

The more things change…
the more they stay the same

• Like Version 1, Version 2 datasets:

• Still are homogenous collections of 4K pages

• Still have multiple indexes

• Are serialized identically

• Retain the same sharing capabilities

and restrictions

• Leverage the same V2R1 IMF/BMF restructure

enhancements

Streamlining the PDSE Format

• Removal of unnecessary index structures

• Removed VDF AD mapping

• Removes a layer of complexity from page resolution

• Allows for faster index searches

• Allows for finer control of partial release

Streamlining the PDSE Format

• Set commonly referenced dataset statistics

as easily referenced values

• Page, Member, and Total Member Count values

are now stored in the AD root

• No longer dynamically calculated

• Speeds up queries

Streamlining the PDSE Format

• Variable Record PDSE efficiency enhancements

• Removed the static RRI

• RRI now built dynamically

• Drastically reduces storage and CPU needs

• The Tradeoff

• An OPEN followed by a ‘blind’ Point to the end

of a member will be slower

• If this is your primary use for a PDSE then consider

using a V1 data set

Performance Benefits

• Enhancements will benefit the majority of processing

based on:

• Directory consolidation (especially VB data sets)

• Improved space management

• Reduced path length for almost all

index operations

Performance Benefits

• Real world improvements:

• First OPEN of large PDSEs

• Creation of large members using variable records

• Variable records use storage much more efficiently

• Variable records are much faster in the

vast majority of use cases

• Reduced I/O usage

• Reduced CPU usage

Performance Results

• Testing Configuration

• 2 LPARs at V2R1, 7 processors each

• SMS Parameters:
• PDSESHARING(EXTENDED)

• PDSE_RESTARTABLE_AS(YES)

• PDSE_BUFFER_BEYOND_CLOSE(YES) AND

PDSE1_BUFFER_BEYOND_CLOSE(YES)

• PDSE_BMFTIME(300) AND PDSE1_BMFTIME(300)

Performance Results

• Testing Workload

• 400 users split evenly between the LPARs

• 30 large PDSE datasets

• 10 with RECFM=FB, LRECL 256 and over 13,000 members

• 10 with RECFM=VB, LRECL=133 and over 13,000 members

• 10 with RECFM=U and about 15,000 members and 4,000 alias
entries

• TSO workload includes READ, UPDATE, IEBCOPY,

CREATE, and DELETE of members

• Comparing PDSE V1 and V2 performance at V2R1

• Meaning both dataset types are using the IMF/BMF
improvements

NOTE: Performance improvements are based on internal IBM laboratory tests. Your results will vary.

Performance Results

• Improvements between V1 and V2 PDSE datasets:

• 11-18% Reduction in storage used

• 9% Reduction in CPU used by SMSPDSE1

• 2% Reduction in CPU used by TSO users

• Improvements in index heavy operations

• Browse dataset to member list - 7% faster

• Member delete to member list – 20% faster

NOTE: Performance improvements are based on internal IBM laboratory tests. Your results will vary.

New Feature:
PDSE Member Generations

• Implemented via APAR OA42358

• Exclusive to the V2 PDSE Format

• PDSE Datasets can now retain multiple

generations of members

• Applies to BOTH Data Members and

Program Objects

• Retains generations up to the dataset/system limit

New Feature:
PDSE Member Generations

Terminology

• Generation (GEN)

• A prior copy of a member

• Primary Generation

• The current member

• Absolute and Relative 0

• Generation Numbering

• Absolute: GEN(n), GEN(n-1), GEN(n-2)….

• Relative: GEN(-1), GEN(-2),….,GEN(-n)

• n being the nth generation created

PDSE Member Generations

• FIFO (First In, First Out) structure

• Mostly….

• Generations are uniquely numbered

• They can be referenced either by their

Absolute or Relative generation

• Current member is always 0,

both relative and absolute

• Greatest number indicates the newest generation

PDSE Member Generations

• FIFO (First In, First Out) structure

• Oldest generation is permanently deleted

if it’s over the generation limit

• Old generations generally behave just

like primary members

• Aliases are retained for previous generations*

* When STOW RECOVERG is used

PDSE Member Generations

Usage Considerations

• Allow extra space for each generation

• Each generation retains the entire member

• MAXGENS_LIMIT in IGDSMSxx is the

System limit

• MAXGENS_LIMIT can be set dynamically

• MAXGENS_LIMIT is set at 2 billion

PDSE Member Generations:
Working with Generations

Creating a Generation

• 2 requirements

• (LIBRARY,2)

• MAXGENS > 0

• New generations are automatically created on

replace or delete of a member

• Update in place will not create a new generation

• Generation creation is atomic

PDSE Member Generations:
Working with Generations

Reading Old Generations

• FIND macro will allow programs to connect to old
generations

• Conventional READ and CHECK macros

still apply

• Old generations cannot be accessed via JCL

or dynamic allocation

PDSE Member Generations:
Working with Generations

Deleting Old Generations

• Each generation must be deleted separately

• Deleted generations can be replaced

by using STOW RG

• ISPF member delete will delete all generations

PDSE Member Generations:
Working with Generations

Recovering Old Generations

• Read an old generation and then write it to either the same
or a different member name

• The old generation will become the current generation

• Note: This method will not restore aliases

• Use the RECOVERG option for the STOW macro

• The old generation becomes the current generation of the
member of the same name

• Note: Aliases ARE recovered by this method

PDSE Member Generations:
Working with Generations

Backup Considerations

• IEBCOPY and IDCAMS REPRO

• Only copy the current generation of each member

• All old generations are lost

• DFSMSdss

• Physical or Logical dump and restore retain all old

generations

• This includes HSM backup

PDSE Member Generations:
DESERV Macros

FUNC=GET_G (AKA Get Generation)

• Returns information for the selected generation

• Returns the same information as GET plus the relative and

absolute generation numbers

• A dummy entry is returned if the selected generation does

not exist

• Does not support CONNECT

PDSE Member Generations:
DESERV Macros

FUNC=GET_G

,AREA=(buffer_area, buffer_area_size)

,DCB=data_control_block

,NAME_LIST=(generationname,1)

[,MF={(E,parmlist_name[,NOCHECK|COMPLETE])|S}]

[,RETCODE=return_code]

[,RSNCODE=reason_code]

PDSE Member Generations:
DESERV Macros

FUNC=GET_ALL_G (AKA Get All Generations)

• Returns information for the selected generation for all
members

• Returns the same information as GET_ALL plus the

relative and absolute generation numbers

• A dummy entry is returned if the selected generation does

not exist for a member

• Does not support all the same options as GET_ALL

PDSE Member Generations:
DESERV Macros

FUNC=GET_ALL_G

,AREA=(buffer_area, buffer_area_size)

,DCB=data_control_block

,NAME_LIST=(generationname,1)

[,MF={(E,parmlist_name[,NOCHECK|COMPLETE])|S}]

[,RETCODE=return_code]

[,RSNCODE=reason_code]

PDSE Member Generations:
STOW Macro

DG (Delete Generation)

• Deletes an existing generation

• Takes a member name and generation number

• Leaves a gap in the generation list

• If issued with a generation of 0, deletes the member

without creating a generation

PDSE Member Generations:
STOW Macro

RG (Replace Generation)

• Replaces an existing generation

• Adds a generation if replacing a gap

in the generation list

PDSE Member Generations:
STOW Macro

RECOVERG (Recover Generation)

• Recovers an existing generation

• Removes the selected generation from

the generation list and makes it the

primary member

• Creates a new generation in the replace

process from the former primary member

PDSE Member Generations:
ISPF Support

Panels

• ISPF now has generations support

• Enhanced member list option must be selected

PDSE Member Generations:
ISPF Support

Allocation

• Allocates like any other PDSE

• MAXGENS must be >0

• Be sure you’re using version 2!

PDSE Member Generations:
ISPF Support

Restrictions

• ENQUEUEing on one generation applies to

all generations of that member

• This is not a PDSE serialization restriction

• The native API’s allow for editing of

multiple generations of the same member

• ISPF Options 1 and 2 do not support a

GEN parameter

• ISPF 3.1 and 3.4 do support a GEN parameter

PDSE Member Generations:
ISPF Support

Editing

• Editing the current member (GEN 0) results in

a new generation being created

• Editing prior generations does NOT result

in a new member

• Supports referencing generations by either

absolute or relative generation number

• Deleting a member in ISPF deletes all generations

• This is an ISPF implementation feature

• TSO DELETE pdse(member) deletes only the primary

PDSE Member Generations:
ISPF Support

Editing Cont’d

• Generation creation behavior can be forced

• SAVE NEWGEN – Creates a new generation

• SAVE NOGEN – Does not create a new generation

• Edit will tell you which absolute generation

you are working with

How to create Version 2 PDSEs

• New option for DSNTYPE keyword

• DSNTYPE=(LIBRARY,{1,2})

• 1– Version 1 PDSE (Default)

• 2 – Version 2 PDSE

• Supported for JCL, TSO Allocate

• New options for IGDSMSxx member in SYS1.PARMLIB

• DSNTYPE=({LIBRARY|PDS|HFS},{1,2})

• MAXGENS_LIMIT (1 – 2bn)

• Precedence:

• DSNTYPE on JCL takes precedence over PARMLIB

Usage Expectations

• Long Term

• It is expected that PDSE users will specify

DSNTYPE=(LIBRARY,2) in their

IGDSMSxx parmlib member

• It is expected that V2 data sets will

eventually supplant V1 data sets

• The following usage considerations are applicable for
mixed PDSE V1 and V2 environments

How to differentiate PDSE versions

• ISMF

• Dataset List: Version added to data under

column ‘DATA SET NAME TYPE’

• ISITMGD

• New field added: ISMDSNVER

• SMF Type 14/15

• New field added: SMF14DSVER

How to differentiate PDSE versions:
ISMF

• Dataset List Example

• Version displayed with data set type

How to differentiate PDSE versions cont.

• Note:

• Neither IEHLIST LISTVTOC nor LISTPDS can

be used to identify Version 2 PDSE data sets

• No VTOC bit is set for Version 2 data sets

• PDSE data set versions are internally

self describing

Coexistence

• Coexistence APARs:

• OA39530

• OA40844

• OA41790

• Down-level systems (z/OS V1R12 and V1R13)

• Coexistence APARs allow for access to PDSE Version 2
datasets

• PDSE Version 2 data sets cannot be created below V2R1

Diagnostics

• Existing diagnostics updated to support PDSE Version 2

data sets

• IEBPDSE

• IGWFPMAN

• IGWPIT

• Coexistence APARs are required for compatibility

Unsupported Releases

• Attempting to open a V2 data set on a pre-V1R12 system

will result in a 0F4 ABEND

• ABEND 0F4 RC=24 RSN=01045AF1

• Reason Code 01045AF1 translates to: JCDM_INVALID_VDF

• PDSE Connect Processing will fail on initial page load
checks

• Prevents invalid data set information from being returned to
the client

• Prevents any processing that could break or corrupt the

Version 2 PDSE from occurring

Rate this Session

